1
|
Siopi SA, Antonitsis P, Karapanagiotidis GT, Tagarakis G, Voucharas C, Anastasiadis K. Cardiac Failure and Cardiogenic Shock: Insights Into Pathophysiology, Classification, and Hemodynamic Assessment. Cureus 2024; 16:e72106. [PMID: 39575019 PMCID: PMC11581444 DOI: 10.7759/cureus.72106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Heart failure is defined as increased intracardiac pressures, either alone or combined with reduced cardiac output. Clinically, it is presented with signs and symptoms of congestion and compensated perfusion. Cardiogenic shock, on the other hand, is the spectrum of hemodynamic disturbances that lead to hypoperfusion or need for circulatory support, due to cardiac disease. Both entities affect millions of people worldwide, have a dismal prognosis, and constitute a severe socioeconomic burden. Heart failure can be the aftermath of ischemic heart disease, hypertension, arrhythmias, or cardiomyopathies. It undergoes multiple classifications, facilitating its investigation and treatment. The pathogenetic mechanisms differ in various types of heart failure, regarding the affected ventricles, the duration of symptoms, and their primary/secondary onset. These mechanisms reflect the complex interactions between cardiopulmonary, vascular, and hepatorenal systems. Acute deterioration of cardiac function can lead to cardiogenic shock. Myocardial infarction accounts for 81% of such cases. Healthy lifestyle and timely management of coronary artery disease are paramount, as they can prevent this life-threatening situation and reduce mortality and the economic burden for healthcare systems. Irrespective of the etiology, cardiogenic shock is interpreted using the pressure-volume loop. This can be modified for each ventricle, the underlying pathophysiology, and the time since symptoms' onset. It therefore provides valuable information about the native circulation and the expected alterations under mechanical or pharmacological support, facilitating the decision-making progress. In 2019, given the phenotypical heterogeneity of cardiogenic shock, the Society for Cardiovascular Angiography and Interventions introduced a classification system. According to this, patients are stratified in five stages proportionally to the severity of their condition. Aside from this classification, various biochemical, imaging, and hemodynamic monitoring indices are used to assess coagulation pathway and cardiac, hepatorenal, and pulmonary function, enabling the heart team to tailor therapy. Additionally, the prognostication progress is facilitated by scores, such as the Observatoire Regional Breton sur l'Infarctus (ORBI) score, the intra-aortic balloon pump (IABP) SHOCK-II score, and the CardShock score, indicating suitable escalation or de-escalation strategies. Despite the current progress, there are several areas of advancement regarding the role of vasoactive drugs in cardiogenic shock, revascularization options, mechanical ventilation patterns, hypothermia treatment, and mechanical circulatory support protocols.
Collapse
Affiliation(s)
- Stavroula A Siopi
- Cardiovascular Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | | - Georgios Tagarakis
- Cardiothoracic Surgery, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Christos Voucharas
- Cardiothoracic Surgery, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | |
Collapse
|
2
|
Karimov JH, Fukamachi K, Masuzawa T. Editorial: Mechanical circulatory support therapy for biventricular failure. Front Cardiovasc Med 2024; 11:1421550. [PMID: 38841259 PMCID: PMC11150802 DOI: 10.3389/fcvm.2024.1421550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Affiliation(s)
- Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Kaufman Center for Heart Failure, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Kaufman Center for Heart Failure, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States
| | | |
Collapse
|
3
|
Min JJ, Cho YH, Lee SM, Lee JH. Anesthetic management for non-cardiac surgery in patients with left ventricular assist devices. Korean J Anesthesiol 2024; 77:175-184. [PMID: 36912004 PMCID: PMC10982535 DOI: 10.4097/kja.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
With the growing number of patients undergoing left ventricular assist device (LVAD) implantation and improved survival in this population, more patients with LVADs are presenting for various types of non-cardiac surgery. Therefore, anesthesiologists need to understand the physiology and adequately prepare for the perioperative management of this unique patient population. This review addresses perioperative considerations and intraoperative management for the safe and successful management of patients with an LVAD undergoing non-cardiac surgery. Understanding the basic physiology of preload dependency and afterload sensitivity in these patients is essential. The main considerations include a collaborative preoperative multidisciplinary approach, perioperative care aimed at optimizing the intravascular volume and right ventricular function, and maintaining the afterload within recommended ranges for optimal LVAD function.
Collapse
Affiliation(s)
- Jeong-Jin Min
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yang Hyun Cho
- Department of Thoracic & Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangmin M. Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Hwan Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Sciaccaluga C, Procopio MC, Potena L, Masetti M, Bernazzali S, Maccherini M, Landra F, Righini FM, Cameli M, Valente S. Right ventricular dysfunction in left ventricular assist device candidates: is it time to change our prospective? Heart Fail Rev 2024; 29:559-569. [PMID: 38329583 PMCID: PMC10942886 DOI: 10.1007/s10741-024-10387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The use of left ventricular assist devices (LVAD) has significantly increased in the last years, trying to offer a therapeutic alternative to heart transplantation, in light also to the significant heart donor shortage compared to the growing advanced heart failure population. Despite technological improvements in the devices, LVAD-related mortality is still fairly high, with right heart failure being one of the predominant predictors. Therefore, many efforts have been made toward a thorough right ventricular (RV) evaluation prior to LVAD implant, considering clinical, laboratory, echocardiographic, and invasive hemodynamic parameters. However, there is high heterogeneity regarding both which predictor is the strongest as well as the relative cut-off values, and a consensus has not been reached yet, increasing the risk of facing patients in which the distinction between good or poor RV function cannot be surely reached. In parallel, due to technological development and availability of mechanical circulatory support of the RV, LVADs are being considered even in patients with suboptimal RV function. The aim of our review is to analyze the current evidence regarding the role of RV function prior to LVAD and its evaluation, pointing out the extreme variability in parameters that are currently assessed and future prospective regarding new diagnostic tools. Finally, we attempt to gather the available information on the therapeutic strategies to use in the peri-operative phase, in order to reduce the incidence of RV failure, especially in patients in which the preoperative evaluation highlighted some conflicting results with regard to ventricular function.
Collapse
Affiliation(s)
- Carlotta Sciaccaluga
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy.
| | | | - Luciano Potena
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Masetti
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sonia Bernazzali
- Department of Cardiac Surgery, University of Siena, Siena, Italy
| | | | - Federico Landra
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Francesca Maria Righini
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Serafina Valente
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Färber G, Schwan I, Kirov H, Rose M, Tkebuchava S, Schneider U, Caldonazo T, Diab M, Doenst T. Durability of Tricuspid Valve Repair in Patients Undergoing Left Ventricular Assist Device Implantation. J Clin Med 2024; 13:1411. [PMID: 38592251 PMCID: PMC10932215 DOI: 10.3390/jcm13051411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Objectives: Benefits of tricuspid valve repair (TVR) in left ventricular assist device (LVAD) patients have been questioned. High TVR failure rates have been reported. Remaining or recurring TR was found to be a risk factor for right heart failure (RHF). Therefore, we assessed our experience. Methods: Since 12/2010, 195 patients have undergone LVAD implantation in our center. Almost half (n = 94, 48%) received concomitant TVR (LVAD+TVR). These patients were included in our analysis. Echocardiographic and clinical data were assessed. Median follow-up was 2.8 years (7 days-0.6 years). Results were correlated with clinical outcomes. Results: LVAD+TVR patients were 59.8 ± 11.4 years old (89.4% male) and 37.3% were INTERMACS level 1 and 2. Preoperative TR was moderate in 28 and severe in 66 patients. RV function was severely impaired in 61 patients reflected by TAPSE-values of 11.2 ± 2.9 mm (vs. 15.7 ± 3.8 mm in n = 33; p < 0.001). Risk for RHF according to EUROMACS-RHF risk score was high (>4 points) in 60 patients, intermediate (>2-4 points) in 19 and low (0-2 points) in 15. RHF occurred in four patients (4.3%). Mean duration of echocardiographic follow-up was 2.8 ± 2.3 years. None of the patients presented with severe and only five (5.3%) with moderate TR. The vast majority (n = 63) had mild TR, and 26 patients had no/trace TR. Survival at 1, 3 and 5 years was 77.4%, 68.1% and 55.6%, 30-day mortality was 11.7% (n = 11). Heart transplantation was performed in 12 patients (12.8%). Conclusions: Contrary to expectations, concomitant TVR during LVAD implantation may result in excellent repair durability, which appears to be associated with low risk for RHF.
Collapse
Affiliation(s)
- Gloria Färber
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421 Homburg/Saar, Germany
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Imke Schwan
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421 Homburg/Saar, Germany
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Hristo Kirov
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Marcel Rose
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Sophie Tkebuchava
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Ulrich Schneider
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421 Homburg/Saar, Germany
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tulio Caldonazo
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Mahmoud Diab
- Department of Cardiac Surgery, Rotenburg Heart and Vascular Centre, 36199 Rotenburg an der Fulda, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
6
|
Thut TLZ, Petrou A, Meboldt M, Daners MS, Wilhelm MJ. The impact of right ventricular hemodynamics on the performance of a left ventricular assist device in a numerical simulation model. BIOMED ENG-BIOMED TE 2023; 68:503-510. [PMID: 37099745 DOI: 10.1515/bmt-2020-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Left ventricular assist devices (LVADs) have been established as alternative to heart transplantation for patients with end-stage heart failure refractory to medical therapy. Right heart failure (RHF) after LVAD implantation is associated with inferior outcome. Its preoperative anticipation may influence the selection between a pure left ventricular and a biventricular device type and, thus, improve outcomes. Reliable algorithms to predict RHF are missing. METHODS A numerical model was used for simulation of a cardiovascular circulation. The LVAD was placed as parallel circuit between left ventricle and aorta. In contrast to other studies, the dynamic hydraulic behavior of a pulsatile LVAD was replaced by that of a continuous LVAD. A variety of hemodynamic states was tested mimicking different right heart conditions. Adjustable parameters included heart rate (HR), pulmonary vascular resistance (PVR), tricuspid regurgitation (TR), right ventricular contractility (RVC) and pump speed. Outcome parameters comprised central venous pressure (CVP), mean pulmonary artery pressure (mPAP), cardiac output (CO) and occurrence of suction. RESULTS Alteration of HR, PVR, TR, RVC and pump speed resulted in diverse effects on CO, CVP and mPAP, resulting in improvement, impairment or no change of the circulation, depending on the degree of alteration. CONCLUSIONS The numerical simulation model allows prediction of circulatory changes and LVAD behaviour following variation of hemodynamic parameters. Such a prediction may be of particular advantage to anticipate RHF after LVAD implantation. It may help preoperatively to choose the appropriate strategy of only left ventricular or both left and right ventricular support.
Collapse
Affiliation(s)
- Titus L Z Thut
- Clinic for Cardiac Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Anastasios Petrou
- Product Development Group Zurich, Department for Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department for Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department for Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Markus J Wilhelm
- Clinic for Cardiac Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Abdelshafy M, Caliskan K, Simpkin AJ, Elkoumy A, Kimman JR, Elsherbini H, Elzomor H, de By TMMH, Gollmann-Tepeköylü C, Berchtold-Herz M, Loforte A, Reineke D, Schoenrath F, Paluszkiewicz L, Gummert J, Mohacsi P, Meyns B, Soliman O. Efficacy of levosimendan infusion in patients undergoing a left ventricular assist device implant in a propensity score matched analysis of the EUROMACS registry-the Euro LEVO-LVAD study. Eur J Cardiothorac Surg 2023; 63:ezad095. [PMID: 36912728 PMCID: PMC10693438 DOI: 10.1093/ejcts/ezad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVES Early right-sided heart failure (RHF) was seen in 22% of recipients of a left ventricular assist device (LVAD) in the European Registry for Patients with Mechanical Circulatory Support (EUROMACS). However, the optimal treatment of post-LVAD RHF is not well known. Levosimendan has proven to be effective in patients with cardiogenic shock and in those with end-stage heart failure. We sought to evaluate the efficacy of levosimendan on post-LVAD RHF and 30-day and 1-year mortality. METHODS The EUROMACS Registry was used to identify adults with mainstream continuous-flow LVAD implants who were treated with preoperative levosimendan compared to a propensity matched control cohort. RESULTS In total, 3661 patients received mainstream LVAD, of which 399 (11%) were treated with levosimendan pre-LVAD. Patients given levosimendan had a higher EUROMACS RHF score [4 (2- 5.5) vs 2 (2- 4); P < 0.001], received more right ventricular assist devices (RVAD) [32 (8%) vs 178 (5.5%); P = 0.038] and stayed longer in the intensive care unit post-LVAD implant [19 (8-35) vs 11(5-25); P < 0.001]. Yet, there was no significant difference in the rate of RHF, 30-day, or 1-year mortality. Also, in the matched cohort (357 patients taking levosimendan compared to an average of 622 controls across 20 imputations), we found no evidence for a difference in postoperative severe RHF, RVAD implant rate, length of stay in the intensive care unit or 30-day and 1-year mortality. CONCLUSIONS In this analysis of the EUROMACS registry, we found no evidence for an association between levosimendan and early RHF or death, albeit patients taking levosimendan had much higher risk profiles. For a definitive conclusion, a multicentre, randomized study is warranted.
Collapse
Affiliation(s)
- Mahmoud Abdelshafy
- Discipline of Cardiology, Saolta Healthcare Group, Galway University Hospital, Health Service Executive, Galway, Ireland
- CORRIB Core Lab, University of Galway, Galway, Ireland
- Department of Cardiology, Al-Azhar University, Cairo, Egypt
| | - Kadir Caliskan
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Andrew J Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
- Insight Centre for Data Analytics, University of Galway, Galway, Ireland
| | - Ahmed Elkoumy
- Discipline of Cardiology, Saolta Healthcare Group, Galway University Hospital, Health Service Executive, Galway, Ireland
- CORRIB Core Lab, University of Galway, Galway, Ireland
- Islamic Center of Cardiology and Cardiac Surgery, Al-Azhar University, Cairo, Egypt
| | - Jesse R Kimman
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Hagar Elsherbini
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Hesham Elzomor
- Discipline of Cardiology, Saolta Healthcare Group, Galway University Hospital, Health Service Executive, Galway, Ireland
- CORRIB Core Lab, University of Galway, Galway, Ireland
- Islamic Center of Cardiology and Cardiac Surgery, Al-Azhar University, Cairo, Egypt
| | | | | | - Michael Berchtold-Herz
- Department of Cardiovascular Surgery, Faculty of Medicine, Heart Center Freiburg University, University of Freiburg, Freiburg, Germany
| | - Antonio Loforte
- Division of Cardiac Surgery, S. Orsola University Hospital, ALMA Mater Studiorum University of Bologna, IRCCS Bologna, Bologna, Italy
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - David Reineke
- Department of Cardiovascular Surgery, University Hospital, Berne, Switzerland
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Lech Paluszkiewicz
- Department for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Jan Gummert
- Department for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Paul Mohacsi
- HerzGefässZentrum im Park, Zürich, Switzerland
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Bart Meyns
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Osama Soliman
- Discipline of Cardiology, Saolta Healthcare Group, Galway University Hospital, Health Service Executive, Galway, Ireland
- CORRIB Core Lab, University of Galway, Galway, Ireland
- CÚRAM Centre for Medical Devices, Galway, Ireland
| |
Collapse
|
8
|
Guo A, Subramanian MP, Vader J, Lavine K, Schilling J, Hartupee J, Kotkar K, Itoh A. HeartMate 3 Implantation Through Left Atrial e-PTFE Conduit for Restrictive Cardiomyopathy. ANNALS OF THORACIC SURGERY SHORT REPORTS 2023; 1:191-193. [PMID: 39790496 PMCID: PMC11708496 DOI: 10.1016/j.atssr.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 01/12/2025]
Abstract
Restrictive or hypertrophic cardiomyopathy presents a challenge to left ventricular assist device placement because of the small left ventricle cavity. Cases have described inflow cannulation of the HeartWare HVAD by expanded polytetrafluoroethylene conduit through the atrial septum to the left atrium. We applied this technique to an adult man with restrictive cardiomyopathy and pulmonary hypertension using the HeartMate 3, which successfully supported the patient and led to significant reduction in pulmonary artery pressure. He received a transplant 3 months later without complications. For select patients, left atrial conduit for HeartMate 3 inflow is a feasible alternative to conventional apical cannulation.
Collapse
Affiliation(s)
- Aaron Guo
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Melanie P. Subramanian
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Justin Vader
- Division of Cardiovascular Diseases, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Kory Lavine
- Division of Cardiovascular Diseases, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Joel Schilling
- Division of Cardiovascular Diseases, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Justin Hartupee
- Division of Cardiovascular Diseases, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Kunal Kotkar
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Akinobu Itoh
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St Louis School of Medicine, St Louis, Missouri
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Acharya D, Kazui T, Al Rameni D, Acharya T, Betterton E, Juneman E, Loyaga-Rendon R, Lotun K, Shetty R, Chatterjee A. Aortic valve disorders and left ventricular assist devices. Front Cardiovasc Med 2023; 10:1098348. [PMID: 36910539 PMCID: PMC9996073 DOI: 10.3389/fcvm.2023.1098348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Aortic valve disorders are important considerations in advanced heart failure patients being evaluated for left ventricular assist devices (LVAD) and those on LVAD support. Aortic insufficiency (AI) can be present prior to LVAD implantation or develop de novo during LVAD support. It is usually a progressive disorder and can lead to impaired LVAD effectiveness and heart failure symptoms. Severe AI is associated with worsening hemodynamics, increased hospitalizations, and decreased survival in LVAD patients. Diagnosis is made with echocardiographic, device assessment, and/or catheterization studies. Standard echocardiographic criteria for AI are insufficient for accurate diagnosis of AI severity. Management of pre-existing AI includes aortic repair or replacement at the time of LVAD implant. Management of de novo AI on LVAD support is challenging with increased risks of repeat surgical intervention, and percutaneous techniques including transcatheter aortic valve replacement are assuming greater importance. In this manuscript, we provide a comprehensive approach to contemporary diagnosis and management of aortic valve disorders in the setting of LVAD therapy.
Collapse
Affiliation(s)
- Deepak Acharya
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| | - Toshinobu Kazui
- Division of Cardiovascular Surgery, University of Arizona, Tucson, AZ, United States
| | - Dina Al Rameni
- Division of Cardiovascular Surgery, University of Arizona, Tucson, AZ, United States
| | - Tushar Acharya
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| | - Edward Betterton
- Artificial Heart Program, University of Arizona, Tucson, AZ, United States
| | - Elizabeth Juneman
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| | | | - Kapildeo Lotun
- Division of Cardiology, Carondelet Medical Center, Tucson, AZ, United States
| | - Ranjith Shetty
- Division of Cardiology, Carondelet Medical Center, Tucson, AZ, United States
| | - Arka Chatterjee
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Karimov JH, Miyagi C, Flick CR, Polakowski AR, Kuban BD, Kuroda T, Horvath DW, Fukamachi K, Starling RC. Biventricular circulatory support using single-device and dual-device configurations: Initial pump characterization in simulated heart failure model. Front Cardiovasc Med 2023; 10:1045656. [PMID: 36910535 PMCID: PMC9994815 DOI: 10.3389/fcvm.2023.1045656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Objective Severe biventricular heart failure (BHF) can be remedied using a biventricular assist device (BVAD). Two devices are currently in development: a universal ventricular assist device (UVAD), which will be able to assist either the left, right, or both ventricles, and a continuous-flow total artificial heart (CFTAH), which replaces the entire heart. In this study, the in vitro hemodynamic performances of two UVADs are compared to a CFTAH acting as a BVAD. Methods For this experiment, a biventricular mock circulatory loop utilizes two pneumatic pumps (Abiomed AB5000™, Danvers, MA, USA), in conjunction with a dual-output driver, to create heart failure (HF) conditions (left, LHF; right, RHF; biventricular, BHF). Systolic BHF for four different situations were replicated. In each situation, CFTAH and UVAD devices were installed and operated at two distinct speeds, and cannulations for ventricular and atrial connections were evaluated. Results Both CFTAH and UVAD setups achieved our recommended hemodynamic criteria. The dual-UVAD arrangement yielded a better atrial balance to alleviate LHF and RHF. For moderate and severe BHF scenarios, CFTAH and dual UVADs both created excellent atrial pressure balance. Conversely, when CFTAH was atrial cannulated for LHF and RHF, the needed atrial pressure balance was not met. Conclusion Comprehensive in vitro testing of two different BVAD setups exhibited self-regulation and exceptional pump performance for both (single- and dual-device) BHF support scenarios. For treating moderate and severe BHF, UVAD and CFTAH both functioned well with respect to atrial pressure regulation and cardiac output. Though, the dual-UVAD setup yielded a better atrial pressure balance in all BHF testing scenarios.
Collapse
Affiliation(s)
- Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christine R Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dennis W Horvath
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,R1 Engineering LLC, Euclid, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States
| | - Randall C Starling
- Department of Cardiovascular Medicine, Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, United States.,Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
11
|
Trela KC. Mechanical circulatory support devices in noncardiac surgery. Int Anesthesiol Clin 2022; 60:55-63. [PMID: 35972136 DOI: 10.1097/aia.0000000000000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kristin C Trela
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Goodin MS, Showalter M, Horvath DJ, Kuban BD, Flick CR, Polakowski AR, Fukamachi K, Karimov JH. Characterization and Development of Universal Ventricular Assist Device: Computational Fluid Dynamics Analysis of Advanced Design. ASAIO J 2022; 68:1024-1035. [PMID: 34772847 PMCID: PMC9085974 DOI: 10.1097/mat.0000000000001607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We are developing a universal, advanced ventricular assist device (AVAD) with automatic pressure regulation suitable for both left and right ventricular support. The primary goal of this computational fluid dynamics (CFD) study was to analyze the biventricular performance of the AVAD across its wide range of operating conditions. An AVAD CFD model was created and validated using in vitro hydraulic performance measurements taken over conditions spanning both left ventricular assist device (LVAD) and right ventricular assist device (RVAD) operation. Static pressure taps, placed throughout the pump, were used to validate the CFD results. The CFD model was then used to assess the change in hydraulic performance with varying rotor axial positions and identify potential design improvements. The hydraulic performance was simulated and measured at rotor speeds from 2,300 to 3,600 revolutions/min and flow rates from 2.0 to 8.0 L/min. The CFD-predicted hydraulic pressure rise agreed well with the in vitro measured data, within 6.5% at 2300 rpm and within 3.5% for the higher rotor speeds. The CFD successfully predicted wall static pressures, matching experimental values within 7%. High degree of similarity and circumferential uniformity in the pump's flow fields were observed over the pump operation as an LVAD and an RVAD. A secondary impeller axial clearance reduction resulted in a 10% decrease in peak flow residence time and lower static pressures on the secondary impeller. These lower static pressures suggest a reduction in the upwards rotor forces from the secondary impeller and a desired increase in the pressure sensitivity of the pump. The CFD analyses supported the feasibility of the proposed AVAD's use as an LVAD or an RVAD, over a wide range of operating conditions. The CFD results demonstrated the operability of the pump in providing the desired circumferential flow similarity over the intended range of flow/speed conditions and the intended functionality of the AVAD's automated pressure regulation.
Collapse
Affiliation(s)
| | | | | | - Barry D. Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Christine R. Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anthony R. Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
13
|
Patel SM. Percutaneous repositioning of Impella RP: the Snare–Manoeuvre–Prolapse technique—a case report. Eur Heart J Case Rep 2022; 6:ytac085. [PMID: 35620061 PMCID: PMC9128371 DOI: 10.1093/ehjcr/ytac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 02/07/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Impella RP (Abiomed, Danvers, MA, USA) is indicated for right ventricular failure after left ventricular assist device insertion or biventricular shock. Once the peel-away sheath is removed, Impella RP repositioning can only be achieved with manual manipulation of the catheter itself. This method does not always accomplish appropriate positioning of the catheter and can result in continued haemodynamic instability.
Case summary
A young male presented to our institution with recurrent ventricular fibrillation and ST-elevation myocardial infarction that underwent emergent coronary intervention but was in progressive cardiogenic shock requiring implantation of Impella 5.0 and Impella RP. After insertion of the right ventricular support, the patient stabilized transiently then became unstable once more, and repeat fluoroscopy demonstrated that the Impella RP had ‘fallen back’ into the right ventricle. Due to continued instability, we improvised a previously undescribed method of repositioning of the Impella RP catheter with the use of a goose-neck snare.
Discussion
The snare–manoeuvre–prolapse method of Impella RP repositioning is a relatively novel approach at the management of Impella RP retrograde migration into the right ventricle and prevents the need for large-bore venous closure and re-access and the use of a new Impella RP catheter while providing rapid improvement of haemodynamics.
Collapse
Affiliation(s)
- Sandeep M Patel
- The Structural Heart and Interventional Center, Department of Cardiology, St. Rita’s Medical Center, BonSecours-Mercy Health, 730 West Market Street, 2K Tower, Lima, OH 45801, USA
| |
Collapse
|
14
|
Schlöglhofer T, Wittmann F, Paus R, Riebandt J, Schaefer AK, Angleitner P, Granegger M, Aigner P, Wiedemann D, Laufer G, Schima H, Zimpfer D. When Nothing Goes Right: Risk Factors and Biomarkers of Right Heart Failure after Left Ventricular Assist Device Implantation. Life (Basel) 2022; 12:459. [PMID: 35330210 PMCID: PMC8952681 DOI: 10.3390/life12030459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 01/24/2023] Open
Abstract
Right heart failure (RHF) is a severe complication after left ventricular assist device (LVAD) implantation. The aim of this study was to analyze the incidence, risk factors, and biomarkers for late RHF including the possible superiority of the device and implantation method. This retrospective, single-center study included patients who underwent LVAD implantation between 2014 and 2018. Primary outcome was freedom from RHF over one-year after LVAD implantation; secondary outcomes included pre- and postoperative risk factors and biomarkers for RHF. Of the 145 consecutive patients (HeartMate 3/HVAD: n = 70/75; female: 13.8%), thirty-one patients (21.4%) suffered RHF after a mean LVAD support of median (IQR) 105 (118) days. LVAD implantation method (less invasive: 46.7% vs. 35.1%, p = 0.29) did not differ significantly in patients with or without RHF, whereas the incidence of RHF was lower in HeartMate 3 vs. HVAD patients (12.9% vs. 29.3%, p = 0.016). Multivariate Cox proportional hazard analysis identified HVAD (HR 4.61, 95% CI 1.12-18.98; p = 0.03), early post-op heart rate (HR 0.96, 95% CI 0.93-0.99; p = 0.02), and central venous pressure (CVP) (HR 1.21, 95% CI 1.05-1.39; p = 0.01) as independent risk factors for RHF, but no association of RHF with increased all-cause mortality (HR 1.00, 95% CI 0.99-1.01; p = 0.50) was found. To conclude, HVAD use, lower heart rate, and higher CVP early post-op were independent risk factors for RHF following LVAD implantation.
Collapse
Affiliation(s)
- Thomas Schlöglhofer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
- Ludwig Boltzmann Institute for Cardiovascular Research, 1020 Vienna, Austria;
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Franziska Wittmann
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
| | - Robert Paus
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Riebandt
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
| | - Anne-Kristin Schaefer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
| | - Philipp Angleitner
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
| | - Marcus Granegger
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
| | - Philipp Aigner
- Ludwig Boltzmann Institute for Cardiovascular Research, 1020 Vienna, Austria;
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Wiedemann
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
| | - Heinrich Schima
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
- Ludwig Boltzmann Institute for Cardiovascular Research, 1020 Vienna, Austria;
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (F.W.); (R.P.); (J.R.); (A.-K.S.); (P.A.); (M.G.); (D.W.); (G.L.); (H.S.); (D.Z.)
- Ludwig Boltzmann Institute for Cardiovascular Research, 1020 Vienna, Austria;
| |
Collapse
|
15
|
Mulzer J, Krastev H, Hoermandinger C, Meyer A, Haese T, Stein J, Müller M, Schoenrath F, Knosalla C, Starck C, Falk V, Potapov E, Knierim J. Development of tricuspid regurgitation and right ventricular performance after implantation of centrifugal left ventricular assist devices. Ann Cardiothorac Surg 2021; 10:364-374. [PMID: 34159117 DOI: 10.21037/acs-2020-cfmcs-fs-0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Tricuspid regurgitation (TR) after left ventricular assist device (LVAD) implantation is associated with a poor prognosis. This study evaluates the development of TR and right ventricular (RV) performance after LVAD implantation. Methods Retrospective analysis of patients who underwent LVAD implantation between March 2018 and June 2019. Patients who underwent concomitant tricuspid valve surgery and patients with congenital heart disease were excluded. Results A total of 155 patients underwent LVAD implantation. Fourteen patients were excluded. Of the remaining patients, thirty-one died during the first six months, six were lost to follow-up and two underwent transplantation. 102 patients presented at 6.3 months (5.8 to 7.0). Patients were supported with HeartWare HVAD (74%) or HeartMate 3 (26%). 50.4% were rated as INTERMACS profile 1 or 2. At six months, systolic pulmonary artery pressure dropped from 36 to 21 mmHg (P<0.001). Tricuspid annular plane systolic excursion decreased from 17.3 to 14.3 mm (P<0.001), RV fractional area change did not change (P=0.839). Twenty-two patients (22%) presented with moderate-to-severe or severe (ms-s) TR pre-operatively. Of these, eighteen (81%) showed improvement to ≤ moderate TR. At follow-up twelve patients presented with ms-s TR. Of these, only four patients (33%) had been diagnosed with ms-s TR pre-operatively. There were no differences in pre-operative echocardiographic or clinical parameters between the twelve patients with ms-s late TR and the other ninety patients in the cohort. Conclusions TR can show an impressive improvement with LVAD support. Longitudinal RV function decreases; this appears to be compensated by transverse shortening. Late TR can develop independently from pre-operative parameters including TR.
Collapse
Affiliation(s)
- Johanna Mulzer
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
| | - Hristo Krastev
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
| | | | - Alexander Meyer
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
| | | | | | - Marcus Müller
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
| | - Felix Schoenrath
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Christoph Knosalla
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Christoph Starck
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
| | - Volkmar Falk
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiothoracic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Eidgenössiche Technische Hochschule Zürich, Department of Health Sciences and Technology, Translational Cardiovascular Technology, Zurich, Switzerland
| | - Evgenij Potapov
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
| | - Jan Knierim
- German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
| |
Collapse
|
16
|
Lorusso R, Whitman G, Milojevic M, Raffa G, McMullan DM, Boeken U, Haft J, Bermudez CA, Shah AS, D'Alessandro DA. 2020 EACTS/ELSO/STS/AATS Expert Consensus on Post-cardiotomy Extracorporeal Life Support in Adult Patients. ASAIO J 2021; 67:e1-e43. [PMID: 33021558 DOI: 10.1097/mat.0000000000001301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Post-cardiotomy extracorporeal life support (PC-ECLS) in adult patients has been used only rarely but recent data have shown a remarkable increase in its use, almost certainly due to improved technology, ease of management, growing familiarity with its capability and decreased costs. Trends in worldwide in-hospital survival, however, rather than improving, have shown a decline in some experiences, likely due to increased use in more complex, critically ill patients rather than to suboptimal management. Nevertheless, PC-ECLS is proving to be a valuable resource for temporary cardiocirculatory and respiratory support in patients who would otherwise most likely die. Because a comprehensive review of PC-ECLS might be of use for the practitioner, and possibly improve patient management in this setting, the authors have attempted to create a concise, comprehensive and relevant analysis of all aspects related to PC-ECLS, with a particular emphasis on indications, technique, management and avoidance of complications, appraisal of new approaches and ethics, education and training.
Collapse
Affiliation(s)
- Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Glenn Whitman
- Cardiovascular Surgery Intensive Care Unit, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Milan Milojevic
- Department of Anaesthesiology and Critical Care Medicine, Dedinje Cardiovascular Institute, Belgrade, Serbia.,Department of Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia.,Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - David M McMullan
- Department of Cardiac Surgery, Seattle Children Hospital, Seattle, WA, USA
| | - Udo Boeken
- Department of Cardiac Surgery, Heinrich Heine University, Dusseldorf, Germany
| | - Jonathan Haft
- Section of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christian A Bermudez
- Department of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish S Shah
- Department of Cardio-Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A D'Alessandro
- Department of Cardio-Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Loardi C, Ricciardi G, Zanobini M, Vermes E. Left ventricular assist device inflow cannula implantation: Why a "Step sideways" technique can be helpful. Artif Organs 2021; 45:1114-1116. [PMID: 33686670 DOI: 10.1111/aor.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/07/2021] [Accepted: 02/28/2021] [Indexed: 11/27/2022]
Abstract
Preservation of right ventricle vascularization that is dependent on left coronary network collateral development is essential during left ventricular assist device implantation to avoid postoperative right heart failure. Our technique was performed on a patient who underwent implantation as a bridge to transplantation; the technique is characterized by providing a moderate lateral and inferior displacement of the inflow cannula position, which achieves both the objectives of respecting the apical course of a left anterior descending coronary artery supplying an occluded right coronary and of maintaining a sufficient orientation degree toward the plane of the mitral valve for correct left ventricular unloading.
Collapse
Affiliation(s)
- Claudia Loardi
- Department of Cardiac Surgery, Tours University Hospital, Tours, France
| | - Gabriella Ricciardi
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Emmanuelle Vermes
- Department of Cardiac Surgery, Tours University Hospital, Tours, France.,Department of Radiology, Tours University Hospital, Tours, France
| |
Collapse
|
18
|
Lorusso R, Whitman G, Milojevic M, Raffa G, McMullan DM, Boeken U, Haft J, Bermudez C, Shah A, D'Alessandro DA. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients. J Thorac Cardiovasc Surg 2021; 161:1287-1331. [PMID: 33039139 DOI: 10.1016/j.jtcvs.2020.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Post-cardiotomy extracorporeal life support (PC-ECLS) in adult patients has been used only rarely but recent data have shown a remarkable increase in its use, almost certainly due to improved technology, ease of management, growing familiarity with its capability and decreased costs. Trends in worldwide in-hospital survival, however, rather than improving, have shown a decline in some experiences, likely due to increased use in more complex, critically ill patients rather than to suboptimal management. Nevertheless, PC-ECLS is proving to be a valuable resource for temporary cardiocirculatory and respiratory support in patients who would otherwise most likely die. Because a comprehensive review of PC-ECLS might be of use for the practitioner, and possibly improve patient management in this setting, the authors have attempted to create a concise, comprehensive and relevant analysis of all aspects related to PC-ECLS, with a particular emphasis on indications, technique, management, and avoidance of complications, appraisal of new approaches and ethics, education, and training.
Collapse
Affiliation(s)
- Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| | - Glenn Whitman
- Cardiovascular Surgery Intensive Care Unit, Johns Hopkins Hospital, Baltimore, Md.
| | - Milan Milojevic
- Department of Anaesthesiology and Critical Care Medicine, Dedinje Cardiovascular Institute, Belgrade, Serbia; Department of Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia; Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Department of Anaesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - David M McMullan
- Department of Cardiac Surgery, Seattle Children Hospital, Seattle, Wash
| | - Udo Boeken
- Department of Cardiac Surgery, Heinrich Heine University, Dusseldorf, Germany
| | - Jonathan Haft
- Section of Cardiac Surgery, University of Michigan, Ann Arbor, Mich
| | - Christian Bermudez
- Department of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pa
| | - Ashish Shah
- Department of Cardio-Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - David A D'Alessandro
- Department of Cardio-Thoracic Surgery, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
19
|
Sikachi RR, Anca D. Anesthetic Considerations in a Patient With LVAD and COVID-19 Undergoing Video-Assisted Thoracic Surgery. J Cardiothorac Vasc Anesth 2020; 35:3035-3038. [PMID: 33419685 PMCID: PMC7744272 DOI: 10.1053/j.jvca.2020.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/11/2022]
Abstract
Increased survival with left ventricular assist devices (LVAD) has led to a large number of patients with LVADs presenting for noncardiac surgeries (NCS). With studies showing that a trained noncardiac anesthesiologist can safely manage these patients when they present for NCS, it is vital that all anesthesiologists understand the LVAD physiology and its implications in various surgeries. This is even more relevant during the current pandemic in which these complex cardiopulmonary interactions may be even more challenging in patients with coronavirus disease 2019 (COVID-19). The authors describe a case of a patient with COVID-19 with an LVAD who needed thoracoscopic decortication for recurrent complex pleural effusion and briefly discuss unique challenges presented and their management.
Collapse
Affiliation(s)
- Rutuja R Sikachi
- Department of Anesthesiology, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY.
| | - Diana Anca
- Department of Anesthesiology, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| |
Collapse
|
20
|
Abstract
Interest in the right ventricle has increased because of advances in pulmonary hypertension treatment, improved diagnostic technology, and increased implantation of left ventricular assist devices and other mechanical circulatory assist devices. Right ventricular dysfunction is an independent predictor of mortality in patients with chronic heart failure. The purpose of this article is to describe the normal structure and function of the right ventricle, causes of right ventricular dysfunction leading to right ventricular failure, diagnostic hemodynamic assessments, and management of right ventricular failure in the critical care unit.
Collapse
Affiliation(s)
- Barbara Leeper
- Barbara Leeper is Clinical Nurse Specialist, Cardiovascular Services, Baylor University Medical Center, 3500 Gaston Avenue, Dallas, TX 75252
| |
Collapse
|
21
|
Ventricular systolic dysfunction with and without altered myocardial contractility: Clinical value of echocardiography for diagnosis and therapeutic decision-making. Int J Cardiol 2020; 327:236-250. [PMID: 33285193 DOI: 10.1016/j.ijcard.2020.11.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
The inability of one of the two or both ventricles to contract normally and expel sufficient blood to meet the functional demands of the body results from a complex interplay between intrinsic abnormalities and extracardiac factors that limit ventricular pump function and is a major cause for heart failure (HF). Even if impaired myocardial contractile function was the primary cause for ventricular dysfunction, with the progression of systolic dysfunction, additionally developed diastolic dysfunction can also contribute to the severity of HF. Although at the first sight, the diagnosis of systolic HF appears quite easy because it is usually defined by reduction of the ejection fraction (EF), in reality this issue is far more complex because ventricular pumping performance depends not only on myocardial contractility, but also largely on loading conditions (preload and afterload), being also influenced by valvular function, ventricular interdependence, pericardial constraint, synchrony of ventricular contrac-tion and heart rhythm. Conventional echocardiography (ECHO) combined with new imaging techniques such as tissue Doppler and tissue tracking can detect early subclinical alteration of ventricular systolic function. However, no single ECHO parameter reveals alone the whole picture of systolic dysfunction. Multiparametric ECHO evaluation and the use of integrative approaches using ECHO-parameter combinations which include also the ventricular loading conditions appeared particularly useful especially for differentiation between primary (myocardial damage-induced) and secondary (hemodynamic overload-induced) systolic dysfunction. This review summarizes the available evidence on the usefulness and limitations of comprehensive evaluation of LV and RV systolic function by using all the currently available ECHO techniques.
Collapse
|
22
|
Modeling of Virtual Mechanical Circulatory Hemodynamics for Biventricular Heart Failure Support. Cardiovasc Eng Technol 2020; 11:699-707. [PMID: 33215365 DOI: 10.1007/s13239-020-00501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE In this study, a mechanical circulatory support simulation tool was used to investigate the application of a unique device with two centrifugal pumps and one motor for the biventricular assist device (BVAD) support application. Several conditions-including a range of combined left and right systolic heart failure severities, aortic and pulmonary valve regurgitation, and combinations of high and low systemic and pulmonary vascular resistances-were considered in the simulation matrix. Relative advantages and limitations of using the device in BVAD applications are discussed. METHODS The simulated BVAD pump was based on the Cleveland Clinic pediatric continuous-flow total artificial heart (P-CFTAH), which is currently under development. Different combined disease states (n = 10) were evaluated to model the interaction with the BVAD, considering combinations of normal heart, moderate failure and severe systolic failure of the left and right ventricles, regurgitation of the aortic and pulmonary valves and combinations of vascular resistance. The virtual mock loop simulation tool (MATLAB; MathWorks®, Natick, MA) simulates the hemodynamics at the pump ports using a lumped-parameter model for systemic/pulmonary circulation characteristic inputs (values for impedance, systolic and diastolic ventricular compliance, beat rate, and blood volume), and characteristics of the cardiac chambers and valves. RESULTS Simulation results showed that this single-pump BVAD can provide regulated support of up to 5 L/min over a range of combined heart failure states and is suitable for smaller adult and pediatric support. However, good self-regulation of the atrial pressure difference was not maintained with the introduction of aortic valve regurgitation or high systemic vascular resistance when combined with low pulmonary vascular resistance. CONCLUSIONS This initial in silico study demonstrated that use of the P-CFTAH as a BVAD supports cardiac output and arterial pressure in biventricular heart failure conditions. A similar but larger device would be required for a large adult patient who needs more than 5 L/min of support.
Collapse
|
23
|
Jurney PL, Glynn JJ, Dykan IV, Hagen MW, Kaul S, Wampler RK, Hinds MT, Giraud GD. Characterization of a pulsatile rotary total artificial heart. Artif Organs 2020; 45:135-142. [PMID: 32857895 DOI: 10.1111/aor.13810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
This article describes the properties and performance of a rotary total artificial heart (TAH) that produces inherently pulsatile flow. The hydraulic performance of the TAH was characterized using a mock circulatory loop to simulate four physiologically relevant conditions: baseline flow, increased flow, systemic hypertension, and pulmonary hypertension. The pump has a variable shuttle rate (beats per minute), percentage dwell time, and angular velocity on either side (revolutions per minute), which allows for full control of the flow rate and pulsatility over a range of healthy and pathologic pressures and flow rates. The end-to-end length and displacement volume of the TAH are 9.8 cm and 130 mL, respectively, allowing it to fit in smaller chest cavities including those of smaller adults and juvenile humans.
Collapse
Affiliation(s)
- Patrick L Jurney
- Department of Biomedical Engineering, San José State University, San Jose, CA, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Igor V Dykan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew W Hagen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Richard K Wampler
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - George D Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
24
|
Lorusso R, Whitman G, Milojevic M, Raffa G, McMullan DM, Boeken U, Haft J, Bermudez CA, Shah AS, D’Alessandro DA. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients. Eur J Cardiothorac Surg 2020; 59:12-53. [DOI: 10.1093/ejcts/ezaa283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Post-cardiotomy extracorporeal life support (PC-ECLS) in adult patients has been used only rarely but recent data have shown a remarkable increase in its use, almost certainly due to improved technology, ease of management, growing familiarity with its capability and decreased costs. Trends in worldwide in-hospital survival, however, rather than improving, have shown a decline in some experiences, likely due to increased use in more complex, critically ill patients rather than to suboptimal management. Nevertheless, PC-ECLS is proving to be a valuable resource for temporary cardiocirculatory and respiratory support in patients who would otherwise most likely die. Because a comprehensive review of PC-ECLS might be of use for the practitioner, and possibly improve patient management in this setting, the authors have attempted to create a concise, comprehensive and relevant analysis of all aspects related to PC-ECLS, with a particular emphasis on indications, technique, management and avoidance of complications, appraisal of new approaches and ethics, education and training.
Collapse
Affiliation(s)
- Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Glenn Whitman
- Cardiovascular Surgery Intensive Care, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Milan Milojevic
- Department of Anaesthesiology and Critical Care Medicine, Dedinje Cardiovascular Institute, Belgrade, Serbia
- Department of Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - David M McMullan
- Department of Cardiac Surgery, Seattle Children Hospital, Seattle, WA, USA
| | - Udo Boeken
- Department of Cardiac Surgery, Heinrich Heine University, Dusseldorf, Germany
| | - Jonathan Haft
- Section of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christian A Bermudez
- Department of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish S Shah
- Department of Cardio-Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A D’Alessandro
- Department of Cardio-Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
25
|
Lorusso R, Whitman G, Milojevic M, Raffa G, McMullan DM, Boeken U, Haft J, Bermudez CA, Shah AS, D'Alessandro DA. 2020 EACTS/ELSO/STS/AATS Expert Consensus on Post-Cardiotomy Extracorporeal Life Support in Adult Patients. Ann Thorac Surg 2020; 111:327-369. [PMID: 33036737 DOI: 10.1016/j.athoracsur.2020.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Post-cardiotomy extracorporeal life support (PC-ECLS) in adult patients has been used only rarely but recent data have shown a remarkable increase in its use, almost certainly due to improved technology, ease of management, growing familiarity with its capability and decreased costs. Trends in worldwide in-hospital survival, however, rather than improving, have shown a decline in some experiences, likely due to increased use in more complex, critically ill patients rather than to suboptimal management. Nevertheless, PC-ECLS is proving to be a valuable resource for temporary cardiocirculatory and respiratory support in patients who would otherwise most likely die. Because a comprehensive review of PC-ECLS might be of use for the practitioner, and possibly improve patient management in this setting, the authors have attempted to create a concise, comprehensive and relevant analysis of all aspects related to PC-ECLS, with a particular emphasis on indications, technique, management and avoidance of complications, appraisal of new approaches and ethics, education and training.
Collapse
Affiliation(s)
- Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart & Vascular Center, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands.
| | - Glenn Whitman
- Cardiac Intensive Care Unit, Johns Hopkins Hospital, Baltimore, Maryland
| | - Milan Milojevic
- Department of Anesthesiology and Critical Care Medicine, Dedinje Cardiovascular Institute, Belgrade, Serbia; Department of Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia; Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - David M McMullan
- Department of Cardiac Surgery, Seattle Children Hospital, Seattle, Washington
| | - Udo Boeken
- Department of Cardiac Surgery, Heinrich Heine University, Dusseldorf, Germany
| | - Jonathan Haft
- Section of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan
| | - Christian A Bermudez
- Department of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashish S Shah
- Department of Cardio-Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David A D'Alessandro
- Department of Cardio-Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
26
|
Schramm R, Morshuis M, Schoenbrodt M, Boergermann J, Hakim-Meibodi K, Hata M, Gummert JF. Current perspectives on mechanical circulatory support. Eur J Cardiothorac Surg 2020; 55:i31-i37. [PMID: 30608535 PMCID: PMC6526098 DOI: 10.1093/ejcts/ezy444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023] Open
Abstract
![]()
Mechanical circulatory support gained a significant value in the armamentarium of heart failure therapy because of the increased awareness of the prevalence of heart failure and the tremendous advances in the field of mechanical circulatory support during the last decades. Current device technologies already complement a heart transplant as the gold standard of treatment for patients with end-stage heart failure refractory to conservative medical therapy. This article reviews important aspects of mechanical circulatory support therapy and focuses on currently debated issues.
Collapse
Affiliation(s)
- Rene Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Michiel Morshuis
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Michael Schoenbrodt
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Jochen Boergermann
- Clinic for Cardiac- and Vascular Surgery, Heart Centre Duisburg, Duisburg, Germany
| | - Kavous Hakim-Meibodi
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Masatoshi Hata
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Jan F Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre North Rhine Westphalia, Bad Oeynhausen, Germany
| |
Collapse
|
27
|
Sert DE, Karahan M, Aygun E, Kocabeyoglu SS, Akdi M, Kervan U. Prediction of right ventricular failure after continuous flow left ventricular assist device implantation. J Card Surg 2020; 35:2965-2973. [DOI: 10.1111/jocs.14952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/06/2020] [Accepted: 08/01/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Dogan Emre Sert
- Department of Cardiovascular Surgery Ankara City Hospital Ankara Turkey
| | - Mehmet Karahan
- Department of Cardiovascular Surgery Ankara City Hospital Ankara Turkey
| | - Emre Aygun
- Department of Cardiovascular Surgery Yuksekova Hospital Hakkari Turkey
| | | | - Mustafa Akdi
- Department of Cardiovascular Surgery Ankara City Hospital Ankara Turkey
| | - Umit Kervan
- Department of Cardiovascular Surgery Ankara City Hospital Ankara Turkey
| |
Collapse
|
28
|
Kanemaru E, Yoshitani K, Fukushima S, Fujita T, Ohnishi Y. Effect of left ventricular assist device implantation on right ventricular function: Assessment based on right ventricular pressure-volume curves. Artif Organs 2020; 44:1192-1201. [PMID: 32530056 DOI: 10.1111/aor.13749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022]
Abstract
Right ventricular (RV) failure is significantly associated with morbidity and mortality after left ventricular assist device (LVAD) implantation. However, it remains unclear whether LVAD implantation could worsen RV function. Therefore, we aimed to investigate the effect of LVAD implantation on RV function by comparing RV energetics derived from the RV pressure-volume curve between before and after LVAD implantation. This exploratory observational study was performed between September 2016 and January 2018 at a national center in Japan. Twenty-two patients who underwent LVAD implantation were included in the analysis. We measured RV energetics parameters: RV stroke work index (RVSWI), which was calculated by integrating the area within the RV pressure-volume curve; RV minute work index (RVMWI), which was calculated as RVSWI × heart rate; and right ventriculo-arterial coupling, which was estimated as RV stroke volume/RV end-systolic volume. We compared RV energetics between before and after LVAD implantation. Although RVSWI was similar [424.4 mm Hg · mL/m2 (269.5-510.3) vs. 379.9 mm Hg · mL/m2 (313.1-608.8), P = 0.485], RVMWI was significantly higher after LVAD implantation [29 834.1 mm Hg · mL/m2 /min (18 272.2-36 357.1) vs. 38 544.8 mm Hg · mL/m2 /min (29 016.0-57 282.8), P = 0.001], corresponding to a significantly higher cardiac index [2.0 L/min/m2 (1.4-2.2) vs. 3.7 L/min/m2 (3.3-4.1), P < 0.001] to match LVAD flow. Right ventriculo-arterial coupling was significantly higher after LVAD implantation [0.360 (0.224-0.506) vs. 0.480 (0.343-0.669), P = 0.025], suggesting that the efficiency of RV performance improved. In conclusion, higher RVMWI with higher cardiac index to match LVAD flow and improved efficiency of RV performance indicate that LVAD implantation might not worsen RV function.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Department of Anesthesiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kenji Yoshitani
- Department of Transfusion, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satsuki Fukushima
- Department of Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tomoyuki Fujita
- Department of Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiko Ohnishi
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
29
|
Cameli M, Pastore MC, Henein MY, Mondillo S. The left atrium and the right ventricle: two supporting chambers to the failing left ventricle. Heart Fail Rev 2020; 24:661-669. [PMID: 31025236 DOI: 10.1007/s10741-019-09791-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart failure (HF) is mainly caused by left ventricular (LV) impairment of function, hence detailed assessment of its structure and function is a clinical priority. The frequent involvement of the left atrium (LA) and the right ventricle (RV) in the overall cardiac performance has recently gained significant interest with specific markers predicting exercise intolerance and prognosis being proposed. The LA and RV are not anatomically separated from the LV, while the LA controls the inlet the RV shares the interventricular septum with the LV. Likewise, the function of the two chambers is not entirely independent from that of the LV, with the LA enlarging to accommodate any rise in filling pressures, which could get transferred to the RV via the pulmonary circulation. In the absence of pulmonary disease, LA and RV function may become impaired in patients with moderate-severe LV disease and raised filling pressures. These changes can often occur irrespective of the severity of systolic dysfunction, thus highlighting the important need for critical assessment of the function of the two chambers. This review evaluates the pivotal role of the left atrium and right ventricle in the management of HF patients based on the available evidence.
Collapse
Affiliation(s)
- Matteo Cameli
- Department of Cardiovascular Diseases, University of Siena, Siena, Italy
| | | | - Michael Y Henein
- Department of Public Health and Clinical Medicine, Umeå University and Heart Centre, Umeå, Sweden
| | - Sergio Mondillo
- Department of Cardiovascular Diseases, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Dandel M, Javier MFDM, Javier Delmo EMD, Hetzer R. Accurate assessment of right heart function before and after long-term left ventricular assist device implantation. Expert Rev Cardiovasc Ther 2020; 18:289-308. [DOI: 10.1080/14779072.2020.1761790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Michael Dandel
- Department of Cardiology, Cardio Centrum Berlin, Berlin, Germany
| | | | | | - Roland Hetzer
- Department of Cardiothoracic and Vascular Surgery, Cardio Centrum Berlin, Berlin, Germany
| |
Collapse
|
31
|
Karimov JH, Horvath DJ, Miyamoto T, Kado Y, Gao S, Kuban BD, Polakowski AR, Sale S, Fukamachi K. First In Vivo Experience With Biventricular Circulatory Assistance Using a Single Continuous Flow Pump. Semin Thorac Cardiovasc Surg 2020; 32:456-465. [PMID: 32371175 DOI: 10.1053/j.semtcvs.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Abstract
Biventricular assist device (BVAD) implantation is the treatment of choice in patients with severe biventricular heart failure and cardiogenic shock. Our team has developed a miniaturized continuous flow, double-ended centrifugal pump intended for total artificial heart implant (CFTAH). The purpose of this initial in vivo study was to demonstrate that the scaled-down CFTAH (P-CFTAH) can be appropriate for BVAD support. The P-CFTAH was implanted in 4 acute lambs (average weight, 41.5 ± 2.8 kg) through a median sternotomy. The cannulation was performed through the left and right atria, and cannulae length adjustment was performed for atrial and ventricular cannulation. The BVAD system was tested at 3 pump speeds (3000, 4500, and 6000 rpm). The BVAD performed very well for both atrial and ventricular cannulation within the 3000-6000 rpm range. Stable hemodynamics were maintained after implantation of the P-CFTAH. The self-regulating performance of the system in vivo was demonstrated by the left (LAP) and right (RAP) pressure difference (LAP-RAP) falling predominantly within the range of -5 to 10 mm Hg with variation, in addition to in vitro assessment of left and right heart failure conditions. Left and right pump flows and total flow increased as the BVAD speed was increased. This initial in vivo testing of the BVAD system demonstrated satisfactory device performance and self-regulation for biventricular heart failure support over a wide range of conditions. The BVAD system keeps the atrial pressure difference within bounds and maintains acceptable cardiac output over a wide range of hemodynamic conditions.
Collapse
Affiliation(s)
- Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| | | | - Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yuichiro Kado
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shengqiang Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shiva Sale
- Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
32
|
Kirklin JK, Pagani FD, Goldstein DJ, John R, Rogers JG, Atluri P, Arabia FA, Cheung A, Holman W, Hoopes C, Jeevanandam V, John R, Jorde UP, Milano CA, Moazami N, Naka Y, Netuka I, Pagani FD, Pamboukian SV, Pinney S, Rogers JG, Selzman CH, Silverstry S, Slaughter M, Stulak J, Teuteberg J, Vierecke J, Schueler S, D'Alessandro DA. American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. J Thorac Cardiovasc Surg 2020; 159:865-896. [DOI: 10.1016/j.jtcvs.2019.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Kirklin JK, Pagani FD, Goldstein DJ, John R, Rogers JG, Atluri P, Arabia FA, Cheung A, Holman W, Hoopes C, Jeevanandam V, John R, Jorde UP, Milano CA, Moazami N, Naka Y, Netuka I, Pagani FD, Pamboukian SV, Pinney S, Rogers JG, Selzman CH, Silverstry S, Slaughter M, Stulak J, Teuteberg J, Vierecke J, Schueler S, D'Alessandro DA. American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. J Heart Lung Transplant 2020; 39:187-219. [PMID: 31983666 DOI: 10.1016/j.healun.2020.01.1329] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - James K Kirklin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Ala.
| | | | - Daniel J Goldstein
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | - Anson Cheung
- University of British Columbia, Vancouver, British Columbia, Canada
| | - William Holman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Ala
| | - Charles Hoopes
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Ala
| | | | | | - Ulrich P Jorde
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | - Nader Moazami
- Langone Medical Center, New York University, New York, NY
| | - Yoshifumi Naka
- Columbia University College of Physicians & Surgeons, New York, NY
| | - Ivan Netuka
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Salpy V Pamboukian
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Ala
| | | | | | | | | | | | - John Stulak
- Mayo Clinic College of Medicine and Science, Rochester, Minn
| | | | | | | | - Stephan Schueler
- Department for Cardiothoracic Surgery, Newcastle upon Tyne Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - David A D'Alessandro
- Department of Cardiothoracic Surgery, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
34
|
Lorusso R, Raffa GM, Alenizy K, Sluijpers N, Makhoul M, Brodie D, McMullan M, Wang IW, Meani P, MacLaren G, Kowalewski M, Dalton H, Barbaro R, Hou X, Cavarocchi N, Chen YS, Thiagarajan R, Alexander P, Alsoufi B, Bermudez CA, Shah AS, Haft J, D'Alessandro DA, Boeken U, Whitman GJR. Structured review of post-cardiotomy extracorporeal membrane oxygenation: part 1-Adult patients. J Heart Lung Transplant 2019; 38:1125-1143. [PMID: 31522913 PMCID: PMC8152367 DOI: 10.1016/j.healun.2019.08.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 01/25/2023] Open
Abstract
Cardiogenic shock, cardiac arrest, acute respiratory failure, or a combination of such events, are all potential complications after cardiac surgery which lead to high mortality. Use of extracorporeal temporary cardio-circulatory and respiratory support for progressive clinical deterioration can facilitate bridging the patient to recovery or to more durable support. Over the last decade, extracorporeal membrane oxygenation (ECMO) has emerged as the preferred temporary artificial support system in such circumstances. Many factors have contributed to widespread ECMO use, including the relative ease of implantation, effectiveness, versatility, low cost relative to alternative devices, and potential for full, not just partial circulatory support. While there have been numerous publications detailing the short and midterm outcomes of ECMO support, specific reports about post-cardiotomy ECMO (PC-ECMO), are limited, single-center experiences. Etiology of cardiorespiratory failure leading to ECMO implantation, associated ECMO complications, and overall patient outcomes may be unique to the PC-ECMO population. Despite the rise in PC-ECMO use over the past decade, short-term survival has not improved. This report, therefore, aims to present a comprehensive overview of the literature with respect to the prevalence of ECMO use, patient characteristics, ECMO management, and in-hospital and early post-discharge patient outcomes for those treated for post-cardiotomy heart, lung, or heart-lung failure.
Collapse
Affiliation(s)
- Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands.
| | - Giuseppe Maria Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Khalid Alenizy
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Niels Sluijpers
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Maged Makhoul
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Daniel Brodie
- Center for Acute Respiratory Care, Columbia University college of Physicians & Surgeon/New Yor Presbyterian Hospital, New York, New York
| | - Mike McMullan
- Cardiac Surgery Unit, Seattle Children Hospital, Seattle, Washington
| | - I-Wen Wang
- Cardiac Transplantation and Mechanical Circulatory Support Unit, Indiana University School of Medicine, Health Methodist Hospital, Indianapolis, Indiana
| | - Paolo Meani
- Heart & Vascular Centre, Cardiology Department, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Graeme MacLaren
- Cardiothoracic Intensive Care Unit, National University, Singapore, Singapore
| | - Mariusz Kowalewski
- Department of Cardiac Surgery, Antoni Jurasz Memorial University Hospital, Bydgoszcz, Poland
| | - Heidi Dalton
- I.N.O.V.A. Fairfax Medical Centre, Adult and Pediatric ECMO Service, Falls Church, Virginia
| | - Ryan Barbaro
- Division of Pediatric Critical Care and Child Health Evaluation and Research Unit, Ann Arbor, Michigan
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nicholas Cavarocchi
- Surgical Cardiac Care Unit, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Yih-Sharng Chen
- Cardiovascular Surgery & Pediatric Cardiovascular Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ravi Thiagarajan
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Peta Alexander
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Bahaaldin Alsoufi
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, Kentucky
| | | | - Ashish S Shah
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan Haft
- Section of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan
| | - David A D'Alessandro
- Cardio-Thoracic Surgery Department, Massachusetts Medical Centre, Boston, Massachusetts
| | - Udo Boeken
- Cardiovascular Surgery Unit, University of Düsseldorf, Düsseldorf, Germany
| | - Glenn J R Whitman
- Cardiovascular Surgery Intensive Care Unit, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
35
|
Potapov EV, Antonides C, Crespo-Leiro MG, Combes A, Färber G, Hannan MM, Kukucka M, de Jonge N, Loforte A, Lund LH, Mohacsi P, Morshuis M, Netuka I, Özbaran M, Pappalardo F, Scandroglio AM, Schweiger M, Tsui S, Zimpfer D, Gustafsson F. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg 2019; 56:230-270. [PMID: 31100109 PMCID: PMC6640909 DOI: 10.1093/ejcts/ezz098] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long-term mechanical circulatory support (LT-MCS) is an important treatment modality for patients with severe heart failure. Different devices are available, and many-sometimes contradictory-observations regarding patient selection, surgical techniques, perioperative management and follow-up have been published. With the growing expertise in this field, the European Association for Cardio-Thoracic Surgery (EACTS) recognized a need for a structured multidisciplinary consensus about the approach to patients with LT-MCS. However, the evidence published so far is insufficient to allow for generation of meaningful guidelines complying with EACTS requirements. Instead, the EACTS presents an expert opinion in the LT-MCS field. This expert opinion addresses patient evaluation and preoperative optimization as well as management of cardiac and non-cardiac comorbidities. Further, extensive operative implantation techniques are summarized and evaluated by leading experts, depending on both patient characteristics and device selection. The faculty recognized that postoperative management is multidisciplinary and includes aspects of intensive care unit stay, rehabilitation, ambulatory care, myocardial recovery and end-of-life care and mirrored this fact in this paper. Additionally, the opinions of experts on diagnosis and management of adverse events including bleeding, cerebrovascular accidents and device malfunction are presented. In this expert consensus, the evidence for the complete management from patient selection to end-of-life care is carefully reviewed with the aim of guiding clinicians in optimizing management of patients considered for or supported by an LT-MCS device.
Collapse
Affiliation(s)
- Evgenij V Potapov
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Christiaan Antonides
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Maria G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), CIBERCV, UDC, La Coruña, Spain
| | - Alain Combes
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition, Paris, France
- Service de médecine intensive-réanimation, Institut de Cardiologie, APHP, Hôpital Pitié–Salpêtrière, Paris, France
| | - Gloria Färber
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Margaret M Hannan
- Department of Medical Microbiology, University College of Dublin, Dublin, Ireland
| | - Marian Kukucka
- Department of Anaesthesiology, German Heart Center Berlin, Berlin, Germany
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antonio Loforte
- Department of Cardiothoracic, S. Orsola Hospital, Transplantation and Vascular Surgery, University of Bologna, Bologna, Italy
| | - Lars H Lund
- Department of Medicine Karolinska Institute, Heart and Vascular Theme, Karolinska University Hospital, Solna, Sweden
| | - Paul Mohacsi
- Department of Cardiovascular Surgery Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Michiel Morshuis
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany
| | - Ivan Netuka
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Mustafa Özbaran
- Department of Cardiovascular Surgery, Ege University, Izmir, Turkey
| | - Federico Pappalardo
- Advanced Heart Failure and Mechanical Circulatory Support Program, Cardiac Intensive Care, San Raffaele Hospital, Vita Salute University, Milan, Italy
| | - Anna Mara Scandroglio
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, Vita Salute University, Milan, Italy
| | - Martin Schweiger
- Department of Congenital Pediatric Surgery, Zurich Children's Hospital, Zurich, Switzerland
| | - Steven Tsui
- Royal Papworth Hospital, Cambridge, United Kingdom
| | - Daniel Zimpfer
- Department of Surgery, Division of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
36
|
Hwang KY, Hwang NC. Facilitating noncardiac surgery for the patient with left ventricular assist device: A guide for the anesthesiologist. Ann Card Anaesth 2019; 21:351-362. [PMID: 30333327 PMCID: PMC6206808 DOI: 10.4103/aca.aca_239_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The introduction of left ventricular assist device (LVAD) has improved survival rates for patients with end-stage heart failure. Two categories of VADs exist: one generates pulsatile flow and the other produces nonpulsatile continuous flow. Survival is better for patients with continuous-flow LVADs. With improved survival, more of such patients now present for noncardiac surgery (NCS). This review, written for the general anesthesiologists, addresses the perioperative considerations when the patient undergoes NCS. For best outcomes, a multidisciplinary approach is essential in perioperative management of the patient.
Collapse
Affiliation(s)
- Kai-Yin Hwang
- Department of Anaesthesiology, Singapore General Hospital, 1 Hospital Drive, Singapore 169608, Singapore
| | - Nian-Chih Hwang
- Department of Anaesthesiology, Singapore General Hospital, 1 Hospital Drive, Singapore 169608; Department of Cardiothoracic Anaesthesia, National Heart Centre, Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| |
Collapse
|
37
|
Baxter RD, Tecson KM, Still S, Collier JDG, Felius J, Joseph SM, Hall SA, Lima B. Predictors and impact of right heart failure severity following left ventricular assist device implantation. J Thorac Dis 2019; 11:S864-S870. [PMID: 31183166 DOI: 10.21037/jtd.2018.09.155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Right heart failure (RHF) is a well-known consequence of left ventricular assist device (LVAD) placement, and has been linked to negative surgical outcomes. However, little is known regarding risk factors associated with RHF. This article delineates pre- and intra-operative risk factors for RHF following LVAD implantation and demonstrates the effect of RHF severity on key surgical outcomes. Methods We performed a retrospective analysis of consecutive LVAD patients treated at our center between 2008 and 2016. RHF was categorized using the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) definition of none/mild, moderate, severe, and acute-severe. We constructed a predictive model using multivariable logistic regression and performed a competing risks analysis for survival stratified by RHF severity. Results Of 202 subjects, 52 (25.7%) developed moderate or worse RHF. Cardiopulmonary bypass (CPB) time and nadir hematocrit contributed jointly to the model of RHF severity (moderate or worse vs. none/mild; area under the curve =0.77). Postoperative length of stay (LOS) was shortest in the non/mild group and longest in the acute-severe group (median 13 vs. 29.5 days; P<0.001). Stage 2/3 acute kidney injury (range, 26-57%, P=0.002), respiratory failure (13-94%, P<0.001), stroke (0-32%, P=0.02), and 1-year mortality (19-64%, P=0.002) differed by severity. Those with acute-severe RHF had 5.4 [95% confidence interval (CI), 2.5-11.8] times the risk of 1-year mortality compared to those who did not have RHF. Conclusions RHF remains a postoperative threat and is associated with worsened surgical outcomes. Ongoing research will reveal further opportunities to mitigate RHF post-LVAD.
Collapse
Affiliation(s)
- Ronald D Baxter
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA
| | - Kristen M Tecson
- Baylor Heart and Vascular Institute, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Sasha Still
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA
| | - Justin D G Collier
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA
| | - Joost Felius
- Annette C. and Harold C. Simmons Transplant Institute, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Susan M Joseph
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA.,Annette C. and Harold C. Simmons Transplant Institute, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Shelley A Hall
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA.,Annette C. and Harold C. Simmons Transplant Institute, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Brian Lima
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA.,Annette C. and Harold C. Simmons Transplant Institute, Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
38
|
Dandel M, Hetzer R. Temporary assist device support for the right ventricle: pre-implant and post-implant challenges. Heart Fail Rev 2019; 23:157-171. [PMID: 29453695 DOI: 10.1007/s10741-018-9678-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe right ventricular (RV) failure is more likely reversible than similar magnitudes of left ventricular (LV) failure and, because reversal of both adaptive remodeling and impaired contractility require most often only short periods of support, the use of temporary RV assist devices (t-RVADs) can be a life-saving therapy option for many patients. Although increased experience with t-RVADs and progresses made in the development of safer devices with lower risk for complications has improved both recovery rate of RV function and patient survival, the mortality of t-RVAD recipients can still be high but it depends mainly on the primary cause of RV failure (RVF), the severity of end-organ dysfunction, and the timing of RVAD implantation, and much less on adverse events and complications related to RVAD implantation, support, or removal. Reduced survival of RVAD recipients should therefore not discourage appropriate application of RVADs because their underuse further reduces the chances for RV recovery and patient survival. The article reviews and discusses the challenges related to the pre-implant and post-implant decision-making processes aiming to get best possible therapeutic results. Special attention is focused on pre-implant RV assessment and prediction of RV improvement during mechanical unloading, patient selection for t-RVAD therapy, assessment of unloading-promoted RV recovery, and prediction of its stability after RVAD removal. Particular consideration is also given to prediction of RVF after LVAD implantation which is usually hampered by the complex interactions between the different risk factors related indirectly or directly to the RV potential for reverse remodeling and functional recovery.
Collapse
Affiliation(s)
- Michael Dandel
- DZHK (German Centre for Heart and Circulatory Research), Partner site Berlin, Berlin, Germany. .,Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Roland Hetzer
- Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Cardio Centrum Berlin, Berlin, Germany
| |
Collapse
|
39
|
Nersesian G, Hennig F, Müller M, Mulzer J, Tsyganenko D, Starck C, Gromann T, Falk V, Potapov E, Schoenrath F. Temporary mechanical circulatory support for refractory heart failure: the German Heart Center Berlin experience. Ann Cardiothorac Surg 2019; 8:76-83. [PMID: 30854315 DOI: 10.21037/acs.2018.12.01] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background Temporary mechanical circulatory support (MCS) offers a valuable option for treatment of refractory heart failure. We present our experience with selected MCS devices in cardiogenic shock of different etiologies. Methods We retrospectively studied patients who were treated in our institution between 01/2016 and 07/2018. Patients receiving only veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support were excluded. Left ventricular support patients received Impella; right ventricular support was conducted using Levitronix CentriMag. Results Thirty-seven patients received an Impella left ventricular assist device (LVAD). Etiology was: acute on chronic ischemic cardiomyopathy (ICMP; n=12), acute myocardial infarction (AMI; n=11), dilated cardiomyopathy (DCMP; n=7) and toxic cardiomyopathy (TCMP; n=2). Two patients presented with postcardiotomy shock and acute myocarditis, respectively. In one case, Takotsubo cardiomyopathy was diagnosed. Impella was used solely in 28 patients (Impella group) with an in-hospital survival of 37%. In nine patients, Impella was used in combination with extracorporeal life support (ECLS) implantation (ECMELLA group)-in-hospital survival was 33%. In the Impella group six patients recovered, six received a long-term VAD and 16 died on device. In the ECMELLA group one patient recovered, three received a long-term VAD and five died. The majority of CentriMag implantations as a right ventricular assist device (RVAD) were necessary after LVAD implantation (n=52); of these patients, 14 recovered, eight received long-term VAD and 30 died. The remaining 17 patients were supported by RVAD due to AMI (n=7); postcardiotomy (n=7); right heart failure after heart transplantation (n=2) and ICMP (n=1). Six of these patients recovered, two required long-term VAD and nine died. Conclusions Survival after MCS implantation for left as well as right heart failure in cardiogenic shock remains low, but is superior to that of patients without mechanical support. Short-term MCS remains an option of choice if right, left or biventricular support is needed.
Collapse
Affiliation(s)
- Gaik Nersesian
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Felix Hennig
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Marcus Müller
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Johanna Mulzer
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Dmytro Tsyganenko
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Christoph Starck
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Tom Gromann
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiothoracic Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Evgenij Potapov
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The article provides an overview of recent advances in imaging patients with a left ventricular assist device (LVAD). RECENT FINDINGS There is a growing population of patients with LVADs. LVADs improve survival in patients with end-stage heart failure, but are also associated with significant adverse outcomes. Imaging, particularly echocardiography, plays a critical role in patient selection and in predicting and detecting complications. SUMMARY Recent studies have illustrated links between imaging parameters with adverse outcomes, such as pump thrombosis, right ventricular failure, and continuous aortic regurgitation. Novel parameters and imaging techniques have been developed.
Collapse
|
41
|
Dandel M, Hetzer R. Evaluation of the right ventricle by echocardiography: particularities and major challenges. Expert Rev Cardiovasc Ther 2018. [PMID: 29521112 DOI: 10.1080/14779072.2018.1449646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Compared with the left ventricle (LV), the right ventricle (RV) is less suited for evaluation by echocardiography (ECHO). Nevertheless, RV ECHO-assessment has currently emerged as an important diagnostic tool with meaningful prognostic value and essential contribution to therapeutic decisions. Although significant progress has been made, including generation of higher-quality normative data, validation of several two-dimensional measurements and improvements in three-dimensional ECHO-techniques, many challenges in RV ECHO-assessment still persist. Areas covered: This review discusses the particular challenges and limits in obtaining accurate measurements of RV anatomical and functional parameters and focuses primarily on the difficulties in proper interpretation of the highly load dependent RV ECHO-parameters which complicates the use of this valuable diagnostic and surveillance technique. Expert commentary: There is increasing evidence that RV assessment in relation with its actual loading conditions by ECHO-derived composite variables, which either incorporate a certain functional parameter and load, or incorporate measures which reflect the relationship between RV dilation and RV load, considering also the right atrial pressure (i.e. 'load adaptation index'), is particularly suited for clinical decision-making. Load dependency of RV ECHO-parameters must be taken into consideration especially in patients with advanced RV dysfunction scheduled for LV assist device implantation or lung transplantation.
Collapse
Affiliation(s)
- Michael Dandel
- a German Centre for Heart and Circulatory Research (DZHK) , Partner site Berlin , Germany.,b Deutsches Herzzentrum Berlin , Germany
| | - Roland Hetzer
- b Deutsches Herzzentrum Berlin , Germany.,c Cardio Centrum Berlin , Germany
| |
Collapse
|
42
|
Soliman OI, Akin S, Muslem R, Boersma E, Manintveld OC, Krabatsch T, Gummert JF, de By TM, Bogers AJ, Zijlstra F, Mohacsi P, Caliskan K. Derivation and Validation of a Novel Right-Sided Heart Failure Model After Implantation of Continuous Flow Left Ventricular Assist Devices. Circulation 2018; 137:891-906. [DOI: 10.1161/circulationaha.117.030543] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
Abstract
Background:
The aim of the study was to derive and validate a novel risk score for early right-sided heart failure (RHF) after left ventricular assist device implantation.
Methods:
The EUROMACS (European Registry for Patients with Mechanical Circulatory Support) was used to identify adult patients undergoing continuous-flow left ventricular assist device implantation with mainstream devices. Eligible patients (n=2988) were randomly divided into derivation (n=2000) and validation (n=988) cohorts. The primary outcome was early (<30 days) severe postoperative RHF, defined as receiving short- or long-term right-sided circulatory support, continuous inotropic support for ≥14 days, or nitric oxide ventilation for ≥48 hours. The secondary outcome was all-cause mortality and length of stay in the intensive care unit. Covariates found to be associated with RHF (exploratory univariate
P
<0.10) were entered into a multivariable logistic regression model. A risk score was then generated using the relative magnitude of the exponential regression model coefficients of independent predictors at the last step after checking for collinearity, likelihood ratio test, c index, and clinical weight at each step.
Results:
A 9.5-point risk score incorporating 5 variables (Interagency Registry for Mechanically Assisted Circulatory Support class, use of multiple inotropes, severe right ventricular dysfunction on echocardiography, ratio of right atrial/pulmonary capillary wedge pressure, hemoglobin) was created. The mean scores in the derivation and validation cohorts were 2.7±1.9 and 2.6±2.0, respectively (
P
=0.32). RHF in the derivation cohort occurred in 433 patients (21.7%) after left ventricular assist device implantation and was associated with a lower 1-year (53% versus 71%;
P
<0.001) and 2-year (45% versus 58%;
P
<0.001) survival compared with patients without RHF. RHF risk ranged from 11% (low risk score 0–2) to 43.1% (high risk score >4;
P
<0.0001). Median intensive care unit stay was 7 days (interquartile range, 4–15 days) versus 24 days (interquartile range, 14–38 days) in patients without versus with RHF, respectively (
P
<0.001). The c index of the composite score was 0.70 in the derivation and 0.67 in the validation cohort. The EUROMACS-RHF risk score outperformed (
P
<0.0001) previously published scores and known individual echocardiographic and hemodynamic markers of RHF.
Conclusions:
This novel EUROMACS-RHF risk score outperformed currently known risk scores and clinical predictors of early postoperative RHF. This novel score may be useful for tailored risk-based clinical assessment and management of patients with advanced HF evaluated for ventricular assist device therapy.
Collapse
Affiliation(s)
- Osama I.I. Soliman
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Sakir Akin
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
- Intensive Care (S.A.)
| | - Rahatullah Muslem
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
- Cardiothoracic Surgery (R.M., A.J.J.C.B.)
| | - Eric Boersma
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Olivier C. Manintveld
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Thomas Krabatsch
- Erasmus Medical Center, University Medical Centre Rotterdam, the Netherlands. Department of Cardiac Surgery, German Heart Centre Berlin, Germany (T.K.)
| | - Jan F. Gummert
- Department for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany (J.F.G.)
| | | | | | - Felix Zijlstra
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Paul Mohacsi
- Department of Cardiology, University Hospital Bern, University of Bern, Switzerland (P.M.)
| | - Kadir Caliskan
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| |
Collapse
|
43
|
Caldeira CCB, Machado RC, Caldeira DCB. Implantation of Short-Term and Long-Term Right Ventricular Assist Devices. Braz J Cardiovasc Surg 2017; 32:435-437. [PMID: 29211226 PMCID: PMC5701107 DOI: 10.21470/1678-9741-2017-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/09/2017] [Indexed: 12/05/2022] Open
Abstract
The last decade has seen considerable growth in the use of left ventricular
assist devices (LVAD), in end-phase heart failure treatment. The indications,
contraindications and implantation techniques are well-defined. However,
information about mechanical support for right ventricular failure is lacking.
The aim of this communication is to present alternative techniques for
implantation of short- and longterm right ventricular assist devices. Implanting
the device in the right atrium has certain advantages when compared with the
right ventricle. It is an easier surgical technique that preserves the tricuspid
valve and it can potentially reduce the risk of pump thrombosis.
Collapse
|
44
|
CPR, ECLS, BVAD and successful heart transplantation within 2 months: a single-centre case series in two young, high-urgency listed patients. Int J Artif Organs 2017; 40:647-650. [PMID: 28731484 DOI: 10.5301/ijao.5000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In times of organ shortage, death while on the heart waiting-list still represents a major problem. As a consequence, bridging to transplant as well as the decision when to escalate therapy play a very important role. METHODS AND RESULTS We report on two young patients with dilated cardiomyopathy and acute decompensation who were successfully bridged to heart transplantation with both left and temporary right ventricular assist devices in just 2 months. CONCLUSIONS As a permanent biventricular assist device (BVAD) would have definitely impaired the patients' outcome after HTX, we decided to implant an LVAD with a temporary RVAD. In our opinion, this represents a suitable strategy to reduce mortality in HU-listed patients with acute deterioration of cardiac pump function and should be further evaluated in future studies.
Collapse
|
45
|
Outcomes of Minimally Invasive Temporary Right Ventricular Assist Device Support for Acute Right Ventricular Failure During Minimally Invasive Left Ventricular Assist Device Implantation. ASAIO J 2017; 63:546-550. [DOI: 10.1097/mat.0000000000000526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Huang KC, Lin LY, Hwang JJ, Lin LC. Three-Dimensional Echocardiography-Derived Non-Invasive Right Ventricular Pressure-Volume Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2045-2053. [PMID: 28655466 DOI: 10.1016/j.ultrasmedbio.2017.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
In patients with pulmonary hypertension, repeated evaluations of right ventricular (RV) function are still required for clinical decision making, but the invasive nature of current pressure-volume analysis makes conducting regular follow-ups in a clinical setting infeasible. We enrolled 12 patients with pulmonary arterial hypertension (PAH) and 10 with pulmonary venous hypertension (PVH) May 2016-October 2016. All patients underwent a clinically indicated right heart catheterization (RHC), from which the yielded right ventricular pressure recordings were conjugated with RV volume by 3-D echocardiography to generate a pressure-volume loop. A continuous-wave Doppler envelope of tricuspid regurgitation was transformed into a pressure gradient recording by the simplified Bernoulli equation, and then a systolic pressure gradient-volume (PG-V) diagram was generated from similar methods. The area enclosed by the pressure-volume loop was calculated to represent semi-invasive right ventricular stroke work (RVSWRHC). The area between the PG-V diagram and x-axis was calculated to estimate non-invasive RVSW (RVSWecho). Patients with PAH have higher RV pressure, lower pulmonary arterial wedge pressure and larger RV volume that was contributed by the dilation of RV mid-cavity minor dimension. We found no significant difference of traditional parameters between these two groups, but RVSW values were significantly higher in PAH patients. The RVSW values of these two methods were significantly correlated by the equation RVSWecho = 0.8447 RVSWRHC + 129.38 (R2 = 0.9151, p < 0.001). The linearity remained satisfactory in both groups. We conclude that a PG-V diagram is a reliable method to estimate RVSW and to depict pathophysiological status.
Collapse
Affiliation(s)
- Kuan-Chih Huang
- National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lung-Chun Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
47
|
Yaung J, Arabia FA, Nurok M. Perioperative Care of the Patient With the Total Artificial Heart. Anesth Analg 2017; 124:1412-1422. [PMID: 28107271 DOI: 10.1213/ane.0000000000001851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Advanced heart failure continues to be a leading cause of morbidity and mortality despite improvements in pharmacologic therapy. High demand for cardiac transplantation and shortage of donor organs have led to an increase in the utilization of mechanical circulatory support devices. The total artificial heart is an effective biventricular assist device that may be used as a bridge to transplant and that is being studied for destination therapy. This review discusses the history, indications, and perioperative management of the total artificial heart with emphasis on the postoperative concerns.
Collapse
Affiliation(s)
- Jill Yaung
- From the *Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, California; and †Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | |
Collapse
|
48
|
Boegershausen N, Zayat R, Aljalloud A, Musetti G, Goetzenich A, Tewarie L, Moza A, Amerini A, Autschbach R, Hatam N. Risk factors for the development of right ventricular failure after left ventricular assist device implantation—a single-centre retrospective with focus on deformation imaging†. Eur J Cardiothorac Surg 2017; 52:1069-1076. [DOI: 10.1093/ejcts/ezx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
|
49
|
Sokalskis V, Peluso D, Jagodzinski A, Sinning C. Added clinical value of applying myocardial deformation imaging to assess right ventricular function. Echocardiography 2017; 34:919-927. [PMID: 28317170 DOI: 10.1111/echo.13521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Right heart dysfunction has been found to be a strong prognostic factor predicting adverse outcome in various cardiopulmonary diseases. Conventional echocardiographic measurements can be limited by geometrical assumptions and impaired reproducibility. Speckle tracking-derived strain provides a robust quantification of right ventricular function. It explicitly evaluates myocardial deformation, as opposed to tissue Doppler-derived strain, which is computed from tissue velocity gradients. Right ventricular longitudinal strain provides a sensitive tool for detecting right ventricular dysfunction, even at subclinical levels. Moreover, the longitudinal strain can be applied for prognostic stratification of patients with pulmonary hypertension, pulmonary embolism, and congestive heart failure. Speckle tracking-derived right atrial strain, right ventricular longitudinal strain-derived mechanical dyssynchrony, and three-dimensional echocardiography-derived strain are emerging imaging parameters and methods. Their application in research is paving the way for their clinical use.
Collapse
Affiliation(s)
- Vladislavs Sokalskis
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Diletta Peluso
- Department of Cardiac, Thoracic and Vascular Sciences, Ospedale dell'Angelo, Venice Mestre, Italy
| | - Annika Jagodzinski
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Christoph Sinning
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| |
Collapse
|
50
|
Kimmaliardjuk DM, Ruel M. Cardiac passive-aggressive behavior? The right ventricle in patients with a left ventricular assist device. Expert Rev Cardiovasc Ther 2017; 15:267-276. [PMID: 28306362 DOI: 10.1080/14779072.2017.1308252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Right ventricular failure (RVF) affects up to 50% of patients post-left ventricular assist device (LVAD) implantation, and carries significant morbidity and mortality. There is no widely-used long-term mechanical support option for the right ventricle, thus early identification, prevention and medical treatment of RVF is of the upmost importance. Areas covered: A PubMed search was first completed searching 'Right ventricular failure post-LVAD' which yielded 152 results, and a subsequent search was performed under 'RV mechanical support' which yielded 374 results, and was filtered to 'humans' and literature written in English, generating 219 results. We focused this research on pre-operative risk factors identified in the literature for developing RVF-post LVAD implantation, and the medical and surgical treatment options for RVF, including mechanical treatment options. Expert commentary: There is little consensus on pre-operative risk factors that reliably predict RVF post-LVAD implantation. Large prospective randomized trials would help clarify indications for specific medical and surgical therapy. We gather this knowledge in the present article and describe the main RVF remediation modalities. Surgeons and anesthesiologists should help prevent and have a low threshold for initiating supportive treatment for RVF, which may include increasingly invasive therapies up to long-term mechanical RV support.
Collapse
Affiliation(s)
| | - Marc Ruel
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| |
Collapse
|