1
|
Yang ZJ, Hopkins CD, Santos PT, Adams S, Kulikowicz E, Lee JK, Tandri H, Koehler RC. Neuroprotection provided by hypothermia initiated with high transnasal flow with ambient air in a model of pediatric cardiac arrest. Am J Physiol Regul Integr Comp Physiol 2024; 327:R304-R318. [PMID: 38860282 PMCID: PMC11444505 DOI: 10.1152/ajpregu.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Clinical trials of hypothermia after pediatric cardiac arrest (CA) have not seen robust improvement in functional outcome, possibly because of the long delay in achieving target temperature. Previous work in infant piglets showed that high nasal airflow, which induces evaporative cooling in the nasal mucosa, reduced regional brain temperature uniformly in half the time needed to reduce body temperature. Here, we evaluated whether initiation of hypothermia with high transnasal airflow provides neuroprotection without adverse effects in the setting of asphyxic CA. Anesthetized piglets underwent sham-operated procedures (n = 7) or asphyxic CA with normothermic recovery (38.5°C; n = 9) or hypothermia initiated by surface cooling at 10 (n = 8) or 120 (n = 7) min or transnasal cooling initiated at 10 (n = 7) or 120 (n = 7) min after resuscitation. Hypothermia was sustained at 34°C with surface cooling until 20 h followed by 6 h of rewarming. At 4 days of recovery, significant neuronal loss occurred in putamen and sensorimotor cortex. Transnasal cooling initiated at 10 min significantly rescued the number of viable neurons in putamen, whereas levels in putamen in other hypothermic groups remained less than sham levels. In sensorimotor cortex, neuronal viability in the four hypothermic groups was not significantly different from the sham group. These results demonstrate that early initiation of high transnasal airflow in a pediatric CA model is effective in protecting vulnerable brain regions. Because of its simplicity, portability, and low cost, transnasal cooling potentially could be deployed in the field or emergency room for early initiation of brain cooling after pediatric CA.NEW & NOTEWORTHY The onset of therapeutic hypothermia after cardiac resuscitation is often delayed, leading to incomplete neuroprotection. In an infant swine model of asphyxic cardiac arrest, initiation of high transnasal airflow to maximize nasal evaporative cooling produced hypothermia sufficient to provide neuroprotection that was not inferior to body surface cooling. Because of its simplicity and portability, this technique may be of use in the field or emergency room for rapid brain cooling in pediatric cardiac arrest victims.
Collapse
Affiliation(s)
- Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - C Danielle Hopkins
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Shawn Adams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Harikrishna Tandri
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Primiani CT, Lee JK, O’Brien CE, Chen MW, Perin J, Kulikowicz E, Santos P, Adams S, Lester B, Rivera-Diaz N, Olberding V, Niedzwiecki MV, Ritzl EK, Habela CW, Liu X, Yang ZJ, Koehler RC, Martin LJ. Hypothermic Protection in Neocortex Is Topographic and Laminar, Seizure Unmitigating, and Partially Rescues Neurons Depleted of RNA Splicing Protein Rbfox3/NeuN in Neonatal Hypoxic-Ischemic Male Piglets. Cells 2023; 12:2454. [PMID: 37887298 PMCID: PMC10605428 DOI: 10.3390/cells12202454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia (HT) with continuous electroencephalography (cEEG) for seizures. Neonatal male piglets received HI-normothermia (NT), HI-HT, sham-NT, or sham-HT treatments. Randomized unmedicated sham and HI piglets underwent cEEG during recovery. Survival was 2-7 days. Normal and pathological neurons were counted in different neocortical areas, identified by cytoarchitecture and connectomics, using hematoxylin and eosin staining and immunohistochemistry for RNA-binding FOX-1 homolog 3 (Rbfox3/NeuN). Seizure burden was determined. HI-NT piglets had a reduced normal/total neuron ratio and increased ischemic-necrotic/total neuron ratio relative to sham-NT and sham-HT piglets with differing severities in the anterior and posterior motor, somatosensory, and frontal cortices. Neocortical neuropathology was attenuated by HT. HT protection was prominent in layer III of the inferior parietal cortex. Rbfox3 immunoreactivity distinguished cortical neurons as: Rbfox3-positive/normal, Rbfox3-positive/ischemic-necrotic, and Rbfox3-depleted. HI piglets had an increased Rbfox3-depleted/total neuron ratio in layers II and III compared to sham-NT piglets. Neuronal Rbfox3 depletion was partly rescued by HT. Seizure burdens in HI-NT and HI-HT piglets were similar. We conclude that the neonatal HI piglet neocortex has: (1) suprasylvian vulnerability to HI and seizures; (2) a limited neuronal cytopathological repertoire in functionally different regions that engages protective mechanisms with HT; (3) higher seizure burden, insensitive to HT, that is correlated with more panlaminar ischemic-necrotic neurons in the somatosensory cortex; and (4) pathological RNA splicing protein nuclear depletion that is sensitive to HT. This work demonstrates that HT protection of the neocortex in neonatal HI is topographic and laminar, seizure unmitigating, and restores neuronal depletion of RNA splicing factor.
Collapse
Affiliation(s)
- Christopher T. Primiani
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Caitlin E. O’Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - May W. Chen
- Department Pediatrics, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jamie Perin
- Department of Biostatistics and Epidemiology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Polan Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Shawn Adams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Bailey Lester
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Natalia Rivera-Diaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Valerie Olberding
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Mark V. Niedzwiecki
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Eva K. Ritzl
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Christa W. Habela
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
3
|
Alvarez FJ, Alvarez AA, Rodríguez JJ, Lafuente H, Canduela MJ, Hind W, Blanco-Bruned JL, Alonso-Alconada D, Hilario E. Effects of Cannabidiol, Hypothermia, and Their Combination in Newborn Rats with Hypoxic-Ischemic Encephalopathy. eNeuro 2023; 10:ENEURO.0417-22.2023. [PMID: 37072177 PMCID: PMC10166126 DOI: 10.1523/eneuro.0417-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
Therapeutic hypothermia is well established as a standard treatment for infants with hypoxic-ischemic (HI) encephalopathy but it is only partially effective. The potential for combination treatments to augment hypothermic neuroprotection has major relevance. Our aim was to assess the effects of treating newborn rats following HI injury with cannabidiol (CBD) at 0.1 or 1 mg/kg, i.p., in normothermic (37.5°C) and hypothermic (32.0°C) conditions, from 7 d of age (neonatal phase) to 37 d of age (juvenile phase). Placebo or CBD was administered at 0.5, 24, and 48 h after HI injury. Two sensorimotor (rotarod and cylinder rearing) and two cognitive (novel object recognition and T-maze) tests were conducted 30 d after HI. The extent of brain damage was determined by magnetic resonance imaging, histologic evaluation, magnetic resonance spectroscopy, amplitude-integrated electroencephalography, and Western blotting. At 37 d, the HI insult produced impairments in all neurobehavioral scores (cognitive and sensorimotor tests), brain activity (electroencephalography), neuropathological score (temporoparietal cortexes and CA1 layer of hippocampus), lesion volume, magnetic resonance biomarkers of brain injury (metabolic dysfunction, excitotoxicity, neural damage, and mitochondrial impairment), oxidative stress, and inflammation (TNFα). We observed that CBD or hypothermia (to a lesser extent than CBD) alone improved cognitive and motor functions, as well as brain activity. When used together, CBD and hypothermia ameliorated brain excitotoxicity, oxidative stress, and inflammation, reduced brain infarct volume, lessened the extent of histologic damage, and demonstrated additivity in some parameters. Thus, coadministration of CBD and hypothermia could complement each other in their specific mechanisms to provide neuroprotection.
Collapse
Affiliation(s)
| | - Antonia A Alvarez
- Department of Cell Biology, University of the Basque Country, 48940 Leioa, Spain
| | - José J Rodríguez
- Functional Neuroanatomy Group, Biocruces Health Research Institute, 48903 Barakaldo, Spain
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Spain
- Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Hector Lafuente
- Biodonostia Health Research Institute, 20014 Donostia, Spain
| | - M Josune Canduela
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - William Hind
- Jazz Pharmaceuticals, Cambridge CB24 9BZ, United Kingdom
| | - José L Blanco-Bruned
- Department of Pediatric Surgery, Cruces University Hospital, OSI-Ezkerraldea Enkarterri Cruces, 48903 Barakaldo, Spain
| | | | - Enrique Hilario
- Department of Cell Biology, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
4
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
5
|
Mitochondrial calcium buffering depends upon temperature and is associated with hypothermic neuroprotection against hypoxia-ischemia injury. PLoS One 2022; 17:e0273677. [PMID: 36044480 PMCID: PMC9432759 DOI: 10.1371/journal.pone.0273677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Hypothermia (HT) is a standard of care in the management of hypoxic-ischemic brain injury (HI). However, therapeutic mechanisms of HT are not well understood. We found that at the temperature of 32°C, isolated brain mitochondria exhibited significantly greater resistance to an opening of calcium-induced permeability transition pore (mPTP), compared to 37°C. Mitochondrial calcium buffering capacity (mCBC) was linearly and inversely dependent upon temperature (25°C—37°C). Importantly, at 37°C cyclosporine A did not increase mCBC, but significantly increased mCBC at lower temperature. Because mPTP contributes to reperfusion injury, we hypothesized that HT protects brain by improvement of mitochondrial tolerance to mPTP activation. Immediately after HI-insult, isolated brain mitochondria demonstrated very poor mCBC. At 30 minutes of reperfusion, in mice recovered under normothermia (NT) or HT, mCBC significantly improved. However, at four hours of reperfusion, only NT mice exhibited secondary decline of mCBC. HT-mice maintained their recovered mCBC and this was associated with significant neuroprotection. Direct inverted dependence of mCBC upon temperature in vitro and significantly increased mitochondrial resistance to mPTP activation after therapeutic HT ex vivo suggest that hypothermia-driven inhibition of calcium-induced mitochondrial mPTP activation mechanistically contributes to the neuroprotection associated with hypothermia.
Collapse
|
6
|
Effects of Hypothermia and Allopurinol on Oxidative Status in a Rat Model of Hypoxic Ischemic Encephalopathy. Antioxidants (Basel) 2021; 10:antiox10101523. [PMID: 34679658 PMCID: PMC8533154 DOI: 10.3390/antiox10101523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is one of the main causes of morbidity and mortality during the neonatal period, despite treatment with hypothermia. There is evidence that oxidative damage plays an important role in the pathophysiology of hypoxic-ischemic (HI) brain injury. Our aim was to investigate whether postnatal allopurinol administration in combination with hypothermia would reduce oxidative stress (OS) biomarkers in an animal model of HIE. Postnatal 10-day rat pups underwent unilateral HI of moderate severity. Pups were randomized into: Sham operated, hypoxic-ischemic (HI), HI + allopurinol (HIA), HI + hypothermia (HIH), and HI + hypothermia + allopurinol (HIHA). Biomarkers of OS and antioxidants were evaluated: GSH/GSSG ratio and carbonyl groups were tested in plasma. Total antioxidant capacity (TAC) was analyzed in plasma and cerebrospinal fluid, and 8-iso-prostaglandin F2α was measured in brain tissue. Plasma 2,2′–azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) levels were preserved in those groups that received allopurinol and dual therapy. In cerebrospinal fluid, only the HIA group presented normal ferric reducing ability of plasma (FRAP) levels. Protein oxidation and lipid peroxidation were significantly reduced in all groups treated with hypothermia and allopurinol, thus enhancing neuroprotection in HIE.
Collapse
|
7
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
8
|
Wang B, Kulikowicz E, Lee JK, Koehler RC, Yang ZJ. Sulforaphane Protects Piglet Brains from Neonatal Hypoxic-Ischemic Injury. Dev Neurosci 2020; 42:124-134. [PMID: 33302269 DOI: 10.1159/000511888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
The striatal, primary sensorimotor cortical, and thalamic neurons are highly vulnerable to hypoxia-ischemia (HI) in term newborns. In a piglet model of HI that exhibits similar selective regional vulnerability, we tested the hypothesis that early treatment with sulforaphane, an activator of the Nrf2 transcription factor, protects vulnerable neurons from HI injury. Anesthetized piglets (aged 3-7 days) were subjected to 45 min of hypoxia and 7 min of airway occlusion. At 15 min after resuscitation, the piglets received intravenous vehicle or sulforaphane. At 4 days of recovery, the density of viable neurons in the putamen of vehicle-treated piglets was 31 ± 34% (±SD) that of sham-operated controls. Treatment with sulforaphane significantly increased viability to 77 ± 31%. In the sensorimotor cortex, neuronal viability was also increased; it was 59 ± 35% in the vehicle-treated and 89 ± 15% in the sulforaphane-treated animals. Treatment with sulforaphane increased the nuclear Nrf2 and γ-glu-tamylcysteine synthetase expression at 6 h of recovery in these regions. We conclude that systemic administration of sulforaphane 15 min after HI can induce the translocation of Nrf2 to the nucleus, increase expression of an enzyme involved in glutathione synthesis, and salvage neurons in the highly vulnerable putamen and sensorimotor cortex in a large-animal model of HI. Therefore, targeting Nrf2 activation soon after recovery from HI is a feasible approach for neuroprotection in the newborn brain.
Collapse
Affiliation(s)
- Bing Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA,
| |
Collapse
|
9
|
O'Brien CE, Santos PT, Kulikowicz E, Lee JK, Koehler RC, Martin LJ. Neurologic effects of short-term treatment with a soluble epoxide hydrolase inhibitor after cardiac arrest in pediatric swine. BMC Neurosci 2020; 21:43. [PMID: 33129262 PMCID: PMC7603774 DOI: 10.1186/s12868-020-00596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac arrest (CA) is the most common cause of acute neurologic insult in children. Many survivors have significant neurocognitive deficits at 1 year of recovery. Epoxyeicosatrienoic acids (EETs) are multifunctional endogenous lipid signaling molecules that are involved in brain pathobiology and may be therapeutically relevant. However, EETs are rapidly metabolized to less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH), limiting their bioavailability. We hypothesized that sEH inhibition would improve outcomes after CA in an infant swine model. Male piglets (3-4 kg, 2 weeks old) underwent hypoxic-asphyxic CA. After resuscitation, they were randomized to intravenous treatment with an sEH inhibitor (TPPU, 1 mg/kg; n = 8) or vehicle (10% poly(ethylene glycol); n = 9) administered at 30 min and 24 h after return of spontaneous circulation. Two sham-operated groups received either TPPU (n = 9) or vehicle (n = 8). Neurons were counted in hematoxylin- and eosin-stained sections from putamen and motor cortex in 4-day survivors. RESULTS Piglets in the CA + vehicle groups had fewer neurons than sham animals in both putamen and motor cortex. However, the number of neurons after CA did not differ between vehicle- and TPPU-treated groups in either anatomic area. Further, 20% of putamen neurons in the Sham + TPPU group had abnormal morphology, with cell body attrition and nuclear condensation. TPPU treatment also did not reduce neurologic deficits. CONCLUSION Treatment with an sEH inhibitor at 30 min and 24 h after resuscitation from asphyxic CA does not protect neurons or improve acute neurologic outcomes in piglets.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA.
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center Suite 6302, Baltimore, MD, 21287, USA
| |
Collapse
|
10
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
11
|
Rzemieniec J, Bratek E, Wnuk A, Przepiórska K, Salińska E, Kajta M. Neuroprotective effect of 3,3'-Diindolylmethane against perinatal asphyxia involves inhibition of the AhR and NMDA signaling and hypermethylation of specific genes. Apoptosis 2020; 25:747-762. [PMID: 32816128 PMCID: PMC7527327 DOI: 10.1007/s10495-020-01631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Each year, 1 million children die due to perinatal asphyxia; however, there are no effective drugs to protect the neonatal brain against hypoxic/ischemic damage. In this study, we demonstrated for the first time the neuroprotective capacity of 3,3’-diindolylmethane (DIM) in an in vivo model of rat perinatal asphyxia, which has translational value and corresponds to hypoxic/ischemic episodes in human newborns. Posttreatment with DIM restored the weight of the ipsilateral hemisphere and normalized cell number in the brain structures of rats exposed to perinatal asphyxia. DIM also downregulated the mRNA expression of HIF1A-regulated Bnip3 and Hif1a which is a hypoxic marker, and the expression of miR-181b which is an indicator of perinatal asphyxia. In addition, DIM inhibited apoptosis and oxidative stress accompanying perinatal asphyxia through: downregulation of FAS, CASP-3, CAPN1, GPx3 and SOD-1, attenuation of caspase-9 activity, and upregulation of anti-apoptotic Bcl2 mRNA. The protective effects of DIM were accompanied by the inhibition of the AhR and NMDA signaling pathways, as indicated by the reduced expression levels of AhR, ARNT, CYP1A1, GluN1 and GluN2B, which was correlated with enhanced global DNA methylation and the methylation of the Ahr and Grin2b genes. Because our study provided evidence that in rat brain undergoing perinatal asphyxia, DIM predominantly targets AhR and NMDA, we postulate that compounds that possess the ability to inhibit their signaling are promising therapeutic tools to prevent stroke.
Collapse
Affiliation(s)
- J Rzemieniec
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - A Wnuk
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - K Przepiórska
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Salińska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - M Kajta
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
12
|
Hope KT, Hawes IA, Moca EN, Bonci A, De Biase LM. Maturation of the microglial population varies across mesolimbic nuclei. Eur J Neurosci 2020; 52:3689-3709. [PMID: 32281691 DOI: 10.1111/ejn.14740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
Microglia play critical roles during CNS development and undergo dramatic changes in tissue distribution, morphology, and gene expression as they transition from embryonic to neonatal to adult microglial phenotypes. Despite the magnitude of these phenotypic shifts, little is known about the time course and dynamics of these transitions and whether they vary across brain regions. Here, we define the time course of microglial maturation in key regions of the basal ganglia in mice, where significant regional differences in microglial phenotype are present in adults. We found that microglial density peaks in the ventral tegmental area (VTA) and nucleus accumbens (NAc) during the third postnatal week, driven by a burst of microglial proliferation. Microglial abundance is then refined to adult levels through a combination of tissue expansion and microglial programmed cell death. This overproduction and refinement of microglia was significantly more pronounced in the NAc than in the VTA and was accompanied by a sharp peak in NAc microglial lysosome abundance in the third postnatal week. Collectively, these data identify a key developmental window when elevated microglial density in discrete basal ganglia nuclei may support circuit refinement and could increase susceptibility to inflammatory insults.
Collapse
Affiliation(s)
- Keenan T Hope
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Isobel A Hawes
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Eric N Moca
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Lindsay M De Biase
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Santos PT, O'Brien CE, Chen MW, Hopkins CD, Adams S, Kulikowicz E, Singh R, Koehler RC, Martin LJ, Lee JK. Proteasome Biology Is Compromised in White Matter After Asphyxic Cardiac Arrest in Neonatal Piglets. J Am Heart Assoc 2019; 7:e009415. [PMID: 30371275 PMCID: PMC6474957 DOI: 10.1161/jaha.118.009415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Neurological deficits in hypoxic‐ischemic encephalopathy, even with therapeutic hypothermia, are partially attributed to white matter injury. We theorized that proteasome insufficiency contributes to white matter injury. Methods and Results Neonatal piglets received hypoxia‐ischemia (HI) or sham procedure with normothermia, hypothermia, or hypothermia+rewarming. Some received a proteasome activator drug (oleuropein) or white matter–targeted, virus‐mediated proteasome knockdown. We measured myelin oligodendrocyte glycoprotein, proteasome subunit 20S (P20S), proteasome activity, and carbonylated and ubiquitinated protein levels in white matter and cerebral cortex. HI reduced myelin oligodendrocyte glycoprotein levels regardless of temperature, and myelin oligodendrocyte glycoprotein loss was associated with increased ubiquitinated and carbonylated protein levels. Ubiquitinated and carbonyl‐damaged proteins increased in white matter 29 hours after HI during hypothermia to exceed levels at 6 to 20 hours. In cortex, ubiquitinated proteins decreased. Ubiquitinated and carbonylated protein accumulation coincided with lower P20S levels in white matter; P20S levels also decreased in cerebral cortex. However, proteasome activity in white matter lagged behind that in cortex 29 hours after HI during hypothermia. Systemic oleuropein enhanced white matter P20S and protected the myelin, whereas proteasome knockdown exacerbated myelin oligodendrocyte glycoprotein loss and ubiquitinated protein accumulation after HI. At the cellular level, temperature and HI interactively affected macroglial P20S enrichment in subcortical white matter. Rewarming alone increased macroglial P20S immunoreactivity, but this increase was blocked by HI. Conclusions Oxidized and ubiquitinated proteins accumulate with HI‐induced white matter injury. Proteasome insufficiency may drive this injury. Hypothermia did not prevent myelin damage, protect the proteasome, or preserve oxidized and ubiquitinated protein clearance after HI.
Collapse
Affiliation(s)
- Polan T Santos
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Caitlin E O'Brien
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - May W Chen
- 2 Division of Neonatology Department of Pediatrics Johns Hopkins University Baltimore MD
| | - C Danielle Hopkins
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Shawn Adams
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Ewa Kulikowicz
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Rashmi Singh
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Lee J Martin
- 3 Department of Pathology Johns Hopkins University Baltimore MD
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| |
Collapse
|
14
|
Perrone S, Laschi E, Buonocore G. Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic Biol Med 2019; 142:23-31. [PMID: 30954545 DOI: 10.1016/j.freeradbiomed.2019.03.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
The dynamic field of perinatology entails ever-increasing search for molecular mechanisms of neonatal diseases, especially in the domain of fetal growth and neurodevelopmental outcome. There is an urgent need for new molecular biomarkers, to early identify newborn at high risk for developing diseases and to provide new treatment targets. The interest in biomarkers of oxidative stress in perinatal period have begun to grow in the last century, when it was evidenced the importance of the free radicals generation underlying the various disease conditions. To date, interesting researches have been carried out, representing milestones for implementation of oxidative stress biomarkers in perinatal medicine. Use of a panel of "oxidative stress biomarkers", particularly non protein bound iron, advanced oxidative protein products and isoprostanes, may provide valuable information regarding functional pathways underlying free radical mediated diseases of newborns and their early identification and prevention. Here, we will review recent advances and the current knowledge on the application of biomarkers of oxidative stress in neonatal/perinatal medicine including novel biomarker discovery, defining yet unrecognized biologic therapeutic targets, and linking of oxidative stress biomarkers to relevant standard indices and long-term outcomes.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Elisa Laschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Martin LJ, Wong M, Hanaford A. Neonatal Brain Injury and Genetic Causes of Adult-Onset Neurodegenerative Disease in Mice Interact With Effects on Acute and Late Outcomes. Front Neurol 2019; 10:635. [PMID: 31275228 PMCID: PMC6591316 DOI: 10.3389/fneur.2019.00635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal brain damage and age-related neurodegenerative disease share many common mechanisms of injury involving mitochondriopathy, oxidative stress, excitotoxicity, inflammation, and neuronal cell death. We hypothesized that genes causing adult-onset neurodegeneration can influence acute outcome after CNS injury at immaturity and on the subsequent development of chronic disability after early-life brain injury. In two different transgenic (Tg) mouse models of adult-onset neurodegenerative disease, a human A53T-α-synuclein (hαSyn) model of Parkinson's disease (PD) and a human G93A-superoxide dismutase-1(hSOD1) model of amyotrophic lateral sclerosis (ALS), mortality and survivor morbidity were significantly greater than non-Tg mice and a Tg mouse model of Alzheimer's disease after neonatal traumatic brain injury (TBI). Acutely after brain injury, hαSyn neonatal mice showed a marked enhancement of protein oxidative damage in forebrain, brain regional mitochondrial oxidative metabolism, and mitochondriopathy. Extreme protein oxidative damage was also observed in neonatal mutant SOD1 mice after TBI. At 1 month of age, neuropathology in forebrain, midbrain, and brainstem of hαSyn mice with neonatal TBI was greater compared to sham hαSyn mice. Surviving hαSyn mice with TBI showed increased hαSyn aggregation and nitration and developed adult-onset disease months sooner and died earlier than non-injured hαSyn mice. Surviving hSOD1 mice with TBI also developed adult-onset disease and died sooner than non-injured hSOD1 mice. We conclude that mutant genes causing PD and ALS in humans have significant impact on mortality and morbidity after early-life brain injury and on age-related disease onset and proteinopathy in mice. This study provides novel insight into genetic determinants of poor outcomes after acute injury to the neonatal brain and how early-life brain injury can influence adult-onset neurodegenerative disease during aging.
Collapse
Affiliation(s)
- Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Margaret Wong
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison Hanaford
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
O'Brien CE, Santos PT, Kulikowicz E, Reyes M, Koehler RC, Martin LJ, Lee JK. Hypoxia-Ischemia and Hypothermia Independently and Interactively Affect Neuronal Pathology in Neonatal Piglets with Short-Term Recovery. Dev Neurosci 2019; 41:17-33. [PMID: 31108487 DOI: 10.1159/000496602] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
Therapeutic hypothermia is the standard of clinical care for moderate neonatal hypoxic-ischemic encephalopathy. We investigated the independent and interactive effects of hypoxia-ischemia (HI) and temperature on neuronal survival and injury in basal ganglia and cerebral cortex in neonatal piglets. Male piglets were randomized to receive HI injury or sham procedure followed by 29 h of normothermia, sustained hypothermia induced at 2 h, or hypothermia with rewarming during fentanyl-nitrous oxide anesthesia. Viable and injured neurons and apoptotic profiles were counted in the anterior putamen, posterior putamen, and motor cortex at 29 h after HI injury or sham procedure. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) identified genomic DNA fragmentation to confirm cell death. Though hypothermia after HI preserved viable neurons in the anterior and posterior putamen, hypothermia prevented neuronal injury in only the anterior putamen. Hypothermia initiated 2 h after injury did not protect against apoptotic cell death in either the putamen or motor cortex, and rewarming from hypothermia was associated with increased apoptosis in the motor cortex. In non-HI shams, sustained hypothermia during anesthesia was associated with neuronal injury and corresponding viable neuron loss in the anterior putamen and motor cortex. TUNEL confirmed increased neurodegeneration in the putamen of hypothermic shams. Anesthetized, normothermic shams did not show abnormal neuronal cytopathology in the putamen or motor cortex, thereby demonstrating minimal contribution of the anesthetic regimen to neuronal injury during normothermia. We conclude that the efficacy of hypothermic protection after HI is region specific and that hypothermia during anesthesia in the absence of HI may be associated with neuronal injury in the developing brain. Studies examining the potential interactions between hypothermia and anesthesia, as well as with longer durations of hypothermia, are needed.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA,
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Reyes
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Li H, Tan X, Xue Q, Zhu JH, Chen G. Combined application of hypothermia and medical gases in cerebrovascular diseases. Med Gas Res 2019; 8:172-175. [PMID: 30713671 PMCID: PMC6352567 DOI: 10.4103/2045-9912.248269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
Cerebrovascular diseases have a heavy burden on society and the family. At present, in the treatment of cerebrovascular diseases, the recognized effective treatment method is a thrombolytic therapy after cerebral infarction, but limited to the time window problem, many patients cannot benefit. Other treatments for cerebrovascular disease are still in the exploration stage. The study found that medical gas and hypothermia have brain protection effects. Further research found that when the two are used in combination, the therapeutic effect has a superimposed effect. This article reviews the current research progress of hypothermia therapy combined with medical gas therapy for cerebrovascular disease.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qun Xue
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jue-Hua Zhu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
18
|
Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab 2018; 38:2092-2111. [PMID: 30149778 PMCID: PMC6282216 DOI: 10.1177/0271678x18797328] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxia-ischemia resulting in death or lifelong disabilities remains a major clinical disorder. Neonatal models of hypoxia-ischemia in rodents have enhanced our understanding of cellular mechanisms of neural injury in developing brain, but have limitations in simulating the range, accuracy, and physiology of clinical hypoxia-ischemia and the relevant systems neuropathology that contribute to the human brain injury pattern. Large animal models of perinatal hypoxia-ischemia, such as partial or complete asphyxia at the time of delivery of fetal monkeys, umbilical cord occlusion and cerebral hypoperfusion at different stages of gestation in fetal sheep, and severe hypoxia and hypoperfusion in newborn piglets, have largely overcome these limitations. In monkey, complete asphyxia produces preferential injury to cerebellum and primary sensory nuclei in brainstem and thalamus, whereas partial asphyxia produces preferential injury to somatosensory and motor cortex, basal ganglia, and thalamus. Mid-gestational fetal sheep provide a valuable model for studying vulnerability of progenitor oligodendrocytes. Hypoxia followed by asphyxia in newborn piglets replicates the systems injury seen in term newborns. Efficacy of post-insult hypothermia in animal models led to the success of clinical trials in term human neonates. Large animal models are now being used to explore adjunct therapy to augment hypothermic neuroprotection.
Collapse
Affiliation(s)
- Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zeng-Jin Yang
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA
| | - Lee J Martin
- 2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Barata L, Arruza L, Rodríguez MJ, Aleo E, Vierge E, Criado E, Sobrino E, Vargas C, Ceprián M, Gutiérrez-Rodríguez A, Hind W, Martínez-Orgado J. Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2018; 146:1-11. [PMID: 30468796 DOI: 10.1016/j.neuropharm.2018.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns. Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy. This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection. METHODS One day-old HI (carotid clamp and FiO2 10% for 20 min) piglets were randomized to vehicle or cannabidiol 1 mg/kg i.v. u.i.d. for three doses after being submitted to normothermia or 48 h-long hypothermia with a subsequent rewarming period of 6 h. Non-manipulated piglets (naïve) served as controls. Hemodynamic or respiratory parameters as well as brain activity (aEEG amplitude) were monitored throughout the experiment. Following termination, brains were obtained for histological (TUNEL staining, apoptosis; immunohistochemistry for Iba-1, microglia), biochemical (protein carbonylation, oxidative stress; and TNFα concentration, neuroinflammation) or proton magnetic resonance spectroscopy (Lac/NAA: metabolic derangement; Glu/NAA: excitotoxicity). RESULTS HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated. CONCLUSIONS cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.
Collapse
Affiliation(s)
- Lorena Barata
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Luis Arruza
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | | | - Esther Aleo
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Eva Vierge
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Enrique Criado
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Elena Sobrino
- Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Carlos Vargas
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - María Ceprián
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | - José Martínez-Orgado
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain.
| |
Collapse
|
20
|
Early Prediction of Hypoxic-Ischemic Brain Injury by a New Panel of Biomarkers in a Population of Term Newborns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7608108. [PMID: 30050660 PMCID: PMC6046131 DOI: 10.1155/2018/7608108] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
Abstract
This research paper is aimed at evaluating the predictive role of a default panel of oxidative stress (OS) biomarkers for the early identification of infants at high risk of HIE and their validation through the correlation with MRI findings. A multicenter prospective observational study was performed between March 2012 and April 2015 in two European tertiary NICUs. Eighty-four term infants at risk for HIE (pH < 7, BE < −13 mmol/L, and 5′ Apgar < 5) were enrolled. Three were excluded for chromosomal abnormalities and one due to lack of blood samples. The final population was divided according to the severity of perinatal hypoxia into 2 groups: mild/moderate HIE and severe HIE. Advanced oxidation protein products (AOPP), non-protein-bound iron (NPBI), and F2-isoprostanes (F2-IsoPs) were measured in blood samples at P1 (4–6 hours), P2 (24–72 hours), and P3 (5 days), in both groups. MRIs were scored for the severity of brain injury, using a modified Barkovich score. The mean GA was 39.8 weeks (SD 1.4) and the mean birth weight 3538 grams (SD 660); 37 were females and 43 males. Significantly lower 5′ Apgar score, pH, and BE and higher Thompson score were found in group II compared to group I at birth. Group II showed significantly higher AOPP and NPBI levels than group I (mean (SD) AOPP: 15.7 (15.5) versus 34.1 (39.2), p = 0.033; NPBI 1.1 (2.5) versus 3.9 (4.4), p = 0.013) soon after birth (P1). No differences were observed in OS biomarker levels between the two groups at P2 and P3. A regression model, including adjustment for hypothermia treatment, gender, and time after birth, showed that AOPP levels and male gender were both risk factors for higher brain damage scores (AOPP: OR 3.6, 95% CI (1.1–12.2) and gender: OR 5.6, 95% CI (1.2–25.7), resp.). Newborns with severe asphyxia showed higher OS than those with mild asphyxia at birth. AOPP are significantly associated with the severity of brain injury assessed by MRI, especially in males.
Collapse
|
21
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
22
|
Abstract
The application of targeted temperature management has become common practice in the neurocritical care setting. It is important to recognize the pathophysiologic mechanisms by which temperature control impacts acute neurologic injury, as well as the clinical limitations to its application. Nonetheless, when utilizing temperature modulation, an organized approach is required in order to avoid complications and minimize side-effects. The most common clinically relevant complications are related to the impact of cooling on hemodynamics and electrolytes. In both instances, the rate of complications is often related to the depth and rate of cooling or rewarming. Shivering is the most common side-effect of hypothermia and is best managed by adequate monitoring and stepwise administration of medications specifically targeting the shivering response. Due to the impact cooling can have upon pharmacokinetics of commonly used sedatives and analgesics, there can be significant delays in the return of the neurologic examination. As a result, early prognostication posthypothermia should be avoided.
Collapse
Affiliation(s)
- N Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Lee JK, Poretti A, Perin J, Huisman TAGM, Parkinson C, Chavez-Valdez R, O'Connor M, Reyes M, Armstrong J, Jennings JM, Gilmore MM, Koehler RC, Northington FJ, Tekes A. Optimizing Cerebral Autoregulation May Decrease Neonatal Regional Hypoxic-Ischemic Brain Injury. Dev Neurosci 2016; 39:248-256. [PMID: 27978510 DOI: 10.1159/000452833] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapeutic hypothermia provides incomplete neuroprotection for neonatal hypoxic-ischemic encephalopathy (HIE). We examined whether hemodynamic goals that support autoregulation are associated with decreased brain injury and whether these relationships are affected by birth asphyxia or vary by anatomic region. METHODS Neonates cooled for HIE received near-infrared spectroscopy autoregulation monitoring to identify the mean arterial blood pressure with optimized autoregulatory function (MAPOPT). Blood pressure deviation from MAPOPT was correlated with brain injury on MRI after adjusting for the effects of arterial carbon dioxide, vasopressors, seizures, and birth asphyxia severity. RESULTS Blood pressure deviation from MAPOPT related to neurologic injury in several regions independent of birth asphyxia severity. Greater duration and deviation of blood pressure below MAPOPT were associated with greater injury in the paracentral gyri and white matter. Blood pressure within MAPOPT related to lesser injury in the white matter, putamen and globus pallidus, and brain stem. Finally, blood pressures that exceeded MAPOPT were associated with reduced injury in the paracentral gyri. CONCLUSIONS Blood pressure deviation from optimal autoregulatory vasoreactivity was associated with MRI markers of brain injury that, in many regions, were independent of the initial birth asphyxia. Targeting hemodynamic ranges to optimize autoregulation has potential as an adjunctive therapy to hypothermia for HIE.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee JK, Wang B, Reyes M, Armstrong JS, Kulikowicz E, Santos PT, Lee JH, Koehler RC, Martin LJ. Hypothermia and Rewarming Activate a Macroglial Unfolded Protein Response Independent of Hypoxic-Ischemic Brain Injury in Neonatal Piglets. Dev Neurosci 2016; 38:277-294. [PMID: 27622292 DOI: 10.1159/000448585] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Therapeutic hypothermia provides incomplete neuroprotection after hypoxia-ischemia (HI)-induced brain injury in neonates. We previously showed that cortical neuron and white matter apoptosis are promoted by hypothermia and early rewarming in a piglet model of HI. The unfolded protein response (UPR) may be one of the potential mediators of this cell death. Here, neonatal piglets underwent HI or sham surgery followed by 29 h of normothermia, 2 h of normothermia + 27 h of hypothermia or 18 h of hypothermia + rewarming. Piglets recovered for 29 h. Immunohistochemistry for endoplasmic reticulum to nucleus signaling-1 protein (ERN1), a marker of UPR activation, was used to determine the ratios of ERN1+ macroglia and neurons in the motor subcortical white matter and cerebral cortex. The ERN1+ macroglia were immunophenotyped as oligodendrocytes and astrocytes by immunofluorescent colabeling. Temperature (p = 0.046) and HI (p < 0.001) independently affected the ratio of ERN1+ macroglia. In sham piglets, sustained hypothermia (p = 0.011) and rewarming (p = 0.004) increased the ERN1+ macroglia ratio above that in normothermia. HI prior to hypothermia diminished the UPR. Ratios of ERN1+ macroglia correlated with white matter apoptotic profile counts in shams (r = 0.472; p = 0.026), thereby associating UPR activation with white matter apoptosis during hypothermia and rewarming. Accordingly, macroglial cell counts decreased in shams that received sustained hypothermia (p = 0.009) or rewarming (p = 0.007) compared to those in normothermic shams. HI prior to hypothermia neutralized the macroglial cell loss. Neither HI nor temperature affected ERN1+ neuron ratios. In summary, delayed hypothermia and rewarming activate the macroglial UPR, which is associated with white matter apoptosis. HI may decrease the macroglial endoplasmic reticulum stress response after hypothermia and rewarming.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Md., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lafuente H, Pazos MR, Alvarez A, Mohammed N, Santos M, Arizti M, Alvarez FJ, Martinez-Orgado JA. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia. Front Neurosci 2016; 10:323. [PMID: 27462203 PMCID: PMC4940392 DOI: 10.3389/fnins.2016.00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult.
Collapse
Affiliation(s)
- Hector Lafuente
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | - Maria R. Pazos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Antonia Alvarez
- Department of Cell Biology, University of the Basque CountryLeioa, Spain
| | - Nagat Mohammed
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Martín Santos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Maialen Arizti
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | | | - Jose A. Martinez-Orgado
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
- Department of Neonatology, Hospital Clínico San Carlos–Instituto de Investigación Sanitaria San Carlos (IdISSC)Madrid, Spain
| |
Collapse
|
26
|
Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep 2016; 6:27642. [PMID: 27273382 PMCID: PMC4897701 DOI: 10.1038/srep27642] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanism of neuronal death induced by ischemic injury remains unknown. We investigated whether autophagy and p53 signaling played a role in the apoptosis of hippocampal neurons following global cerebral ischemia-reperfusion (I/R) injury, in a rat model of 8-min asphyxial cardiac arrest (CA) and resuscitation. Increased autophagosome numbers, expression of lysosomal cathepsin B, cathepsin D, Beclin-1, and microtubule-associated protein light chain 3 (LC3) suggested autophagy in hippocampal cells. The expression of tumor suppressor protein 53 (p53) and its target genes: Bax, p53-upregulated modulator of apoptosis (PUMA), and damage-regulated autophagy modulator (DRAM) were upregulated following CA. The p53-specific inhibitor pifithrin-α (PFT-α) significantly reduced the expression of pro-apoptotic proteins (Bax and PUMA) and autophagic proteins (LC3-II and DRAM) that generally increase following CA. PFT-α also reduced hippocampal neuronal damage following CA. Similarly, 3-methyladenine (3-MA), which inhibits autophagy and bafilomycin A1 (BFA), which inhibits lysosomes, significantly inhibited hippocampal neuronal damage after CA. These results indicate that CA affects both autophagy and apoptosis, partially mediated by p53. Autophagy plays a significant role in hippocampal neuronal death induced by cerebral I/R following asphyxial-CA.
Collapse
|
27
|
Demarest TG, Schuh RA, Waddell J, McKenna MC, Fiskum G. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy. J Neurochem 2016; 137:714-29. [PMID: 27197831 DOI: 10.1111/jnc.13590] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein carbonylation after HI. These findings provide novel insight into the pathophysiology of sexually dimorphic outcomes following HI.
Collapse
Affiliation(s)
- Tyler G Demarest
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rosemary A Schuh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary C McKenna
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gary Fiskum
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Wang B, Armstrong JS, Reyes M, Kulikowicz E, Lee JH, Spicer D, Bhalala U, Yang ZJ, Koehler RC, Martin LJ, Lee JK. White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy. Neuroscience 2015; 316:296-310. [PMID: 26739327 DOI: 10.1016/j.neuroscience.2015.12.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/12/2015] [Accepted: 12/24/2015] [Indexed: 11/29/2022]
Abstract
Therapeutic hypothermia is widely used to treat neonatal hypoxic ischemic (HI) brain injuries. However, potentially deleterious effects of delaying the induction of hypothermia and of rewarming on white matter injury remain unclear. We used a piglet model of HI to assess the effects of delayed hypothermia and rewarming on white matter apoptosis. Piglets underwent HI injury or sham surgery followed by normothermic or hypothermic recovery at 2h. Hypothermic groups were divided into those with no rewarming, slow rewarming at 0.5°C/h, or rapid rewarming at 4°C/h. Apoptotic cells in the subcortical white matter of the motor gyrus, corpus callosum, lateral olfactory tract, and internal capsule at 29h were identified morphologically and counted by hematoxylin & eosin staining. Cell death was verified by terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay. White matter neurons were also counted, and apoptotic cells were immunophenotyped with the oligodendrocyte marker 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase). Hypothermia, slow rewarming, and rapid rewarming increased apoptosis in the subcortical white matter relative to normothermia (p<0.05). The number of white matter neurons was not lower in groups with more apoptosis after hypothermia or rapid rewarming, indicating that the apoptosis occurred among glial cells. Hypothermic piglets had more apoptosis in the lateral olfactory tract than those that were rewarmed (p<0.05). The promotion of apoptosis by hypothermia and rewarming in these regions was independent of HI. In the corpus callosum, HI piglets had more apoptosis than shams after normothermia, slow rewarming, and rapid rewarming (p<0.05). Many apoptotic cells were myelinating oligodendrocytes identified by CNPase positivity. Our results indicate that delaying the induction of hypothermia and rewarming are associated with white matter apoptosis in a piglet model of HI; in some regions these temperature effects are independent of HI. Vulnerable cells include myelinating oligodendrocytes. This study identifies a deleterious effect of therapeutic hypothermia in the developing brain.
Collapse
Affiliation(s)
- B Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - J S Armstrong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - M Reyes
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - E Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - J-H Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - D Spicer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - U Bhalala
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - Z-J Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - R C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States
| | - L J Martin
- Department of Pathology, Division of Neuropathology, JHU, United States
| | - J K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD (JHU), United States.
| |
Collapse
|
29
|
Kim DK, Hyun DK. Therapeutic Hypothermia in Traumatic Brain injury; Review of History, Pathophysiology and Current Studies. Korean J Crit Care Med 2015. [DOI: 10.4266/kjccm.2015.30.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Han Z, Liu X, Luo Y, Ji X. Therapeutic hypothermia for stroke: Where to go? Exp Neurol 2015; 272:67-77. [PMID: 26057949 DOI: 10.1016/j.expneurol.2015.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/16/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a major cause of death and long-term disability worldwide. Thrombolysis with recombinant tissue plasminogen activator is the only proven and effective treatment for acute ischemic stroke; however, therapeutic hypothermia is increasingly recognized as having a tissue-protective function and positively influencing neurological outcome, especially in cases of ischemia caused by cardiac arrest or hypoxic-ischemic encephalopathy in newborns. Yet, many aspects of hypothermia as a treatment for ischemic stroke remain unknown. Large-scale studies examining the effects of hypothermia on stroke are currently underway. This review discusses the mechanisms underlying the effect of hypothermia, as well as trends in hypothermia induction methods, methods for achieving optimal protection, side effects, and therapeutic strategies combining hypothermia with other neuroprotective treatments. Finally, outstanding issues that must be addressed before hypothermia treatment is implemented at a clinical level are also presented.
Collapse
Affiliation(s)
- Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xiangrong Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
31
|
Rewarming from therapeutic hypothermia induces cortical neuron apoptosis in a swine model of neonatal hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab 2015; 35:781-93. [PMID: 25564240 PMCID: PMC4420851 DOI: 10.1038/jcbfm.2014.245] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/08/2022]
Abstract
The consequences of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy are poorly understood. Adverse effects from suboptimal rewarming could diminish neuroprotection from hypothermia. Therefore, we tested whether rewarming is associated with apoptosis. Piglets underwent hypoxia-asphyxia followed by normothermic or hypothermic recovery at 2 hours. Hypothermic groups were divided into those with no rewarming, rewarming at 0.5 °C/hour, or rewarming at 4 °C/hour. Neurodegeneration at 29 hours was assessed by hematoxylin and eosin staining, TUNEL assay, and immunoblotting for cleaved caspase-3. Rewarmed piglets had more apoptosis in motor cortex than did those that remained hypothermic after hypoxia-asphyxia. Apoptosis in piriform cortex was greater in hypoxic-asphyxic, rewarmed piglets than in naive/sham piglets. Caspase-3 inhibitor suppressed apoptosis with rewarming. Rapidly rewarmed piglets had more caspase-3 cleavage in cerebral cortex than did piglets that remained hypothermic or piglets that were rewarmed slowly. We conclude that rewarming from therapeutic hypothermia can adversely affect the newborn brain by inducing apoptosis through caspase mechanisms.
Collapse
|
32
|
Zhu J, Wang B, Lee JH, Armstrong JS, Kulikowicz E, Bhalala US, Martin LJ, Koehler RC, Yang ZJ. Additive Neuroprotection of a 20-HETE Inhibitor with Delayed Therapeutic Hypothermia after Hypoxia-Ischemia in Neonatal Piglets. Dev Neurosci 2015; 37:376-89. [PMID: 25721266 DOI: 10.1159/000369007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/10/2014] [Indexed: 12/28/2022] Open
Abstract
The severity of perinatal hypoxia-ischemia and the delay in initiating therapeutic hypothermia limit the efficacy of hypothermia. After hypoxia-ischemia in neonatal piglets, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been found to contribute to oxidative stress at 3 h of reoxygenation and to eventual neurodegeneration. We tested whether early administration of a 20-HETE synthesis inhibitor after reoxygenation augments neuroprotection with 3-hour delayed hypothermia. In two hypothermic groups, whole body cooling from 38.5 to 34°C was initiated 3 h after hypoxia-ischemia. Rewarming occurred from 20 to 24 h; then anesthesia was discontinued. One hypothermic group received a 20-HETE inhibitor at 5 min after reoxygenation. A sham-operated group and another hypoxia-ischemia group remained normothermic. At 10 days of recovery, resuscitated piglets with delayed hypothermia alone had significantly greater viable neuronal density in the putamen, caudate nucleus, sensorimotor cortex, CA3 hippocampus, and thalamus than did piglets with normothermic recovery, but the values remained less than those in the sham-operated group. In piglets administered the 20-HETE inhibitor before hypothermia, the density of viable neurons in the putamen, cortex and thalamus was significantly greater than in the group with hypothermia alone. Cytochrome P450 4A, which can synthesize 20-HETE, was expressed in piglet neurons in these regions. We conclude that early treatment with a 20-HETE inhibitor enhances the therapeutic benefit of delayed hypothermia in protecting neurons in brain regions known to be particularly vulnerable to hypoxia-ischemia in term newborns.
Collapse
Affiliation(s)
- Junchao Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Md, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mokrushin AA, Pavlinova LI, Borovikov SE. Influence of cooling rate on activity of ionotropic glutamate receptors in brain slices at hypothermia. J Therm Biol 2014; 44:5-13. [PMID: 25086967 DOI: 10.1016/j.jtherbio.2014.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16 °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.
Collapse
Affiliation(s)
- Anatoly A Mokrushin
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia
| | - Larisa I Pavlinova
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia; Institute of Experimental Medicine, Russian Academy of Science, 197376, Ul.Akad. Pavlova, 12, Saint-Petersburg, Russia.
| | - Sergey E Borovikov
- Science Center "Bio", 197376 Street L. Tolstoy, Building 7, 5-H (9), Saint-Petersburg, Russia
| |
Collapse
|
34
|
Karnatovskaia LV, Wartenberg KE, Freeman WD. Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. Neurohospitalist 2014; 4:153-63. [PMID: 24982721 DOI: 10.1177/1941874413519802] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The earliest recorded application of therapeutic hypothermia in medicine spans about 5000 years; however, its use has become widespread since 2002, following the demonstration of both safety and efficacy of regimens requiring only a mild (32°C-35°C) degree of cooling after cardiac arrest. We review the mechanisms by which hypothermia confers neuroprotection as well as its physiological effects by body system and its associated risks. With regard to clinical applications, we present evidence on the role of hypothermia in traumatic brain injury, intracranial pressure elevation, stroke, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy. Based on the current knowledge and areas undergoing or in need of further exploration, we feel that therapeutic hypothermia holds promise in the treatment of patients with various forms of neurologic injury; however, additional quality studies are needed before its true role is fully known.
Collapse
Affiliation(s)
| | - Katja E Wartenberg
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany
| | - William D Freeman
- Departments of Neurology, Neurosurgery, Critical Care, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
35
|
Miyauchi T, Wei EP, Povlishock JT. Evidence for the therapeutic efficacy of either mild hypothermia or oxygen radical scavengers after repetitive mild traumatic brain injury. J Neurotrauma 2014; 31:773-81. [PMID: 24341607 DOI: 10.1089/neu.2013.3181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Repetitive brain injury, particularly that occurring with sporting-related injuries, has recently garnered increased attention in both the clinical and public settings. In the laboratory, we have demonstrated the adverse axonal and vascular consequences of repetitive brain injury and have demonstrated that moderate hypothermia and/or FK506 exerted protective effects after repetitive mild traumatic brain injury (mTBI) when administered within a specific time frame, suggesting a range of therapeutic modalities to prevent a dramatic exacerbation. In this communication, we revisit the utility of targeted therapeutic intervention to seek the minimal level of hypothermia needed to achieve protection while probing the role of oxygen radicals and their therapeutic targeting. Male Sprague-Dawley rats were subjected to repetitive mTBI by impact acceleration injury. Mild hypothermia (35 °C, group 2), superoxide dismutase (group 3), and Tempol (group 4) were employed as therapeutic interventions administered 1 h after the repetitive mTBI. To assess vascular function, cerebral vascular reactivity to acetylcholine was evaluated 3 and 4 h after the repetitive mTBI, whereas to detect the burden of axonal damage, amyloid precursor protein (APP) density in the medullospinal junction was measured. Whereas complete impairment of vascular reactivity was observed in group 1 (without intervention), significant preservation of vascular reactivity was found in the other groups. Similarly, whereas remarkable increase in the APP-positive axon was observed in group 1, there were no significant increases in the other groups. Collectively, these findings indicate that even mild hypothermia or the blunting free radical damage, even when performed in a delayed period, is protective in repetitive mTBI.
Collapse
Affiliation(s)
- Takashi Miyauchi
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center , Richmond, Virginia
| | | | | |
Collapse
|
36
|
The olfactory bulb in newborn piglet is a reservoir of neural stem and progenitor cells. PLoS One 2013; 8:e81105. [PMID: 24278384 PMCID: PMC3836747 DOI: 10.1371/journal.pone.0081105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
The olfactory bulb (OB) periventricular zone is an extension of the forebrain subventricular zone (SVZ) and thus is a source of neuroprogenitor cells and neural stem cells. While considerable information is available on the SVZ-OB neural stem cell (NSC)/neuroprogenitor cell (NPC) niche in rodents, less work has been done on this system in large animals. The newborn piglet is used as a preclinical translational model of neonatal hypoxic-ischemic brain damage, but information about the endogenous sources of NSCs/NPCs in piglet is needed to implement endogenous or autologous cell-based therapies in this model. We characterized NSC/NPC niches in piglet forebrain and OB-SVZ using western blotting, histological, and cell culture methods. Immunoblotting revealed nestin, a NSC/NPC marker, in forebrain-SVZ and OB-SVZ in newborn piglet. Several progenitor or newborn neuron markers, including Dlx2, musashi, doublecortin, and polysialated neural cell adhesion molecule were also detected in OB-SVZ by immunoblotting. Immunohistochemistry confirmed the presence of nestin, musashi, and doublecortin in forebrain-SVZ and OB-SVZ. Bromodeoxyuridine (BrdU) labeling showed that the forebrain-SVZ and OB-SVZ accumulate newly replicated cells. BrdU-positive cells were immunolabeled for astroglial, oligodendroglial, and neuronal markers. A lateral migratory pathway for newly born neuron migration to primary olfactory cortex was revealed by BrdU labeling and co-labeling for doublecortin and class III β tubulin. Isolated and cultured forebrain-SVZ and OB-SVZ cells from newborn piglet had the capacity to generate numerous neurospheres. Single cell clonal analysis of neurospheres revealed the capacity for self-renewal and multipotency. Neurosphere-derived cells differentiated into neurons, astrocytes, and oligodendrocytes and were amenable to permanent genetic tagging with lentivirus encoding green fluorescent protein. We conclude that the piglet OB-SVZ is a reservoir of NSCs and NPCs suitable to use in autologous cell therapy in preclinical models of neonatal/pediatric brain injury.
Collapse
|
37
|
Adenosine A2A receptor contributes to ischemic brain damage in newborn piglet. J Cereb Blood Flow Metab 2013; 33:1612-20. [PMID: 23860373 PMCID: PMC3790932 DOI: 10.1038/jcbfm.2013.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/25/2022]
Abstract
Pharmacologic inactivation or genetic deletion of adenosine A2A receptors protects ischemic neurons in adult animals, but studies in neonatal hypoxia-ischemia (H-I) are inconclusive. The present study in neonatal piglets examined the hypothesis that A2A receptor signaling after reoxygenation from global H-I contributes to injury in highly vulnerable striatal neurons where A2A receptors are enriched. A2A receptor immunoreactivity was detected in striatopallidal neurons. In nonischemic piglets, direct infusion of the selective A2A receptor agonist CGS 21680 through microdialysis probes into putamen increased phosphorylation of N-methyl-D-aspartic acid (NMDA) receptor NR1 subunit and Na(+),K(+)-ATPase selectively at protein kinase A (PKA)-sensitive sites. In ischemic piglets, posttreatment with SCH 58261, a selective A2A receptor antagonist, improved early neurologic recovery and preferentially protected striatopallidal neurons. SCH 58261 selectively inhibited the ischemia-induced phosphorylation of NR1, Na(+),K(+)-ATPase, and cAMP-regulated phosphoprotein 32 KDa (DARPP32) at PKA-sensitive sites at 3 hours of recovery and improved Na(+),K(+)-ATPase activity. SCH 58261 also suppressed ischemia-induced protein nitration and oxidation. Thus, A2A receptor activation during reoxygenation contributes to the loss of a subpopulation of neonatal putamen neurons after H-I. Its toxic signaling may be related to DARPP32-dependent phosphorylation of PKA-sensitive sites on NR1 and Na(+),K(+)-ATPase, thereby augmenting excitotoxicity-induced oxidative stress after reoxygenation.
Collapse
|
38
|
Larson AC, Jamrogowicz JL, Kulikowicz E, Wang B, Yang ZJ, Shaffner DH, Koehler RC, Lee JK. Cerebrovascular autoregulation after rewarming from hypothermia in a neonatal swine model of asphyxic brain injury. J Appl Physiol (1985) 2013; 115:1433-42. [PMID: 24009008 DOI: 10.1152/japplphysiol.00238.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After hypoxic brain injury, maintaining blood pressure within the limits of cerebral blood flow autoregulation is critical to preventing secondary brain injury. Little is known about the effects of prolonged hypothermia or rewarming on autoregulation after cardiac arrest. We hypothesized that rewarming would shift the lower limit of autoregulation (LLA), that this shift would be detected by indices derived from near-infrared spectroscopy (NIRS), and that rewarming would impair autoregulation during hypertension. Anesthetized neonatal swine underwent sham surgery or hypoxic-asphyxic cardiac arrest, followed by 2 h of normothermia and 20 h of hypothermia, with or without rewarming. Piglets were further divided into cohorts for cortical laser-Doppler flow (LDF) measurements during induced hypotension or hypertension. We also tested whether indices derived from NIRS could identify the LDF-derived LLA. The LLA did not differ significantly among groups with sham surgery and hypothermia (29 ± 8 mmHg), sham surgery and rewarming (34 ± 7 mmHg), arrest and hypothermia (29 ± 10 mmHg), and arrest and rewarming (38 ± 11 mmHg). The LLA was not affected by arrest (P = 0.60), temperature (P = 0.08), or interaction between arrest and temperature (P = 0.73). The NIRS-derived indices detected the LLA accurately, with the area under the receiver-operator characteristic curves of 0.81-0.96 among groups. In groups subjected to arrest and hypothermia, with or without rewarming, the slope of LDF relative to cerebral perfusion pressure during hypertension was not significantly different from zero (P > 0.10). In conclusion, rewarming did not shift the LLA during hypotension or affect autoregulation during hypertension after asphyxic cardiac arrest. The NIRS-derived autoregulation indices identified the LLA accurately.
Collapse
Affiliation(s)
- Abby C Larson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ye Q, Zhang X, Huang B, Zhu Y, Chen X. Astaxanthin suppresses MPP(+)-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Mar Drugs 2013; 11:1019-34. [PMID: 23538867 PMCID: PMC3705385 DOI: 10.3390/md11041019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate astaxanthin (ATX) neuroprotection, and its mechanism, on a 1-methyl-4-phenyl-pyridine ion (MPP+)-induced cell model of Parkinson's disease. METHODS Mature, differentiated PC12 cells treated with MPP+ were used as an in vitro cell model. The MTT assay was used to investigate cell viability after ATX treatment, and western blot analysis was used to observe Sp1 (activated transcription factor 1) and NR1 (NMDA receptor subunit 1) protein expression, real-time PCR was used to monitor Sp1 and NR1 mRNA, and cell immunofluorescence was used to determine the location of Sp1 and NR1 protein and the nuclear translocation of Sp1. RESULTS PC12 cell viability was significantly reduced by MPP+ treatment. The expression of Sp1 and NR1 mRNA and protein were increased compared with the control (p < 0.01). Following co-treatment with ATX and MPP+, cell viability was significantly increased, and Sp1 and NR1 mRNA and protein were decreased, compared with the MPP+ groups (p < 0.01). In addition, mithracycin A protected PC12 cells from oxidative stress caused by MPP+ by specifically inhibiting the expression of Sp1. Moreover, cell immunofluorescence revealed that ATX could suppress Sp1 nuclear transfer. CONCLUSION ATX inhibited oxidative stress induced by MPP+ in PC12 cells, via the SP1/NR1 signaling pathway.
Collapse
Affiliation(s)
- Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, The Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China.
| | | | | | | | | |
Collapse
|
40
|
Han HS, Park J, Kim JH, Suk K. Molecular and cellular pathways as a target of therapeutic hypothermia: pharmacological aspect. Curr Neuropharmacol 2012; 10:80-7. [PMID: 22942881 PMCID: PMC3286850 DOI: 10.2174/157015912799362751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/08/2011] [Accepted: 09/08/2011] [Indexed: 11/22/2022] Open
Abstract
Induced therapeutic hypothermia is the one of the most effective tools against brain injury and inflammation. Even though its beneficial effects are well known, there are a lot of pitfalls to overcome, since the potential adverse effects of systemic hypothermia are still troublesome. Without the knowledge of the precise mechanisms of hypothermia, it will be difficult to tackle the application of hypothermia in clinical fields. Better understanding of the characteristics and modes of hypothermic actions may further extend the usage of hypothermia by developing novel drugs based on the hypothermic mechanisms or by combining hypothermia with other therapeutic modalities such as neuroprotective drugs. In this review, we describe the potential therapeutic targets for the development of new drugs, with a focus on signal pathways, gene expression, and structural changes of cells. Theapeutic hypothermia has been shown to attenuate neuroinflammation by reducing the production of reactive oxygen species and proinflammatory mediators in the central nervous system. Along with the mechanism-based drug targets, applications of therapeutic hypothermia in combination with drug treatment will also be discussed in this review.
Collapse
Affiliation(s)
- Hyung Soo Han
- Department of Physiology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, 700-422, Korea
| | | | | | | |
Collapse
|
41
|
Expression of N-methyl-d-aspartate receptor 1 and its phosphorylated state in basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model: a controlled study of (1)H MRS. Eur J Paediatr Neurol 2012; 16:492-500. [PMID: 22261079 DOI: 10.1016/j.ejpn.2012.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/28/2011] [Accepted: 01/01/2012] [Indexed: 11/22/2022]
Abstract
Excitatory amino acids (EAAs) and excitotoxicity medicated by receptors of these amino acids play an important role in hypoxic-ischemic brain injury (HIBI), but most studies were ex vivo experiments, the mechanism in vivo is not well understood. We sought to study the expression of N-methyl-d-aspartate receptor 1 (NR1) and phosphorylated N-methyl-d-aspartate receptor 1 (P-NR1) in basal ganglia in a piglet model of HIBI and to investigate the correlation between Glx(Glu/Gln) value measured by magnetic resonance spectroscopy (MRS) and NR1/P-NR1 expression. Multi-voxel (1)H MRS was applied to detect change in Glx in basal ganglia of the newborn piglets in vivo. Automatic amino acid analyzer was applied to accurately quantify the Glu concentration. Immunohistochemical method was used to examine the expression of NR1 and P-NR1. The NR1 receptors in basal ganglia of the newborn piglets were significantly activated after HIBI. P-NR1 expression in the basal ganglia was consistent with the change in brain Glu content, so the activation status of NMDA receptor in the brain could be indirectly reflected by β-, γ-Glx/NAA measured by (1)H MRS.
Collapse
|
42
|
Ni X, Yang ZJ, Wang B, Carter EL, Larson AC, Martin LJ, Koehler RC. Early antioxidant treatment and delayed hypothermia after hypoxia-ischemia have no additive neuroprotection in newborn pigs. Anesth Analg 2012; 115:627-37. [PMID: 22745113 DOI: 10.1213/ane.0b013e31825d3600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The implementation and clinical efficacy of hypothermia in neonatal hypoxic-ischemic (HI) encephalopathy are limited, in part, by the delay in instituting hypothermia and access to equipment. In a piglet model of HI, half of the neurons in putamen already showed ischemic cytopathology by 6 hours of recovery. We tested the hypothesis that treatment with the superoxide dismutase-catalase mimetic EUK-134 at 30 minutes of recovery provides additive neuronal protection when combined with 1 day of whole-body hypothermia implemented 4 hours after resuscitation. METHODS Anesthetized piglets were subjected to 40 minutes of hypoxia (10% inspired oxygen) followed by 7 minutes of airway occlusion and resuscitation. Body temperature was maintained at 38.5°C in normothermic groups and at 34°C in hypothermic groups. All groups were mechanically ventilated, sedated, and received muscle relaxants during the first day of recovery. Neuropathology was assessed by profile and stereological cell-counting methods. RESULTS At 10 days of recovery, neuronal viability in putamen of a normothermic group treated with saline vehicle was reduced to 17% ± 6% (±95% confidence interval) of the value in a sham-operated control group (100% ± 15%). Intravenous infusion of EUK-134 (2.5 mg/kg at 30 minutes of recovery + 1.25 mg/kg/h until 4 hours of recovery) with normothermic recovery resulted in 40% ± 12% viable neurons in putamen. Treatment with saline vehicle followed by delayed hypothermia resulted in partial protection (46% ± 15%). Combining early EUK-134 treatment with delayed hypothermia also produced partial protection (47% ± 18%) that was not significantly greater than single treatment with EUK-134 (confidence interval of difference: -15% to 29%) or delayed hypothermia (-16% to 19%). Furthermore, no additive neuroprotection was detected in caudate nucleus or parasagittal neocortex, where neuronal loss was less severe. CONCLUSIONS We conclude that early treatment with this antioxidant does not substantially enhance the therapeutic benefit of delayed hypothermia in protecting highly vulnerable neurons in HI-insulted newborns, possibly because basal ganglia neurons are already undergoing irreversible cell death signaling by the time EUK-134 is administered or because this compound and hypothermia attenuate similar mechanisms of injury.
Collapse
Affiliation(s)
- Xinli Ni
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287-4961, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Programmed Necrosis: A Prominent Mechanism of Cell Death following Neonatal Brain Injury. Neurol Res Int 2012; 2012:257563. [PMID: 22666585 PMCID: PMC3362209 DOI: 10.1155/2012/257563] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/02/2012] [Indexed: 12/16/2022] Open
Abstract
Despite the introduction of therapeutic hypothermia, neonatal hypoxic ischemic (HI) brain injury remains a common cause of developmental disability. Development of rational adjuvant therapies to hypothermia requires understanding of the pathways of cell death and survival modulated by HI. The conceptualization of the apoptosis-necrosis “continuum” in neonatal brain injury predicts mechanistic interactions between cell death and hydrid forms of cell death such as programmed or regulated necrosis. Many of the components of the signaling pathway regulating programmed necrosis have been studied previously in models of neonatal HI. In some of these investigations, they participate as part of the apoptotic pathways demonstrating clear overlap of programmed death pathways. Receptor interacting protein (RIP)-1 is at the crossroads between types of cellular death and survival and RIP-1 kinase activity triggers formation of the necrosome (in complex with RIP-3) leading to programmed necrosis. Neuroprotection afforded by the blockade of RIP-1 kinase following neonatal HI suggests a role for programmed necrosis in the HI injury to the developing brain. Here, we briefly review the state of the knowledge about the mechanisms behind programmed necrosis in neonatal brain injury recognizing that a significant proportion of these data derive from experiments in cultured cell and some from in vivo adult animal models. There are still more questions than answers, yet the fascinating new perspectives provided by the understanding of programmed necrosis in the developing brain may lay the foundation for new therapies for neonatal HI.
Collapse
|
44
|
Combined effect of hypothermia and caspase-2 gene deficiency on neonatal hypoxic-ischemic brain injury. Pediatr Res 2012; 71:566-72. [PMID: 22322383 DOI: 10.1038/pr.2012.15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION [corrected] Hypoxia-ischemia (HI) injury in term infants develops with a delay during the recovery phase, opening up a therapeutic window after the insult. Hypothermia is currently an established neuroprotective treatment in newborns with neonatal encephalopathy (NE), saving one in nine infants from developing neurological deficits. Caspase-2 is an initiator caspase, a key enzyme in the route to destruction and, therefore, theoretically a potential target for a pharmaceutical strategy to prevent HI brain damage. METHODS The aim of this study was to explore the neuroprotective efficacy of hypothermia in combination with caspase-2 gene deficiency using the neonatal Rice-Vannucci model of HI injury in mice. RESULTS HI brain injury was moderately reduced in caspase-2(-/-) mice as compared with wild-type (WT) mice. Five hours of hypothermia (33 °C ) vs. normothermia (36 °C) directly after HI provided additive protection overall (temperature P = 0.0004, caspase-2 genotype P = 0.0029), in the hippocampus and thalamus, but not in other gray matter regions or white matter. Delayed hypothermia initiated 2 h after HI in combination with caspase-2 gene deficiency reduced injury in the hippocampus, but not in other brain areas. DISCUSSION In conclusion, caspase-2 gene deficiency combined with hypothermia provided enhanced neuroprotection as compared with hypothermia alone.
Collapse
|
45
|
Schoeler M, Loetscher PD, Rossaint R, Fahlenkamp AV, Eberhardt G, Rex S, Weis J, Coburn M. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol 2012; 12:20. [PMID: 22494498 PMCID: PMC3350422 DOI: 10.1186/1471-2377-12-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background The α2-adrenoreceptor agonist dexmedetomidine is known to provide neuroprotection under ischemic conditions. In this study we investigated whether dexmedetomidine has a protective effect in an in vitro model for traumatic brain injury. Methods Organotypic hippocampal slice cultures were subjected to a focal mechanical trauma and then exposed to varying concentrations of dexmedetomidine. After 72 h cell injury was assessed using propidium iodide. In addition, the effects of delayed dexmedetomidine application, of hypothermia and canonical signalling pathway inhibitors were examined. Results Dexmedetomidine showed a protective effect on traumatically injured hippocampal cells with a maximum effect at a dosage of 1 μM. This effect was partially reversed by the simultaneous administration of the ERK inhibitor PD98059. Conclusion In this TBI model dexmedetomidine had a significant neuroprotective effect. Our results indicate that activation of ERK might be involved in mediating this effect.
Collapse
Affiliation(s)
- Marc Schoeler
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang ZJ, Carter EL, Kibler KK, Kwansa H, Crafa DA, Martin LJ, Roman RJ, Harder DR, Koehler RC. Attenuation of neonatal ischemic brain damage using a 20-HETE synthesis inhibitor. J Neurochem 2012; 121:168-79. [PMID: 22251169 PMCID: PMC3303996 DOI: 10.1111/j.1471-4159.2012.07666.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons. Administration of HET0016 after H-I improved early neurological recovery and protected neurons in putamen after 4 days of recovery. HET0016 had no significant effect on cerebral blood flow. cytochrome P450 4A immunoreactivity was detected in putamen neurons, and direct infusion of 20-HETE in the putamen increased phosphorylation of Na(+), K(+) -ATPase and NMDA receptor NR1 subunit selectively at protein kinase C-sensitive sites but not at protein kinase A-sensitive sites. HET0016 selectively inhibited the H-I induced phosphorylation at these same sites at 3 h of recovery and improved Na(+), K(+) -ATPase activity. At 3 h, HET0016 also suppressed H-I induced extracellular signal-regulated kinase 1/2 activation and protein markers of nitrosative and oxidative stress. Thus, 20-HETE can exert direct effects on key proteins involved in neuronal excitotoxicity in vivo and contributes to neurodegeneration after global cerebral ischemia in immature brain.
Collapse
Affiliation(s)
- Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Morales P, Bustamante D, Espina-Marchant P, Neira-Peña T, Gutiérrez-Hernández MA, Allende-Castro C, Rojas-Mancilla E. Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? EPMA J 2011. [PMID: 23199150 PMCID: PMC3405380 DOI: 10.1007/s13167-011-0100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perinatal asphyxia occurs still with great incidence whenever delivery is prolonged, despite improvements in perinatal care. After asphyxia, infants can suffer from short- to long-term neurological sequelae, their severity depend upon the extent of the insult, the metabolic imbalance during the re-oxygenation period and the developmental state of the affected regions. Significant progresses in understanding of perinatal asphyxia pathophysiology have achieved. However, predictive diagnostics and personalised therapeutic interventions are still under initial development. Now the emphasis is on early non-invasive diagnosis approach, as well as, in identifying new therapeutic targets to improve individual outcomes. In this review we discuss (i) specific biomarkers for early prediction of perinatal asphyxia outcome; (ii) short and long term sequelae; (iii) neurocircuitries involved; (iv) molecular pathways; (v) neuroinflammation systems; (vi) endogenous brain rescue systems, including activation of sentinel proteins and neurogenesis; and (vii) therapeutic targets for preventing or mitigating the effects produced by asphyxia.
Collapse
Affiliation(s)
- Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Pablo Espina-Marchant
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Tanya Neira-Peña
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Manuel A. Gutiérrez-Hernández
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Camilo Allende-Castro
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Edgardo Rojas-Mancilla
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| |
Collapse
|
48
|
Ni X, Yang ZJ, Carter EL, Martin LJ, Koehler RC. Striatal neuroprotection from neonatal hypoxia-ischemia in piglets by antioxidant treatment with EUK-134 or edaravone. Dev Neurosci 2011; 33:299-311. [PMID: 21701140 DOI: 10.1159/000327243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/15/2010] [Indexed: 11/19/2022] Open
Abstract
Striatal neurons are highly vulnerable to hypoxia-ischemia (HI) in term newborns. In a piglet model of HI, striatal neurons develop oxidative stress and organelle disruption by 3-6 h of recovery and ischemic cytopathology over 6-24 h of recovery. We tested the hypothesis that early treatment with the antioxidants EUK-134 (a manganese-salen derivative that acts as a scavenger of superoxide, hydrogen peroxide, nitric oxide or NO and peroxynitrite) or edaravone (MCI-186, a scavenger of hydroxyl radical and NO) protects striatal neurons from HI. Anesthetized newborn piglets were subjected to 40 min of hypoxia and 7 min of airway occlusion. At 30 min after resuscitation, the piglets received vehicle, EUK-134 or edaravone. Drug treatment did not affect arterial blood pressure, blood gases, blood glucose or rectal temperature. At 4 days of recovery, the density of viable neurons in the putamen of vehicle-treated piglets was 12 ± 6% (±SD) of sham-operated control density. Treatment with EUK-134 increased viability to 41 ± 17%, and treatment with edaravone increased viability to 39 ± 19%. In the caudate nucleus, neuronal viability was increased from 54 ± 11% in the vehicle group to 78 ± 15% in the EUK-134 group and to 73 ± 13% in the edaravone group. Antioxidant drug treatment accelerated recovery from neurologic deficits and decreased oxidative and nitrative damage to nucleic acids. Treatment with EUK-134 reduced the HI-induced formation of protein carbonyl groups and tyrosine nitration at 3 h of recovery. We conclude that systemic administration of antioxidant agents by 30 min after resuscitation from HI can reduce oxidative stress and salvage neurons in the highly vulnerable striatum in a large-animal model of neonatal HI. Therefore, oxidative stress is an important mechanism for this injury, and antioxidant therapy is a rational, mechanism-based approach to neuroprotection in the newborn brain.
Collapse
Affiliation(s)
- Xinli Ni
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287-4961, USA
| | | | | | | | | |
Collapse
|
49
|
Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011; 69:743-58. [PMID: 21520238 DOI: 10.1002/ana.22419] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of mortality and morbidity in infants and young children. Therapeutic opportunities are very limited for neonatal and pediatric HIE. Specific neural systems and populations of cells are selectively vulnerable in HIE; however, the mechanisms of degeneration are unresolved. These mechanisms involve oxidative stress, excitotoxicity, inflammation, and the activation of several different cell death pathways. Decades ago the structural and mechanistic basis of the cellular degeneration in HIE was thought to be necrosis. Subsequently, largely due to advances in cell biology and to experimental animal studies, emphasis has been switched to apoptosis or autophagy mediated by programmed cell death (PCD) mechanisms as important forms of degeneration in HIE. We have conceptualized based on morphological and biochemical data that this degeneration is better classified according to an apoptosis-necrosis cell death continuum and that programmed cell necrosis has prominent contribution in the neurodegeneration of HIE in animal models. It is likely that neonatal HIE evolves through many cell death chreodes influenced by the dynamic injury landscape. The relevant injury mechanisms remain to be determined in human neonatal HIE, though preliminary work suggests a complexity in the cell death mechanisms greater than that anticipated from experimental animal models. The accurate identification of the various cell death chreodes and their mechanisms unfolding within the immature brain matrix could provide fresh insight for developing meaningful therapies for neonatal and pediatric HIE.
Collapse
Affiliation(s)
- Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
50
|
Abstract
Knowledge of the nature, prognosis, and ways to treat brain lesions in neonatal infants has increased remarkably. Neonatal hypoxic-ischaemic encephalopathy (HIE) in term infants, mirrors a progressive cascade of excito-oxidative events that unfold in the brain after an asphyxial insult. In the laboratory, this cascade can be blocked to protect brain tissue through the process of neuroprotection. However, proof of a clinical effect was lacking until the publication of three positive randomised controlled trials of moderate hypothermia for term infants with HIE. These results have greatly improved treatment prospects for babies with asphyxia and altered understanding of the theory of neuroprotection. The studies show that moderate hypothermia within 6 h of asphyxia improves survival without cerebral palsy or other disability by about 40% and reduces death or neurological disability by nearly 30%. The search is on to discover adjuvant treatments that can further enhance the effects of hypothermia.
Collapse
|