1
|
Choy JS, Hubbard T, Golts EM, Bhatt DL, Navia JA, Kassab GS. Pre-arterialization of coronary veins prior to retroperfusion of ischemic myocardium: percutaneous closure device. Front Cardiovasc Med 2023; 10:1208903. [PMID: 37790598 PMCID: PMC10543752 DOI: 10.3389/fcvm.2023.1208903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Chronic coronary retroperfusion to treat myocardial ischemia has previously failed due to edema and hemorrhage of coronary veins suddenly exposed to arterial pressures. The objective of this study was to selectively adapt the coronary veins to become arterialized prior to coronary venous retroperfusion to avoid vascular edema and hemorrhage. Methods and results In 32 animals (Group I = 19 and Group II = 13), the left anterior descending (LAD) artery was occluded using an ameroid occlusion model. In Group I, the great cardiac vein was blocked with suture ligation (Group IA = 11) or with occlusion device (Group IB = 8) to arterialize the venous system within 2 weeks at intermediate pressure (between arterial and venous levels) before a coronary venous bypass graft (CVBG) was implemented through a left internal mammary artery (LIMA) anastomosis. Group II only received the LAD artery occlusion and served as control. Serial echocardiograms showed recovery of left ventricular (LV) function with this adaptation-arterialization approach, with an increase in ejection fraction (EF) in Group I from 38% ± 5% after coronary occlusion to 53% ± 7% eight weeks after CVBG, whereas in Group II the EF never recovered (41% ± 2%-33% ± 7%). The remodeling of the venous system not only allowed restoration of myocardial function when CVBG was implemented but possibly promoted a novel form of "collateralization" between the native arterioles and the newly arterialized venules, which revascularized the ischemic myocardium. Conclusions These findings form a potential rationale for a venous arterialization-revascularization treatment for the refractory angina and the "no-option" patients using a hybrid percutaneous (closure device for arterialization)/surgical approach (CVBG) to revascularize the myocardium.
Collapse
Affiliation(s)
- Jenny S. Choy
- Department of Biomedical Engineering, California Medical Innovations Institute, San Diego, CA, United States
| | | | - Eugene M. Golts
- Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, CA, United States
| | - Deepak L. Bhatt
- Icahn School of Medicine at Mount Sinai Health System, New York, NY, United States
| | - José A. Navia
- Department of Cardiac Surgery, Austral University, Pilar, Buenos Aires, Argentina
| | - Ghassan S. Kassab
- Department of Biomedical Engineering, California Medical Innovations Institute, San Diego, CA, United States
- 3DT Holdings, LLC, San Diego, CA, United States
| |
Collapse
|
2
|
Badin J, Rodenbeck S, McKenney-Drake ML, Sturek M. Multiphasic changes in smooth muscle Ca 2+ transporters during the progression of coronary atherosclerosis. CURRENT TOPICS IN MEMBRANES 2022; 90:95-121. [PMID: 36368876 DOI: 10.1016/bs.ctm.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic heart disease due to macrovascular atherosclerosis and microvascular dysfunction is the major cause of death worldwide and the unabated increase in metabolic syndrome is a major reason why this will continue. Intracellular free Ca2+ ([Ca2+]i) regulates a variety of cellular functions including contraction, proliferation, migration, and transcription. It follows that studies of vascular Ca2+ regulation in reductionist models and translational animal models are vital to understanding vascular health and disease. Swine with metabolic syndrome (MetS) develop the full range of coronary atherosclerosis from mild to severe disease. Intravascular imaging enables quantitative measurement of atherosclerosis in vivo, so viable coronary smooth muscle (CSM) cells can be dispersed from the arteries to enable Ca2+ transport studies in native cells. Transition of CSM from the contractile phenotype in the healthy swine to the proliferative phenotype in mild atherosclerosis was associated with increases in SERCA activity, sarcoplasmic reticulum Ca2+, and voltage-gated Ca2+ channel function. In vitro organ culture confirmed that SERCA activation induces CSM proliferation. Transition from the proliferative to a more osteogenic phenotype was associated with decreases in all three Ca2+ transporters. Overall, there was a biphasic change in Ca2+ transporters over the progression of atherosclerosis in the swine model and this was confirmed in CSM from failing explanted hearts of humans. A major determinant of endolysosome content in human CSM is the severity of atherosclerosis. In swine CSM endolysosome Ca2+ release occurred through the TPC2 channel. We propose a multiphasic change in Ca2+ transporters over the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Jill Badin
- ZOLL Medical Corporation, Chelmsford, MA, United States
| | - Stacey Rodenbeck
- Department of Biology, Harding University, Searcy, AR, United States
| | - Mikaela L McKenney-Drake
- Butler University, Health Sciences Department, Pharmacy and Health Sciences, Indianapolis, IN, United States
| | - Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
3
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Pig and Mouse Models of Hyperlipidemia and Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:379-411. [PMID: 35237978 DOI: 10.1007/978-1-0716-1924-7_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Resident cells of the artery wall and cells of the immune system participate in atherogenesis. This process is influenced by plasma lipoproteins, genetics, and the hemodynamics of the blood flow in the artery. A variety of animal models have been used to study the pathophysiology and mechanisms that contribute to atherosclerotic lesion formation. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis and lipoprotein profile. In this chapter we will discuss pig and mouse models of experimental atherosclerosis. The similarity of pig lipoprotein metabolism and the pathophysiology of the lesions in these animals with that of humans is a major advantage. While a few genetically engineered pig models have been generated, the ease of genetic manipulation in mice and the relatively short time frame for the development of atherosclerosis has made them the most extensively used model. Newer approaches to induce hypercholesterolemia in mice have been developed that do not require germline modifications. These approaches will facilitate studies on atherogenic mechanisms.
Collapse
|
5
|
Abstract
Swine disease models are essential for mimicry of human metabolic and vascular pathophysiology, thereby enabling high-fidelity translation to human medicine. The worldwide epidemic of obesity, metabolic disease, and diabetes has prompted the focus on these diseases in this review. We highlight the remarkable similarity between Ossabaw miniature swine and humans with metabolic syndrome and atherosclerosis. Although the evidence is strongest for swine models of coronary artery disease, findings are generally applicable to any vascular bed. We discuss the major strengths and weaknesses of swine models. The development of vascular imaging is an example of optimal vascular engineering in swine. Although challenges regarding infrastructure and training of engineers in the use of swine models exist, opportunities are ripe for gene editing, studies of molecular mechanisms, and use of swine in coronary artery imaging and testing of devices that can move quickly to human clinical studies.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA; .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 46907, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA;
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
6
|
Matthan NR, Solano-Aguilar G, Meng H, Lamon-Fava S, Goldbaum A, Walker ME, Jang S, Lakshman S, Molokin A, Xie Y, Beshah E, Stanley J, Urban Jr. JF, Lichtenstein AH. The Ossabaw Pig Is a Suitable Translational Model to Evaluate Dietary Patterns and Coronary Artery Disease Risk. J Nutr 2018; 148:542-551. [PMID: 29659954 PMCID: PMC6669954 DOI: 10.1093/jn/nxy002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Animal models that mimic diet-induced human pathogenesis of chronic diseases are of increasing importance in preclinical studies. The Ossabaw pig is an established model for obesity-related metabolic disorders when fed extreme diets in caloric excess. Objective To increase the translational nature of this model, we evaluated the effect of diets resembling 2 human dietary patterns, the Western diet (WD) and the Heart Healthy Diet (HHD), without or with atorvastatin (-S or +S) therapy, on cardiometabolic risk factors and atherosclerosis development. Methods Ossabaw pigs (n = 32; 16 boars and 16 gilts, aged 5-8 wk) were randomized according to a 2 × 2 factorial design into 4 groups (WD-S, WD+S, HHD-S, and HHD+S) and were fed the respective diets for 6 mo. The WD (high in saturated fat, cholesterol, and refined grain) and the HHD (high in unsaturated fat, whole grain, and fruit and vegetables) were isocaloric [38% of energy (%E) from fat, 47%E from carbohydrate, and 15%E from protein]. Body composition was determined by using dual-energy X-ray absorptiometry, serum fatty acid (FA) profiles by gas chromatography, cardiometabolic risk profile by standard procedures, and degree of atherosclerosis by histopathology. Results Serum FA profiles reflected the predominant dietary FA. Pigs fed the WD had 1- to 4-fold higher concentrations of LDL cholesterol, non-HDL cholesterol, HDL cholesterol, high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor α (TNF-α), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) compared with HHD-fed pigs (all P-diet < 0.05). Statin therapy significantly lowered concentrations of LDL cholesterol (-39%), non-HDL cholesterol (-38%), and triglycerides (-6%) (P-statin < 0.02). A greater degree of atheromatous changes (macrophage infiltration, foam cells, fatty streaks) and lesion incidence was documented in the coronary arteries (P-diet < 0.05), as well as 2- to 3-fold higher lipid deposition in the aortic arch or thoracic aorta of WD- compared with HHD-fed pigs (P-diet < 0.001). Conclusions Ossabaw pigs manifested a dyslipidemic and inflammatory profile accompanied by early-stage atherosclerosis when fed a WD compared with an HHD, which was moderately reduced by atorvastatin therapy. This phenotype presents a translational model to examine mechanistic pathways of whole food-based dietary patterns on atherosclerosis development.
Collapse
Affiliation(s)
- Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Gloria Solano-Aguilar
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Huicui Meng
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Audrey Goldbaum
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Maura E Walker
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Saebyeol Jang
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Sukla Lakshman
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Aleksey Molokin
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Yue Xie
- Department of Parasitology, Sichuan Agricultural University, College of Veterinary Medicine, Chengdu, China
| | - Ethiopia Beshah
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | | | - Joseph F Urban Jr.
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|