1
|
Zhong MQ, Yang Y, Yu M, Zou ZM, Wan L. Dynamic variations of plasma and urine metabolic profiles in left anterior descending coronary artery ligation-induced myocardial infarction rats and the regulatory effects of Chinese patent medicine Xin-Ke-Shu. J Pharm Biomed Anal 2025; 252:116483. [PMID: 39353256 DOI: 10.1016/j.jpba.2024.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Myocardial infarction (MI) is one of the most severe cardiovascular diseases (CVD). Traditional Chinese medicines have unique advantages in the treatment of CVD, with Xin-Ke-Shu (XKS) being a commonly used Chinese patent medicine for the prevention and treatment of MI patients. This study aimed to investigate the dynamic metabolic profiles of plasma and urine in left anterior descending coronary artery ligation (LAD) -induced MI rats at days 3, 12, and 21 after surgery, and to evaluate the regulatory effects of XKS at these time points using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomics. The metabolic profiles of plasma and urine in the LAD-induced MI rats showed significant variations at days 3, 12, and 21 after MI. We identified a total of 23 plasma metabolites and 12 urine metabolites as potential pathological markers related to MI progression. These metabolites were mainly involved in pathways such as TCA cycle, arachidonic acid metabolism, glutathione metabolism, glycerophospholipid metabolism, sphingolipid metabolism, and fatty acid metabolism, all of which were associated with imbalance of myocardial energy metabolism, oxidative stress, and calcium overload. Disturbances in the TCA cycle, arachidonic acid metabolism, glutathione metabolism, and purine metabolism in plasma and urine were observed as early as day 3 after MI. By day 12, we noted significant changes in fatty acid metabolism in plasma and urine, along with notable alterations in sphingolipid metabolism in plasma. Disorders in plasma glycerophospholipid metabolism were first evident at day 12 and reached their peak severity by day 21. Treatments with XKS significantly regulated the disturbances in the plasma and urine metabolic profiles of MI rats at days 3, 12, and 21, with medium dose of XKS displaying a particularly strong regulatory effect, especially at day 12. Our study demonstrates that host metabolism undergoes dynamical changes following MI with most metabolic disorders manifesting in the early stage of MI. XKS effectively regulates nearly all of these disturbances and can be administered as soon as possible after MI. These findings provide valuable insights into the metabolic progression of MI and highlight the therapeutic potential of XKS in the treatment of MI.
Collapse
Affiliation(s)
- Ming-Qin Zhong
- College of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yong Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Lei Wan
- College of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Wang X, Yang G, Li J, Meng C, Xue Z. Dynamic molecular signatures of acute myocardial infarction based on transcriptomics and metabolomics. Sci Rep 2024; 14:10175. [PMID: 38702356 PMCID: PMC11068872 DOI: 10.1038/s41598-024-60945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Acute myocardial infarction (AMI) commonly precedes ventricular remodeling, heart failure. Few dynamic molecular signatures have gained widespread acceptance in mainstream clinical testing despite the discovery of many potential candidates. These unmet needs with respect to biomarker and drug discovery of AMI necessitate a prioritization. We enrolled patients with AMI aged between 30 and 70. RNA-seq analysis was performed on the peripheral blood mononuclear cells collected from the patients at three time points: 1 day, 7 days, and 3 months after AMI. PLC/LC-MS analysis was conducted on the peripheral blood plasma collected from these patients at the same three time points. Differential genes and metabolites between groups were screened by bio-informatics methods to understand the dynamic changes of AMI in different periods. We obtained 15 transcriptional and 95 metabolite expression profiles at three time points after AMI through high-throughput sequencing. AMI-1d: enrichment analysis revealed the biological features of 1 day after AMI primarily included acute inflammatory response, elevated glycerophospholipid metabolism, and decreased protein synthesis capacity. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) might stand promising biomarkers to differentiate post-AMI stage. Anti-inflammatory therapy during the acute phase is an important direction for preventing related pathology. AMI-7d: the biological features of this stage primarily involved the initiation of cardiac fibrosis response and activation of platelet adhesion pathways. Accompanied by upregulated TGF-beta signaling pathway and ECM receptor interaction, GP5 help assess platelet activation, a potential therapeutic target to improve haemostasis. AMI-3m: the biological features of 3 months after AMI primarily showed a vascular regeneration response with VEGF signaling pathway, NOS3 and SHC2 widely activated, which holds promise for providing new therapeutic approaches for AMI. Our analysis highlights transcriptional and metabolomics signatures at different time points after MI, which deepens our understanding of the dynamic biological responses and associated molecular mechanisms that occur during cardiac repair.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Guang Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Chao Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zengming Xue
- Department of Cardiology, Langfang People's Hospital, Hebei Medical University, No. 37, Xinhua Road, Langfang, 065000, China.
| |
Collapse
|
3
|
Chen Z, Pan Z, Huang C, Zhu X, Li N, Huynh H, Xu J, Huang L, Vaz FM, Liu J, Han Z, Ouyang K. Cardiac lipidomic profiles in mice undergo changes from fetus to adult. Life Sci 2024; 341:122484. [PMID: 38311219 DOI: 10.1016/j.lfs.2024.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
AIMS Lipids are essential cellular components with many important biological functions. Disturbed lipid biosynthesis and metabolism has been shown to cause cardiac developmental abnormality and cardiovascular diseases. In this study, we aimed to investigate the composition and the molecular profiles of lipids in mammalian hearts between embryonic and adult stages and uncover the underlying links between lipid and cardiac development and maturation. MATERIALS AND METHODS We collected mouse hearts at the embryonic day 11.5 (E11.5), E15.5, and the age of 2 months, 4 months and 10 months, and performed lipidomic analysis to determine the changes of the composition, molecular species, and relative abundance of cardiac lipids between embryonic and adult stages. Additionally, we also performed the electronic microscopy and RNA sequencing in both embryonic and adult mouse hearts. KEY FINDINGS The relative abundances of certain phospholipids and sphingolipids including cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, and ceramide, are different between embryonic and adult hearts. Such lipidomic changes are accompanied with increased densities of mitochondrial membranes and elevated expression of genes related to mitochondrial formation in adult mouse hearts. We also analyzed individual molecular species of phospholipids and sphingolipids, and revealed that the composition and distribution of lipid molecular species in hearts also change with development. SIGNIFICANCE Our study provides not only a lipidomic view of mammalian hearts when developing from the embryonic to the adult stage, but also a potential pool of lipid indicators for cardiac cell development and maturation.
Collapse
Affiliation(s)
- Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Zhixiang Pan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Helen Huynh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, the Netherlands
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| |
Collapse
|
4
|
Liu X, Wang L, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocardial infarction complexity: A multi-omics approach. Clin Chim Acta 2024; 552:117680. [PMID: 38008153 DOI: 10.1016/j.cca.2023.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Myocardial infarction (MI), a prevalent cardiovascular disease, is fundamentally precipitated by thrombus formation in the coronary arteries, which subsequently decreases myocardial perfusion and leads to cellular necrosis. The intricacy of MI pathogenesis necessitates extensive research to elucidate the disease's root cause, thereby addressing the limitations present in its diagnosis and prognosis. With the continuous advancement of genomics technology, genomics, proteomics, metabolomics and transcriptomics are widely used in the study of MI, which provides an excellent way to identify new biomarkers that elucidate the complex mechanisms of MI. This paper provides a detailed review of various genomics studies of MI, including genomics, proteomics, transcriptomics, metabolomics and multi-omics studies. The metabolites and proteins involved in the pathogenesis of MI are investigated through integrated protein-protein interactions and multi-omics analysis by STRING and Metascape platforms. In conclusion, the future of omics research in myocardial infarction offers significant promise.
Collapse
Affiliation(s)
- Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
5
|
Kovilakath A, Wohlford G, Cowart LA. Circulating sphingolipids in heart failure. Front Cardiovasc Med 2023; 10:1154447. [PMID: 37229233 PMCID: PMC10203217 DOI: 10.3389/fcvm.2023.1154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Lack of significant advancements in early detection and treatment of heart failure have precipitated the need for discovery of novel biomarkers and therapeutic targets. Over the past decade, circulating sphingolipids have elicited promising results as biomarkers that premonish adverse cardiac events. Additionally, compelling evidence directly ties sphingolipids to these events in patients with incident heart failure. This review aims to summarize the current literature on circulating sphingolipids in both human cohorts and animal models of heart failure. The goal is to provide direction and focus for future mechanistic studies in heart failure, as well as pave the way for the development of new sphingolipid biomarkers.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - George Wohlford
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran's Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
6
|
Zhu Q, Qin M, Wang Z, Wu Y, Chen X, Liu C, Ma Q, Liu Y, Lai W, Chen H, Cai J, Liu Y, Lei F, Zhang B, Zhang S, He G, Li H, Zhang M, Zheng H, Chen J, Huang M, Zhong S. Plasma metabolomics provides new insights into the relationship between metabolites and outcomes and left ventricular remodeling of coronary artery disease. Cell Biosci 2022; 12:173. [PMID: 36242008 PMCID: PMC9569076 DOI: 10.1186/s13578-022-00863-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a metabolically perturbed pathological condition. However, the knowledge of metabolic signatures on outcomes of CAD and their potential causal effects and impacts on left ventricular remodeling remains limited. We aim to assess the contribution of plasma metabolites to the risk of death and major adverse cardiovascular events (MACE) as well as left ventricular remodeling. RESULTS In a prospective study with 1606 Chinese patients with CAD, we have identified and validated several independent metabolic signatures through widely-targeted metabolomics. The predictive model respectively integrating four metabolic signatures (dulcitol, β-pseudouridine, 3,3',5-Triiodo-L-thyronine, and kynurenine) for death (AUC of 83.7% vs. 76.6%, positive IDI of 0.096) and metabolic signatures (kynurenine, lysoPC 20:2, 5-methyluridine, and L-tryptophan) for MACE (AUC of 67.4% vs. 59.8%, IDI of 0.068) yielded better predictive value than trimethylamine N-oxide plus clinical model, which were successfully applied to predict patients with high risks of death (P = 0.0014) and MACE (P = 0.0008) in the multicenter validation cohort. Mendelian randomisation analysis showed that 11 genetically inferred metabolic signatures were significantly associated with risks of death or MACE, such as 4-acetamidobutyric acid, phenylacetyl-L-glutamine, tryptophan metabolites (kynurenine, kynurenic acid), and modified nucleosides (β-pseudouridine, 2-(dimethylamino) guanosine). Mediation analyses show that the association of these metabolites with the outcomes could be partly explained by their roles in promoting left ventricular dysfunction. CONCLUSIONS This study provided new insights into the relationship between plasma metabolites and clinical outcomes and its intermediate pathological process left ventricular dysfunction in CAD. The predictive model integrating metabolites can help to improve the risk stratification for death and MACE in CAD. The metabolic signatures appear to increase death or MACE risks partly by promoting adverse left ventricular dysfunction, supporting potential therapeutic targets of CAD for further investigation.
Collapse
Affiliation(s)
- Qian Zhu
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510080 Guangdong China
| | - Min Qin
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510080 Guangdong China
| | - Zixian Wang
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China
| | - Yonglin Wu
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China
| | - Xiaoping Chen
- grid.452223.00000 0004 1757 7615Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Chen Liu
- grid.412615.50000 0004 1803 6239Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Qilin Ma
- grid.452223.00000 0004 1757 7615Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yibin Liu
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510080 Guangdong China
| | - Weihua Lai
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China
| | - Hui Chen
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510080 Guangdong China
| | - Jingjing Cai
- grid.49470.3e0000 0001 2331 6153Institute of Model Animal, Wuhan University, Wuhan, 430072 Hubei China
| | - Yemao Liu
- grid.49470.3e0000 0001 2331 6153Institute of Model Animal, Wuhan University, Wuhan, 430072 Hubei China
| | - Fang Lei
- grid.49470.3e0000 0001 2331 6153Institute of Model Animal, Wuhan University, Wuhan, 430072 Hubei China
| | - Bin Zhang
- grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510080 Guangdong China
| | - Shuyao Zhang
- grid.258164.c0000 0004 1790 3548Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220 Guangdong China
| | - Guodong He
- grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510080 Guangdong China
| | - Hanping Li
- grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China
| | - Mingliang Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430000 Hubei China
| | - Hui Zheng
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430000 Hubei China
| | - Jiyan Chen
- grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China
| | - Min Huang
- grid.12981.330000 0001 2360 039XInstitute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Shilong Zhong
- grid.413405.70000 0004 1808 0686Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.413405.70000 0004 1808 0686Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong China ,grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510080 Guangdong China
| |
Collapse
|
7
|
Montero-Bullon JF, Aveiro SS, Melo T, Martins-Marques T, Lopes D, Neves B, Girão H, Rosário M Domingues M, Domingues P. Cardiac phospholipidome is altered during ischemia and reperfusion in an ex vivo rat model. Biochem Biophys Rep 2021; 27:101037. [PMID: 34169155 PMCID: PMC8207217 DOI: 10.1016/j.bbrep.2021.101037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of death, morbidity, and health costs worldwide. In AMI, a sudden blockage of blood flow causes myocardial ischemia and cell death. Reperfusion after ischemia has paradoxical effects and may exacerbate the myocardial injury, a process known as ischemic reperfusion injury. In this work we evaluated the lipidome of isolated rat hearts, maintained in controlled perfusion (CT), undergoing global ischemia (ISC) or ischemia followed by reperfusion (IR). 153 polar lipid levels were significantly different between conditions. 48 features had q < 0.001 and included 8 phosphatidylcholines and 4 lysophospholipids, which were lower in ISC compared to CT, and even lower in the IR group, suggesting that IR induces more profound changes than ISC. We observed that the levels of 16 alkyl acyl phospholipids were significantly altered during ISC and IR. Overall, these data indicate that myocardial lipid remodelling and possibly damage occurs to a greater extent during reperfusion. The adaptation of cardiac lipidome during ISC and IR described is consistent with the presence of oxidative damage and may reflect the impact of AMI on the lipidome at the cellular level and provide new insights into the role of lipids in the pathophysiology of acute myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullon
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Susana S. Aveiro
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tânia Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Diana Lopes
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - M. Rosário M Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| |
Collapse
|
8
|
Detecting early myocardial ischemia in rat heart by MALDI imaging mass spectrometry. Sci Rep 2021; 11:5135. [PMID: 33664384 PMCID: PMC7933419 DOI: 10.1038/s41598-021-84523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Diagnostics of myocardial infarction in human post-mortem hearts can be achieved only if ischemia persisted for at least 6–12 h when certain morphological changes appear in myocardium. The initial 4 h of ischemia is difficult to diagnose due to lack of a standardized method. Developing a panel of molecular tissue markers is a promising approach and can be accelerated by characterization of molecular changes. This study is the first untargeted metabolomic profiling of ischemic myocardium during the initial 4 h directly from tissue section. Ischemic hearts from an ex-vivo Langendorff model were analysed using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) at 15 min, 30 min, 1 h, 2 h, and 4 h. Region-specific molecular changes were identified even in absence of evident histological lesions and were segregated by unsupervised cluster analysis. Significantly differentially expressed features were detected by multivariate analysis starting at 15 min while their number increased with prolonged ischemia. The biggest significant increase at 15 min was observed for m/z 682.1294 (likely corresponding to S-NADHX—a damage product of nicotinamide adenine dinucleotide (NADH)). Based on the previously reported role of NAD+/NADH ratio in regulating localization of the sodium channel (Nav1.5) at the plasma membrane, Nav1.5 was evaluated by immunofluorescence. As expected, a fainter signal was observed at the plasma membrane in the predicted ischemic region starting 30 min of ischemia and the change became the most pronounced by 4 h. Metabolomic changes occur early during ischemia, can assist in identifying markers for post-mortem diagnostics and improve understanding of molecular mechanisms.
Collapse
|
9
|
Nam M, Seo SS, Jung S, Jang SY, Lee J, Kwon M, Khan I, Ryu DH, Kim MK, Hwang GS. Comparable Plasma Lipid Changes in Patients with High-Grade Cervical Intraepithelial Neoplasia and Patients with Cervical Cancer. J Proteome Res 2020; 20:740-750. [PMID: 33241689 DOI: 10.1021/acs.jproteome.0c00640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cervical cancer is the fourth most prevalent cancer among women worldwide and usually develops from cervical intraepithelial neoplasia (CIN). In the present study, we compared alterations in lipids associated with high-grade CIN and cervical cancer with those associated with a normal status and low-grade CIN by performing global lipid profiling on plasma (66 healthy controls and 55 patients with CIN1, 44 with CIN2/3, and 60 with cervical cancer) using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry. We identified 246 lipids and found 31 lipids with similar alterations in both high-grade CIN and cervical cancer. Among these 31 lipids, four lipid classes (phosphatidylcholine, phosphatidylethanolamine, diglyceride, and free fatty acids) were identified as the major lipid classes with significant differences in the patients with CIN2/3 and cervical cancer compared to the healthy controls and the patients with CIN1. Lipid metabolites belonging to the same classes were positively correlated with each other. High-grade CIN and cervical cancer induce comparable changes in lipid levels, which are closely related to the development of cervical tumors. These results suggest that lipid profiling is a useful method for monitoring progression to cervical cancer.
Collapse
Affiliation(s)
- Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Korea
| | - Sang-Soo Seo
- Center for Uterine Cancer, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea
| | - Sunhee Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Korea
| | - Minji Kwon
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea
| | - Imran Khan
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.,Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi Kyung Kim
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
10
|
Biophysical and Lipidomic Biomarkers of Cardiac Remodeling Post-Myocardial Infarction in Humans. Biomolecules 2020; 10:biom10111471. [PMID: 33105904 PMCID: PMC7690619 DOI: 10.3390/biom10111471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Few studies have analyzed the potential of biophysical parameters as markers of cardiac remodeling post-myocardial infarction (MI), particularly in human hearts. Fourier transform infrared spectroscopy (FTIR) illustrates the overall changes in proteins, nucleic acids and lipids in a single signature. The aim of this work was to define the FTIR and lipidomic pattern for human left ventricular remodeling post-MI. A total of nine explanted hearts from ischemic cardiomyopathy patients were collected. Samples from the right ventricle (RV), left ventricle (LV) and infarcted left ventricle (LV INF) were subjected to biophysical (FTIR and differential scanning calorimetry, DSC) and lipidomic (liquid chromatography-high-resolution mass spectrometry, LC-HRMS) studies. FTIR evidenced deep alterations in the myofibers, extracellular matrix proteins, and the hydric response of the LV INF compared to the RV or LV from the same subject. The lipid and esterified lipid FTIR bands were enhanced in LV INF, and both lipid indicators were tightly and positively correlated with remodeling markers such as collagen, lactate, polysaccharides, and glycogen in these samples. Lipidomic analysis revealed an increase in several species of sphingomyelin (SM), hexosylceramide (HexCer), and cholesteryl esters combined with a decrease in glycerophospholipids in the infarcted tissue. Our results validate FTIR indicators and several species of lipids as useful markers of left ventricular remodeling post-MI in humans.
Collapse
|
11
|
Ruberti OM, Sousa AS, Viana LR, Pereira Gomes MF, Medeiros A, Gomes Marcondes MCC, Borges LDF, Crestani CC, Mostarda C, Moraes TFDC, Canevarolo RR, Delbin MA, Rodrigues B. Aerobic training prevents cardiometabolic changes triggered by myocardial infarction in ovariectomized rats. J Cell Physiol 2020; 236:1105-1115. [PMID: 32638399 DOI: 10.1002/jcp.29919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
This study aimed to evaluate the impact of aerobic training (AT) on autonomic, cardiometabolic, ubiquitin-proteasome activity, and inflammatory changes evoked by myocardial infarction (MI) in ovariectomized rats. Female Wistar rats were ovariectomized and divided into four groups: sedentary + sham (SS), sedentary + MI (SI), AT + sham surgery (TS), AT + MI (TI). AT was performed on a treadmill for 8 weeks before MI. Infarcted rats previously subjected to AT presented improved physical capacity, increased interleukin-10, and decreased pro-inflammatory cytokines. Metabolomic analysis identified and quantified 62 metabolites, 9 were considered significant by the Vip Score. SS, SI, and TS groups presented distinct metabolic profiles; however, TI could not be distinguished from the SS group. MI dramatically increased levels of dimethylamine, and AT prevented this response. Our findings suggest that AT may be useful in preventing the negative changes in functional, inflammatory, and metabolic parameters related to MI in ovariectomized rats.
Collapse
Affiliation(s)
- Olívia Moraes Ruberti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andressa Silva Sousa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Laís Rosa Viana
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Alessandra Medeiros
- Department of Bioscience, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | - Carlos Cesar Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Cristiano Mostarda
- Department of Physical Education, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | | | | | - Maria Andreia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bruno Rodrigues
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Adapted Physical Activity, School of Physical Education, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
12
|
Tomczyk MM, Dolinsky VW. The Cardiac Lipidome in Models of Cardiovascular Disease. Metabolites 2020; 10:E254. [PMID: 32560541 PMCID: PMC7344916 DOI: 10.3390/metabo10060254] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. There are numerous factors involved in the development of CVD. Among these, lipids have an important role in maintaining the myocardial cell structure as well as cardiac function. Fatty acids (FA) are utilized for energy, but also contribute to the pathogenesis of CVD and heart failure. Advances in mass spectrometry methods have enabled the comprehensive analysis of a plethora of lipid species from a single sample comprised of a heterogeneous population of lipid molecules. Determining cardiac lipid alterations in different models of CVD identifies novel biomarkers as well as reveals molecular mechanisms that underlie disease development and progression. This information could inform the development of novel therapeutics in the treatment of CVD. Herein, we provide a review of recent studies of cardiac lipid profiles in myocardial infarction, obesity, and diabetic and dilated cardiomyopathy models of CVD by methods of mass spectrometry analysis.
Collapse
Affiliation(s)
- Mateusz M. Tomczyk
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Rady Faculty of Health Science, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Rady Faculty of Health Science, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
13
|
Wu GS, Li HK, Zhang WD. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin J Nat Med 2020; 17:321-330. [PMID: 31171266 DOI: 10.1016/s1875-5364(19)30037-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Traditional Chinese Medicine (TCM) is the treasure of Chinese Nation and gained the gradual acceptance of the international community. However, the methods and theories of TCM understanding of diseases are lack of appropriate modern scientific characterization systems. Moreover, traditional risk factors cannot promote to detection and prevent those patients with coronary artery disease (CAD) who have not developed acute myocardial infarction (MI) in time. To sum up, there is still no objective systematic evaluation system for the therapeutic mechanism of TCM in the prevention and cure of cardiovascular disease. Thus, new ideas and technologies are needed. The development of omics technology, especially metabolomics, can be used to predict the level of metabolites in vivo and diagnose the physiological state of the body in time to guide the corresponding intervention. In particular, metabolomics is also a very powerful tool to promote the modernization of TCM and the development of TCM in personalized medicine. This article summarized the application of metabolomics in the early diagnosis, the discovery of biomarkers and the treatment of TCM in CAD.
Collapse
Affiliation(s)
- Gao-Song Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hou-Kai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
14
|
Zhao Y, Nie S, Yi M, Wu N, Wang W, Zhang Z, Yao Y, Wang D. UPLC-QTOF/MS-based metabolomics analysis of plasma reveals an effect of Xue-Fu-Zhu-Yu capsules on blood-stasis syndrome in CHD rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111908. [PMID: 31029757 DOI: 10.1016/j.jep.2019.111908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-stasis syndrome (BSS) is a specific ZHENG type of coronary heart disease (CHD) in traditional Chinese medicine (TCM). The Xue-Fu-Zhu-Yu (XFZY) decoction is a common herbal formula that has been used for several centuries to treat BSS, but its mechanism has not been thoroughly elucidated to date. AIM OF THE STUDY In this study, serum lipid, blood haemorheology and metabolomics analyses were performed to depict a complete profile of XFZY capsules for the treatment of CHD with BSS and to reveal the potential mechanism of the XFZY capsules. MATERIALS AND METHODS A rat model of CHD with BSS was generated by combining a high-fat diet (HFD) with a left anterior descending coronary artery (LAD) ligation. After four weeks of treatment with XFZY capsules or simvastatin pills, an echocardiography was performed for a therapeutic evaluation. Blood samples and heart tissues were then collected for further analyses. A UPLC-QTOF/MS-based metabolomics analysis of the plasma was performed, and all metabolic features were fit by PCA and OPLS-DA pattern for the biomarker screen. The identified biomarkers were later implemented into a metabolic pathway analysis. Furthermore, we used qRT-PCR and Western blot analyses to verify the treatment effects of the XFZY capsules. RESULTS A total of 49 metabolites (VIP>1.0, p < 0.05, RSD%<20%) were identified in the Model rats, and 27 metabolites (VIP>1.0, p < 0.05, RSD%<20%) were identified in the XFZY-H rats. The results of the pathway analysis indicated that the XFZY capsules treated CHD primarily by regulating cardiac energy, phospholipid, polyunsaturated fatty acid (PUFA) and amino acid metabolism. In addition, blood viscosity and serum lipid assays suggested that XFZY capsules could decrease serum triglycerides, total cholesterol, low-density lipoprotein cholesterol and whole blood viscosity at a low shear rate. CONCLUSION This study demonstrated that the XFZY capsule effectively decreases serum lipids and whole blood viscosity in CHD with BSS. The underlying metabolic mechanism mainly included improving cardiac energy supply, reducing phospholipid peroxide, maintaining the PUFA metabolic balance and regulating amino acid metabolism.
Collapse
Affiliation(s)
- Yuhang Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Shanshan Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Min Yi
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Ning Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Zheyu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Ye Yao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
15
|
Tseng HC, Lin CC, Hsiao LD, Yang CM. Lysophosphatidylcholine-induced mitochondrial fission contributes to collagen production in human cardiac fibroblasts. J Lipid Res 2019; 60:1573-1589. [PMID: 31363041 PMCID: PMC6718437 DOI: 10.1194/jlr.ra119000141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidylcholine (LPC) may accumulate in the heart to cause fibrotic events, which is mediated through fibroblast activation and collagen accumulation. Here, we evaluated the mechanisms underlying LPC-mediated collagen induction via mitochondrial events in human cardiac fibroblasts (HCFs), coupling application of the pharmacologic cyclooxygenase-2 (COX-2) inhibitor, celecoxib, and genetic mutations in FOXO1 on the fibrosis pathway. In HCFs, LPC caused prostaglandin E2 (PGE2)/PGE2 receptor 4 (EP4)-dependent collagen induction via activation of transcriptional activity of forkhead box protein O1 (FoxO1) on COX-2 gene expression. These responses were mediated through LPC-induced generation of mitochondrial reactive oxygen species (mitoROS), as confirmed by ex vivo studies, which indicated that LPC increased COX-2 expression and oxidative stress. LPC-induced mitoROS mediated the activation of protein kinase C (PKC)α, which interacted with and phosphorylated dynamin-related protein 1 (Drp1) at Ser616, thereby increasing Drp1-mediated mitochondrial fission and mitochondrial depolarization. Furthermore, inhibition of PKCα and Drp1 reduced FoxO1-mediated phosphorylation at Ser256 and nuclear accumulation, which suppressed COX-2/PGE2 expression and collagen production. Moreover, pretreatment with celecoxib or COX-2 siRNA suppressed WT FoxO1; mutated Ser256-to-Asp256 FoxO1-enhanced collagen induction, which was reversed by addition of PGE2 Our results demonstrate that LPC-induced generation of mitoROS regulates PKCα-mediated Drp1-dependent mitochondrial fission and COX-2 expression via a PKCα/Drp1/FoxO1 cascade, leading to PGE2/EP4-mediated collagen induction. These findings provide new insights about the role of LPC in the pathway of fibrotic injury in HCFs.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan; Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Metabolic Disturbances Identified in Plasma Samples from ST-Segment Elevation Myocardial Infarction Patients. DISEASE MARKERS 2019; 2019:7676189. [PMID: 31354891 PMCID: PMC6636502 DOI: 10.1155/2019/7676189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
ST-segment elevation myocardial infarction (STEMI) is the most severe form of myocardial infarction (MI) and the main contributor to morbidity and mortality caused by MI worldwide. Frequently, STEMI is caused by complete and persistent occlusion of a coronary artery by a blood clot, which promotes heart damage. STEMI impairment triggers changes in gene transcription, protein expression, and metabolite concentrations, which grants a biosignature to the heart dysfunction. There is a major interest in identifying novel biomarkers that could improve the diagnosis of STEMI. In this study, the phenotypic characterization of STEMI patients (n = 15) and healthy individuals (n = 19) was performed, using a target metabolomics approach. Plasma samples were analyzed by UPLC-MS/MS (ultra-high-performance liquid chromatography-tandem mass spectrometry) and FIA-MS (MS-based flow injection analysis). The goal was to identify novel plasma biomarkers and metabolic signatures underlying STEMI. Concentrations of phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, and biogenic amines were altered in STEMI patients in relation to healthy subjects. Also, after multivariate analysis, it was possible to identify alterations in the glycerophospholipids, alpha-linolenic acid, and sphingolipid metabolisms in STEMI patients.
Collapse
|
17
|
Kim MS, Kim IY, Sung HR, Nam M, Kim YJ, Kyung DS, Seong JK, Hwang GS. Metabolic dysfunction following weight regain compared to initial weight gain in a high-fat diet-induced obese mouse model. J Nutr Biochem 2019; 69:44-52. [PMID: 31048208 DOI: 10.1016/j.jnutbio.2019.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Diet-induced weight loss and regain leads to physiological and metabolic changes, some of which are potentially harmful. However, the specific metabolic processes and dysfunctions associated with weight regain, and how they differ from initial weight gain, remain unclear. Thus, we examined the metabolic profiles of mice following weight regain compared to initial weight gain. Mice were fed a normal diet or a high-fat diet or were cycled between the two diets to alternate between obese and lean states. Liver samples were collected and hepatic metabolites were profiled using nuclear magnetic resonance (NMR). The identified metabolites associated with weight regain were quantified using gas chromatography/mass spectrometry (GC/MS) and lipid profiles were assessed using ultra-high-performance liquid chromatography-quadrupole time-of-flight MS (UPLC-QTOF-MS). In addition, changes in expression of pro-inflammatory cytokines and gluconeogenic enzymes were investigated using polymerase chain reaction (PCR) and western blotting, respectively. Hepatic levels of several amino acids were reduced in mice during weight regain compared with initial weight gain. In addition, gluconeogenic enzyme levels were increased following weight regain, indicating an up-regulation of gluconeogenesis. Lipidomic profiling revealed that levels of ceramide and sphingomyelin, which are related to obesity-induced inflammation, were significantly increased during weight regain compared to initial weight gain. Moreover, tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) levels were significantly up-regulated during weight regain. In this study, weight regains lead to an up-regulation of gluconeogenesis and aggravated inflammation. Additionally, weight regain can worsen the metabolic dysfunction associated with obesity.
Collapse
Affiliation(s)
- Min-Sun Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Republic of Korea; Food Analysis Center, Korea Food Research Institute, Wanju, Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Rim Sung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Republic of Korea; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Soo Kyung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Republic of Korea; Department of Life Science, Ewha Woman's University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
18
|
Tseng HC, Lin CC, Wang CY, Yang CC, Hsiao LD, Yang CM. Lysophosphatidylcholine induces cyclooxygenase-2-dependent IL-6 expression in human cardiac fibroblasts. Cell Mol Life Sci 2018; 75:4599-4617. [PMID: 30229288 PMCID: PMC11105650 DOI: 10.1007/s00018-018-2916-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
Lysophosphatidylcholine (LysoPC) has been shown to induce the expression of inflammatory proteins, including cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6), associated with cardiac fibrosis. Here, we demonstrated that LysoPC-induced COX-2 and IL-6 expression was inhibited by silencing NADPH oxidase 1, 2, 4, 5; p65; and FoxO1 in human cardiac fibroblasts (HCFs). LysoPC-induced IL-6 expression was attenuated by a COX-2 inhibitor. LysoPC-induced responses were mediated via the NADPH oxidase-derived reactive oxygen species-dependent JNK1/2 phosphorylation pathway, leading to NF-κB and FoxO1 activation. In addition, we demonstrated that both FoxO1 and p65 regulated COX-2 promoter activity stimulated by LysoPC. Overexpression of wild-type FoxO1 and S256D FoxO1 enhanced COX-2 promoter activity and protein expression in HCFs. These results were confirmed by ex vivo studies, where LysoPC-induced COX-2 and IL-6 expression was attenuated by the inhibitors of NADPH oxidase, NF-κB, and FoxO1. Our findings demonstrate that LysoPC-induced COX-2 expression is mediated via NADPH oxidase-derived reactive oxygen species generation linked to the JNK1/2-dependent pathway leading to FoxO1 and NF-κB activation in HCFs. LysoPC-induced COX-2-dependent IL-6 expression provided novel insights into the therapeutic targets of the cardiac fibrotic responses.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
| |
Collapse
|
19
|
Lipidomic Profiles of the Heart and Circulation in Response to Exercise versus Cardiac Pathology: A Resource of Potential Biomarkers and Drug Targets. Cell Rep 2018; 24:2757-2772. [DOI: 10.1016/j.celrep.2018.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/28/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
|
20
|
Dong S, Zhang S, Chen Z, Zhang R, Tian L, Cheng L, Shang F, Sun J. Berberine Could Ameliorate Cardiac Dysfunction via Interfering Myocardial Lipidomic Profiles in the Rat Model of Diabetic Cardiomyopathy. Front Physiol 2018; 9:1042. [PMID: 30131709 PMCID: PMC6090155 DOI: 10.3389/fphys.2018.01042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is considered to be a distinct clinical entity independent of concomitant macro- and microvascular disorders, which is initiated partly by disturbances in energy substrates. This study was to observe the dynamic modulations of berberine in DCM rats and explore the changes of lipidomic profiles of myocardial tissue. Methods: Sprague-Dawley (SD) rats were fed high-sucrose and high-fat diet (HSHFD) for totally 22 weeks and intraperitoneally (i.p.) injected with 30 mg/kg of streptozotocin (STZ) at the fifth week to induce DCM. Seventy-two hours after STZ injection, the rats were orally given with berberine at 10, 30 mg/kg and metformin at 200 mg/kg, respectively. Dynamic changes of cardiac function, heart mass ratios and blood lipids were observed at f 4, 10, 16, and 22, respectively. Furthermore, lipid metabolites in myocardial tissue at week 16 were profiled by the ultra-high-performance liquid chromatography coupled to a quadruple time of flight mass spectrometer (UPLC/Q-TOF/MS) approach. Results: Berberine could protect against cardiac diastolic and systolic dysfunctions, as well as cardiac hypertrophy, and the most effective duration is with 16-week of administration. Meanwhile, 17 potential biomarkers of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingolipids (SMs) of DCM induced by HSFD/STZ were identified. The perturbations of lipidomic profiles could be partly reversed with berberine intervention, i.e., PC (16:0/20:4), PC (18:2/0:0), PC (18:0/18:2), PC (18:0/22:5), PC (20:4/0:0), PC (20:4/18:0), PC (20:4/18:1), PC (20:4/20:2), PE (18:2/0:0), and SM (d18:0/16:0). Conclusions: These results indicated a close relationship between PCs, PEs and SMs and cardiac damage mechanisms during development of DCM. The therapeutic effects of berberine on DCM are partly caused by interferences with PCs, PEs, and SMs metabolisms.
Collapse
Affiliation(s)
- Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhirong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Shang
- Department of Pharmacology, Analysis and Testing Center, Beijing University of Chemical Technology, Beijing, China
| | - Jianning Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Metabolic alterations in the bone tissues of aged osteoporotic mice. Sci Rep 2018; 8:8127. [PMID: 29802267 PMCID: PMC5970270 DOI: 10.1038/s41598-018-26322-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Age-related osteoporosis is characterized by reduced bone mineralization and reduced bone strength, which increases the risk of fractures. We examined metabolic changes associated with age-related bone loss by profiling lipids and polar metabolites in tibia and femur bone tissues from young (5 months old) and old (28 months old) male C57BL/6J mice using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. Partial least-squares discriminant analysis showed clear differences in metabolite levels in bone tissues of young and old mice. We identified 93 lipid species, including free fatty acids, sphingolipids, phospholipids, and glycerolipids, that were significantly altered in bone tissues of old mice. In addition, the expression of 26 polar metabolites differed significantly in bone tissues of old mice and young mice. Specifically, uremic toxin metabolite levels (p-cresyl sulfate, hippuric acid, and indoxylsulfate) were higher in bone tissues of old mice than in young mice. The increase in p-cresyl sulfate, hippuric acid, and indoxylsulfate levels were determined using targeted analysis of plasma polar extracts to determine whether these metabolites could serve as potential osteoporosis biomarkers. This study demonstrates that LC-MS-based global profiling of lipid and polar metabolites can elucidate metabolic changes that occur during age-related bone loss and identify potential biomarkers of osteoporosis.
Collapse
|
22
|
Distinct lipidomic profiles in models of physiological and pathological cardiac remodeling, and potential therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:219-234. [PMID: 29217479 DOI: 10.1016/j.bbalip.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/04/2017] [Accepted: 12/02/2017] [Indexed: 01/23/2023]
Abstract
Cardiac myocyte membranes contain lipids which remodel dramatically in response to heart growth and remodeling. Lipid species have both structural and functional roles. Physiological and pathological cardiac remodeling have very distinct phenotypes, and the identification of molecular differences represent avenues for therapeutic interventions. Whether the abundance of specific lipid classes is different in physiological and pathological models was largely unknown. The aim of this study was to determine whether distinct lipids are regulated in settings of physiological and pathological remodeling, and if so, whether modulation of differentially regulated lipids could modulate heart size and function. Lipidomic profiling was performed on cardiac-specific transgenic mice with 1) physiological cardiac hypertrophy due to increased Insulin-like Growth Factor 1 (IGF1) receptor or Phosphoinositide 3-Kinase (PI3K) signaling, 2) small hearts due to depressed PI3K signaling (dnPI3K), and 3) failing hearts due to dilated cardiomyopathy (DCM). In hearts of dnPI3K and DCM mice, several phospholipids (plasmalogens) were decreased and sphingolipids increased compared to mice with physiological hypertrophy. To assess whether restoration of plasmalogens could restore heart size or cardiac function, dnPI3K and DCM mice were administered batyl alcohol (BA; precursor to plasmalogen biosynthesis) in the diet for 16weeks. BA supplementation increased a major plasmalogen species (p18:0) in the heart but had no effect on heart size or function. This may be due to the concurrent reduction in other plasmalogen species (p16:0 and p18:1) with BA. Here we show that lipid species are differentially regulated in settings of physiological and pathological remodeling. Restoration of lipid species in the failing heart warrants further examination.
Collapse
|
23
|
McCall LI, Morton JT, Bernatchez JA, de Siqueira-Neto JL, Knight R, Dorrestein PC, McKerrow JH. Mass Spectrometry-Based Chemical Cartography of a Cardiac Parasitic Infection. Anal Chem 2017; 89:10414-10421. [PMID: 28892370 PMCID: PMC6298790 DOI: 10.1021/acs.analchem.7b02423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trypanosoma cruzi parasites are the causative agents of Chagas disease, a leading infectious form of heart failure whose pathogenesis is still not fully characterized. In this work, we applied untargeted liquid chromatography-tandem mass spectrometry to heart sections from T. cruzi-infected and uninfected mice. We combined molecular networking and three-dimensional modeling to generate chemical cartographical heart models. This approach revealed for the first time preferential parasite localization to the base of the heart and regiospecific distributions of nucleoside derivatives and eicosanoids, which we correlated to tissue-damaging immune responses. We further detected novel cardiac chemical signatures related to the severity and ultimate outcome of the infection. These signatures included differential representation of higher- vs lower-molecular-weight carnitine and phosphatidylcholine family members in specific cardiac regions of mice infected with lethal or nonlethal T. cruzi strains and doses. Overall, this work provides new insights into Chagas disease pathogenesis and presents an analytical chemistry approach that can be broadly applied to the study of host-microbe interactions.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
- Present address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019-5251
| | - James T. Morton
- Department of Computer Science, University of California San Diego, La Jolla, CA 92093
| | - Jean A. Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Jair Lage de Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Computer Science, University of California San Diego, La Jolla, CA 92093
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|