1
|
Tindula G, Mukherjee SK, Ekramullah SM, Arman DM, Islam J, Biswas SK, Warf BC, Christiani DC, Lemos B, Liang L, Cardenas A, Mazumdar M. Parental arsenic exposure and tissue-specific DNA methylation in Bangladeshi infants with spina bifida. Epigenetics 2024; 19:2416345. [PMID: 39425535 PMCID: PMC11492674 DOI: 10.1080/15592294.2024.2416345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
An emerging hypothesis linking arsenic toxicity involves altered epigenetic mechanisms, such as DNA methylation. In this study, we examined the relationship between parents' arsenic exposure and DNA methylation in tissues obtained from 28 infants with spina bifida from Bangladesh. We analyzed arsenic in parents' toenails using inductively coupled plasma mass spectrometry (ICP-MS). DNA methylation was measured in infants' dural tissue, buccal swabs, and whole blood using the Illumina Infinium MethylationEPIC BeadChip. We performed epigenome-wide association analyses (EWAS) and tested differentially methylated regions (DMRs). In EWAS, DNA methylation at cg24039697 in dural tissue was positively associated (β = 0.59, p = 7.6 × 10-9) with father's toenail arsenic concentrations, adjusting for covariates. We did not identify any CpG sites related to father's arsenic exposure in the other tissues, or any CpG sites related to mother's arsenic exposure. Gene ontology analysis identified many biological pathways of interest, including the Wnt signaling pathways. We identified several DMRs across the tissues related to arsenic exposure that included probes mapping to genes that have previously been identified in studies of neural tube defects. This study emphasizes the potential impact of arsenic exposure in fathers, often understudied in epidemiological studies, on DNA methylation in a unique neurological tissue specific to spina bifida.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - DM Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - Subrata Kumar Biswas
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
- Coit Center for Longevity and Neurotherapeutics, The University of Arizona, Tucson, AZ, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Wei CF, Tindula G, Mukherjee SK, Wang X, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Afreen S, Ziaddin M, Warf BC, Weisskopf MG, Christiani DC, Liang L, Mazumdar M. Maternal arsenic exposure modifies associations between arsenic, folate and arsenic metabolism gene variants, and spina bifida risk: A case‒control study in Bangladesh. ENVIRONMENTAL RESEARCH 2024; 261:119714. [PMID: 39094898 PMCID: PMC11460318 DOI: 10.1016/j.envres.2024.119714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Spina bifida is a type of neural tube defect (NTD); NTDs are developmental malformations of the spinal cord that result from failure of neural tube closure during embryogenesis and are likely caused by interactions between genetic and environmental factors. Arsenic induces NTDs in animal models, and studies demonstrate that mice with genetic defects related to folate metabolism are more susceptible to arsenic's effects. We sought to determine whether 25 single-nucleotide polymorphisms (SNPs) in genes involved in folate and arsenic metabolism modified the associations between maternal arsenic exposure and risk of spina bifida (a common NTD) among a hospital-based case-control study population in Bangladesh. METHODS We used data from 262 mothers and 220 infants who participated in a case‒control study at the National Institutes of Neurosciences & Hospital and Dhaka Shishu Hospital in Dhaka, Bangladesh. Neurosurgeons assessed infants using physical examinations, review of imaging, and we collected histories using questionnaires. We assessed arsenic from mothers' toenails using inductively coupled plasma mass spectrometry (ICP-MS), and we genotyped participants using the Illumina Global Screening Array v1.0. We chose candidate genes and SNPs through a review of the literature. We assessed SNP-environment interactions using interaction terms and stratified models, and we assessed gene-environment interactions using interaction sequence/SNP-set kernel association tests (iSKAT). RESULTS The median toenail arsenic concentration was 0.42 μg/g (interquartile range [IQR]: 0.27-0.86) among mothers of cases and 0.47 μg/g (IQR: 0.30-0.97) among mothers of controls. We found an two SNPs in the infants' AS3MT gene (rs11191454 and rs7085104) and one SNP in mothers' DNMT1 gene (rs2228611) were associated with increased odds of spina bifida in the setting of high arsenic exposure (rs11191454, OR 3.01, 95% CI: 1.28-7.09; rs7085104, OR 2.33, 95% CI: 1.20-4.and rs2228611, OR 2.11, 95% CI: 1.11-4.01), along with significant SNP-arsenic interactions. iSKAT analyses revealed significant interactions between mothers' toenail concentrations and infants' AS3MT and MTR genes (p = 0.02), and mothers' CBS gene (p = 0.05). CONCLUSIONS Our results support the hypothesis that arsenic increases spina bifida risk via interactions with folate and arsenic metabolic pathways and suggests that individuals in the population who have certain genetic polymorphisms in genes involved with arsenic and folate metabolism may be more susceptible than others to the arsenic teratogenicity.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Xingyan Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Shamantha Afreen
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Ziaddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Krause BJ, Paz AA, Garrud TAC, Peñaloza E, Vega-Tapia F, Ford SG, Niu Y, Giussani DA. Epigenetic regulation by hypoxia, N-acetylcysteine and hydrogen sulphide of the fetal vasculature in growth restricted offspring: A study in humans and chicken embryos. J Physiol 2024; 602:3833-3852. [PMID: 38985827 DOI: 10.1113/jp286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Adolfo A Paz
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Tessa A C Garrud
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Fabian Vega-Tapia
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Sage G Ford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Wei CF, Mukherjee SK, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Rahman MN, Ziauddin M, Tindula G, Suchanda HS, Gomberg DF, Weisskopf MG, Liang L, Warf BC, Christiani DC, Mazumdar M. Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh. Environ Health 2024; 23:51. [PMID: 38831396 PMCID: PMC11145859 DOI: 10.1186/s12940-024-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Md Nafaur Rahman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Ziauddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, , 300 Pasteur Drive, CA, 94305, USA
| | - Hafiza Sultana Suchanda
- Pediatric Neurosurgery Research Committee, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Diana F Gomberg
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Wei CF, Mukherjee SK, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Rahman MN, Ziauddin M, Tindula G, Suchanda HS, Gomberg DF, Weisskopf MG, Liang L, Warf BC, Christiani DC, Mazumdar M. Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh. RESEARCH SQUARE 2024:rs.3.rs-3989039. [PMID: 38464105 PMCID: PMC10925447 DOI: 10.21203/rs.3.rs-3989039/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. Methods We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified using data from observations by neurosurgeons and available imaging. Controls were drawn from children who presented to NINS&H or Dhaka Shishu Hospital (DSH) during the same study period. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). Results We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median, and no association was seen among mothers with toenail arsenic concentrations higher than median (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). Conclusions Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
Collapse
Affiliation(s)
| | | | | | - D M Arman
- National Institute of Neurosciences & Hospital
| | | | | | | | | | - Md Ziauddin
- National Institute of Neurosciences & Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li X, Li G, Cui S, Hou Y, Li Z, Yan Z, Huang T, Zhao T, Su H, Zhou B, Zhang J, Ao R, Zhao H, Qiu Y, Liu Z, Xie J. Arsenic disturbs neural tube closure involving AMPK/PKB-mTORC1-mediated autophagy in mice. Food Chem Toxicol 2024; 186:114538. [PMID: 38387523 DOI: 10.1016/j.fct.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Gexuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Cui
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Hou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zelin Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziyi Yan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingjuan Huang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Taoran Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hongkai Su
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
7
|
Yamamoto T, Gi M, Yamashita S, Suzuki S, Fujioka M, Vachiraarunwong A, Guo R, Qiu G, Kakehashi A, Kato M, Uchida J, Wanibuchi H. DNA Methylation Aberrations in Dimethylarsinic Acid-Induced Bladder Carcinogenesis. Cancers (Basel) 2023; 15:5274. [PMID: 37958445 PMCID: PMC10648661 DOI: 10.3390/cancers15215274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Arsenic is a known human urinary bladder carcinogen. While arsenic is known to cause aberrant DNA methylation, the mechanism of arsenic-triggered bladder carcinogenesis is not fully understood. The goal of this study was to identify aberrant DNA methylation in rat bladder urothelial carcinoma (UC) induced by dimethylarsinic acid (DMAV), a major organic metabolite of arsenic. We performed genome-wide DNA methylation and microarray gene expression analyses of DMAV-induced rat UCs and the urothelium of rats treated for 4 weeks with DMAV. We identified 40 genes that were both hypermethylated and downregulated in DMAV-induced rat UCs. Notably, four genes (CPXM1, OPCML, TBX20, and KCND3) also showed reduced expression in the bladder urothelium after 4 weeks of exposure to DMAV. We also found that CPXM1 is aberrantly methylated and downregulated in human bladder cancers and human bladder cancer cells. Genes with aberrant DNA methylation and downregulated expression in DMAV-exposed bladder urothelium and in DMAV-induced UCs in rats, suggest that these alterations occurred in the early stages of arsenic-induced bladder carcinogenesis. Further study to evaluate the functions of these genes will advance our understanding of the role of aberrant DNA methylation in arsenic bladder carcinogenesis, and will also facilitate the identification of new therapeutic targets for arsenic-related bladder cancers.
Collapse
Affiliation(s)
- Tomoki Yamamoto
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan; (T.Y.)
- Department of Molecular Urology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan; (T.Y.)
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan
| | - Satoshi Yamashita
- Department of Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi 371-0816, Gunma, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan; (T.Y.)
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan; (T.Y.)
| | - Arpamas Vachiraarunwong
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan
| | - Runjie Guo
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan
| | - Guiyu Qiu
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan; (T.Y.)
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan; (T.Y.)
| | - Minoru Kato
- Department of Molecular Urology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan
| | - Junji Uchida
- Department of Molecular Urology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Osaka, Japan; (T.Y.)
| |
Collapse
|
8
|
Eaves LA, Choi G, Hall E, Sillé FC, Fry RC, Buckley JP, Keil AP. Prenatal Exposure to Toxic Metals and Neural Tube Defects: A Systematic Review of the Epidemiologic Evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:86002. [PMID: 37647124 PMCID: PMC10467818 DOI: 10.1289/ehp11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) affect > 300,000 pregnancies worldwide annually. Few nongenetic factors, other than folate deficiency, have been identified that may provide intervenable solutions to reduce the burden of NTDs. Prenatal exposure to toxic metals [arsenic (As), cadmium (Cd), mercury (Hg), manganese (Mn) and lead (Pb)] may increase the risk of NTDs. Although a growing epidemiologic literature has examined associations, to our knowledge no systematic review has been conducted to date. OBJECTIVE Through adaptation of the Navigation Guide systematic review methodology, we aimed to answer the question "does exposure to As, Cd, Hg, Mn, or Pb during gestation increase the risk of NTDs?" and to assess challenges to evaluating this question given the current evidence. METHODS We selected available evidence on prenatal As, Cd, Hg, Mn, or Pb exposure and risk of specific NTDs (e.g., spina bifida, anencephaly) or all NTDs via a comprehensive search across MEDLINE, Embase, Web of Science, and TOXLINE databases and applied inclusion/exclusion criteria. We rated the quality and strength of the evidence for each metal. We applied a customized risk of bias protocol and evaluated the sufficiency of evidence of an effect of each metal on NTDs. RESULTS We identified 30 studies that met our criteria. Risk of bias for confounding and selection was high in most studies, but low for missing data. We determined that, although the evidence was limited, the literature supported an association between prenatal exposure to Hg or Mn and increased risk of NTDs. For the remaining metals, the evidence was inadequate to establish or rule out an effect. CONCLUSION The role of gestational As, Cd, or Pb exposure in the etiology of NTDs remains unclear and warrants further investigation in high-quality studies, with a particular focus on controlling confounding, mitigating selection bias, and improving exposure assessment. https://doi.org/10.1289/EHP11872.
Collapse
Affiliation(s)
- Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Giehae Choi
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Hall
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fenna C.M. Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Caiaffa CD, Fonteles CSR, Yunping L, Finnell RH. Gene-environment interactions underlying the etiology of neural tube defects. Curr Top Dev Biol 2022; 152:193-220. [PMID: 36707212 DOI: 10.1016/bs.ctdb.2022.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neural tube defects (NTDs) consist of severe structural malformations of the brain and spinal cord and are the second most common structural birth defect in humans, accounting for approximately 2700 affected pregnancies every year in the United States. These numbers are highly significant, considering that birth defects remain a leading cause of infant mortality in the United States, affecting approximately 120,000 babies born annually. Survivors of these congenital malformations face long-term disability and lifelong challenges imposed by severe physical burdens compromising the afflicted individual's overall quality of life. Clearly, birth defects, and especially NTDs remain a global public health challenge, and the source of significant financial repercussions for healthcare systems worldwide. In order to better understand the role gene-environment interactions play in the etiology of NTDs, this chapter provides an overview of NTD phenotypes and their embryonic origins, discusses the genetic landscape of NTDs as it is currently understood, with a focus on experimental models that best illustrate how environmental factors modulate individual susceptibility to these birth defects. As folic acid interventions have proven to be effective in reducing the prevalence of NTDs, the chapter ends with a discussion on the impact that maternal dietary status has on NTD prevalence from a population perspective.
Collapse
Affiliation(s)
- Carlo Donato Caiaffa
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Cristiane Sá Roriz Fonteles
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Lei Yunping
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
11
|
Zhang QY, Han SC, Huang RP, Jiang MY, Yan CY, Li XY, Zhan YJ, Li XM, Li YF, Kurihara H, Tan RR, Li WX, He RR. Cyclo(-Phe-Phe) alleviates chick embryo liver injury via activating the Nrf2 pathway. Food Funct 2022; 13:6962-6974. [PMID: 35678194 DOI: 10.1039/d2fo00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excessive reactive oxygen species (ROS) accumulation is involved in the pathogenesis of liver fibrosis and damage, specifically in the developing embryo that is extremely sensitive to oxidative stress. Herein, a liver injury model in chick embryo was established by using 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH), which was used to investigate the effect of cyclo(-Phe-Phe) (CPP), a natural dipeptide found in foods and beverages. The results showed that CPP significantly alleviated AAPH-induced liver pathological damage, hepatic dysfunction and inhibited the excessive production of ROS in both chick embryo liver and HepG2 cells. Additionally, CPP increased the antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as elevated the level of glutathione (GSH), suggesting that CPP combating liver injury probably depends on its antioxidant capability. Mechanistically, CPP upregulated the mRNA and protein expression of heme oxyense-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1) in vivo and in vitro, along with promoting the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) while inhibiting its degradation through binding with Kelch-like ECH-associated protein 1 (Keap1). In conclusion, this study proposes a potential peptide drug for the treatment of hepatic damage induced by oxidative stress and also unravels its mechanism of action.
Collapse
Affiliation(s)
- Qiong-Yi Zhang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China. .,Perfect (Guangdong) Commodity Co., LTD, Zhongshan 528451, China
| | - Shao-Cong Han
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Rong-Ping Huang
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Man-Ya Jiang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Xi-You Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Yu-Jiao Zhan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Xiao-Min Li
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan 528451, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China. .,Perfect (Guangdong) Commodity Co., LTD, Zhongshan 528451, China
| | - Rui-Rong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Wei-Xi Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Isaković J, Šimunić I, Jagečić D, Hribljan V, Mitrečić D. Overview of Neural Tube Defects: Gene–Environment Interactions, Preventative Approaches and Future Perspectives. Biomedicines 2022; 10:biomedicines10050965. [PMID: 35625701 PMCID: PMC9138472 DOI: 10.3390/biomedicines10050965] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Neural tube defects (NTDs) are the second most common congenital malformations of humans, characterized by impaired development of the central nervous system. Even though the etiology of most birth defects remains undetermined, genetic and environmental risk factors in the background of NTDs have been identified and extensively reported. On top of genetic and nutritional risks which include mutations in both coding and non-coding regions and maternal folate status, respectively, recent years have seen a rise in the identification of a variety of teratogens that could be implicated in NTD development. These include polycyclic aromatic hydrocarbons, arsenic, pesticides, maternal hyperthermia and antibiotics as well as pain and seizure medication. With an increase in understanding of teratogens leading to NTD formation, preventative and treatment approaches have witnessed great advances throughout the years. While the most common preventative approach includes folic acid food fortification as well as suggested inositol supplementation, treatment and management approaches differ greatly depending on the developmental stage and the site of the lesion and include prenatal surgery, stem cell transplantation and postnatal surgery. Because NTDs still represent a large health and financial burden for the patient and society as a whole, it is crucial to investigate potential risk factors and develop novel approaches in order to fully prevent this category of disorders.
Collapse
Affiliation(s)
- Jasmina Isaković
- Omnion Research International Ltd., Heinzelova 4, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (D.J.); (V.H.); (D.M.)
- Correspondence:
| | - Iva Šimunić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Denis Jagečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (D.J.); (V.H.); (D.M.)
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Valentina Hribljan
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (D.J.); (V.H.); (D.M.)
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Dinko Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (D.J.); (V.H.); (D.M.)
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
Tindula G, Mukherjee SK, Ekramullah SM, Arman DM, Biswas SK, Islam J, Obrycki JF, Christiani DC, Liang L, Warf BC, Mazumdar M. Parental metal exposures as potential risk factors for spina bifida in Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 157:106800. [PMID: 34358915 PMCID: PMC9008873 DOI: 10.1016/j.envint.2021.106800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neural tube defects are a pressing public health concern despite advances in prevention from folic acid-based strategies. Numerous chemicals, in particular arsenic, have been associated with neural tube defects in animal models and could influence risk in humans. OBJECTIVES We investigated the relationship between parental exposure to arsenic and 17 metals and risk of neural tube defects (myelomeningocele and meningocele) in a case control study in Bangladesh. METHODS Exposure assessment included analysis of maternal and paternal toenail samples using inductively coupled plasma mass spectrometry (ICP-MS). A total of 278 participants (155 cases and 123 controls) with data collected from 2016 to 2020 were included in the analysis. RESULTS In the paternal models, a one-unit increase in the natural logarithm of paternal toenail arsenic was associated with a 74% (odds ratio: 1.74, 95% confidence interval: 1.26-2.42) greater odds of having a child with spina bifida, after adjusting for relevant covariates. Additionally, paternal exposure to aluminum, cobalt, chromium, iron, selenium, and vanadium was associated with increased odds of having a child with spina bifida in the adjusted models. In the maternal models, a one-unit increase in the natural logarithm of maternal toenail selenium and zinc levels was related to a 382% greater (odds ratio: 4.82, 95% confidence interval: 1.32-17.60) and 89% lower (odds ratio: 0.11, 95% confidence interval: 0.03-0.42) odds of having a child with spina bifida in the adjusted models, respectively. Results did not suggest an interaction between parental toenail metals and maternal serum folate. DISCUSSION Parental toenail levels of numerous metals were associated with increased risk of spina bifida in Bangladeshi infants. Paternal arsenic exposure was positively associated with neural tube defects in children and is of particular concern given the widespread arsenic poisoning of groundwater resources in Bangladesh and the lack of nutritional interventions aimed to mitigate paternal arsenic exposure. The findings add to the growing body of literature of the impact of metals, especially paternal environmental factors, on child health.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Subrata Kumar Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka 1000, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - John F Obrycki
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States.
| |
Collapse
|
14
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
15
|
Genetic Polymorphisms in DNA Repair Gene APE1/Ref-1 and the Risk of Neural Tube Defects in a High-Risk Area of China. Reprod Sci 2021; 28:2592-2601. [PMID: 33761125 DOI: 10.1007/s43032-021-00537-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox-factor 1 (APE1/Ref-1) gene encodes a multifunctional protein involved in the DNA base excision repair (BER) pathway, which initiates repair of apurinic/apyrimidinic (AP) sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone. APE1/Ref-1 polymorphisms are related to the occurrence of neural tube defects (NTDs), but the association between APE1/Ref-1 polymorphisms and NTDs is not reported in Chinese Han population. The aim of the present study was to evaluate the association of APE1/Ref-1 polymorphism and the risk of NTD occurrence for Han population in a high-risk area of China. APE1/Ref-1 genotypes were determined by iPLEX Gold SNP genotyping. AP sites and folate level of brain tissues were measured. The results showed that three polymorphisms (rs3136817, rs77794916, and rs1760944) of APE1/Ref-1 were statistically associated with NTD subtypes. Allele C of rs3136817, allele T of rs77794916, and allele G of rs1760944 were associated with an increased risk for encephalocele (OR = 2.52, 95% CI [1.25-5.07], P < 0.01; OR = 1.80, 95% CI [1.04-3.12], P = 0.04; and OR = 1.96, 95% CI [1.12-3.45], P = 0.02), compared with those harboring the alleles T, C, and T, respectively. The folate level in NTDs was lower than that in controls. DNA AP sites in the encephalocele were significantly higher than the control (P < 0.01). The three polymorphisms of APE1/Ref-1 were significantly related to NTD occurrence, which indicated that APE1/Ref-1 might be a potential genetic risk factor for encephalocele in a high-risk area of NTDs in China.
Collapse
|
16
|
Huang Y, Lin S, Wang C, Pi X, Jin L, Li Z, Wang L, Ren A. Neural Tube Defects and ZIC4 Hypomethylation in Relation to Polycyclic Aromatic Hydrocarbon Exposure. Front Cell Dev Biol 2020; 8:582661. [PMID: 33304900 PMCID: PMC7701213 DOI: 10.3389/fcell.2020.582661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Epigenetic dysregulation is one of the postulated underlying mechanisms of neural tube defects (NTDs). Polycyclic aromatic hydrocarbons (PAHs), a group of environmental pollutants that are reported as a risk factor of NTDs, may cause decreased genome-wide DNA methylation. With DNA extracted from neural tissues, this study identified gene(s) whose hypomethylation was related to elevated risk for NTDs and examined whether its hypomethylation is related to PAH exposure. Results Using data profiled by Infinium HumanMethylation450 BeadChip array from 10 NTD cases and eight controls, ZIC4, CASP8, RAB32, RARA, and TRAF6 were identified to be the top five genes in NTD-related hypomethylated gene families. Among all identified genes, ZIC4 had the largest number of differently methylated CpG sites (n = 13) in the promoter region and 5′ UTR. Significantly decreased methylation in the ZIC4 promoter region and 5′ UTR was verified in an independent cohort of 80 cases and 32 controls (p < 0.001) utilizing the Sequenom EpiTYPER platform. Hypomethylation of ZIC4 was associated with a higher risk of NTDs [adjusted OR = 1.08; 95% confidence interval (CI): 1.03, 1.13] in a logistic regression model. Mean methylation levels in the promoter region and 5′ UTR of ZIC4 tended to be inversely associated with levels of high-molecular-weight PAHs in fetal liver among NTD fetuses (β [95% CI]: −0.045 [−0.091, 0.001], p = 0.054). Six and three CpG sites in the ZIC4 promoter region and 5′ UTR were inversely correlated with antioxidant indicators and protein oxidation markers (ρ: −0.45 to −0.75, p < 0.05) in fetal neural tissues, respectively. In a whole-embryo cultured mouse model, hypomethylation of the Zic4 promoter region and 5′ UTR and upregulation of Zic4 were observed, coupled with increased NTD rates after BaP exposure. The antioxidant N-acetyl-L-cysteine normalized the changes observed in the BaP exposure group. Conclusion Hypomethylation of the ZIC4 promoter region and 5′ UTR may increase the risk for NTDs; oxidative stress is likely to play a role in the methylation change of Zic4 in response to PAH exposure in NTD formation.
Collapse
Affiliation(s)
- Yun Huang
- National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Institute of Reproductive and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Lin
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chengrong Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin Pi
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Lei Jin
- National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Institute of Reproductive and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhiwen Li
- National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Institute of Reproductive and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Institute of Reproductive and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Aiguo Ren
- National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Institute of Reproductive and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
17
|
Ross MM, Piorczynski TB, Harvey J, Burnham TS, Francis M, Larsen MW, Roe K, Hansen JM, Stark MR. Ceramide: a novel inducer for neural tube defects. Dev Dyn 2019; 248:979-996. [PMID: 31390103 DOI: 10.1002/dvdy.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/02/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circulating plasma ceramides, a class of bioactive sphingolipids, are elevated in metabolic disorders, including obesity. Infants of women with these disorders are at 2- to 3-fold greater risk for developing a neural tube defect (NTD). This study aimed to test the effects of embryonic exposure to C2-ceramides (C2) during neural tube closure. Preliminary data shows an increase in NTDs in chick embryos after C2 exposure, and addresses potential mechanisms. RESULTS Cell and embryo models were used to examine redox shifts after ceramide exposure. While undifferentiated P19 cells were resistant to ceramide exposure, neuronally differentiated P19 cells exhibited an oxidizing shift. Consistent with these observations, GSH E h curves revealed a shift to a more oxidized state in C2 treated embryos without increasing apoptosis or changing Pax3 expression, however cell proliferation was lower. Neural tube defects were observed in 45% of chick embryos exposed to C2, compared to 12% in control embryos. CONCLUSIONS C2 exposure during critical developmental stages increased the frequency of NTDs in the avian model. Increased ROS generation in cell culture, along with the more oxidative GSH E h profiles of C2 exposed cells and embryos, support a model wherein ceramide affects neural tube closure via altered tissue redox environments.
Collapse
Affiliation(s)
- Micah M Ross
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jamison Harvey
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Tyson S Burnham
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Morgan Francis
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Madison W Larsen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Kyle Roe
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Michael R Stark
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
18
|
Huang Y, Ren A, Wang L, Jin L, Lin S, Li Z, McDonald JA. Casp8 hypomethylation and neural tube defects in association with polycyclic aromatic hydrocarbon exposure. Clin Epigenetics 2019; 11:72. [PMID: 31064411 PMCID: PMC6505285 DOI: 10.1186/s13148-019-0673-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
Background Epidemiological studies have found that prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with increased risk for neural tube defects (NTDs). Aberrant DNA methylation, excessive apoptosis, and oxidative stress have been implied as the mechanism underlying the association between PAH exposure and NTDs, respectively. However, the role of DNA methylation aberration of apoptotic initiator CASP8 (caspase-8, apoptosis-related cysteine peptidase) in the formation of NTDs in association with PAH exposure is not known. By combining a case–control study and mouse model, we aimed to explore the full spectrum of the links from PAH exposure, oxidative stress, CASP8 methylation change, caspase-8 activation, apoptosis, to NTD formation. Results Hypomethylation of CASP8 promoter was noticed in the microarray profiled by Infinium HumanMethylation450 BeadChip using neural tissues from 10 terminated NTD fetuses and 8 terminated non-malformed fetuses (14 CpG sites, with β difference ranging between 8.8 and 26.3%), and was validated in a larger case–control sample performed with neural tissues from 80 NTD cases and 32 non-malformed fetuses, using the Sequenom MassARRAY system (7 CpG sites). Hypomethylation of CASP8 was a risk factor for NTDs (aOR = 1.11; 95% CI, 1.05–1.17) based on the logistic regression model. According to Pearson’s correlation, methylation levels of CASP8 were inversely correlated with PAH concentrations in maternal serum and with oxidative stress markers in fetal neural tissues (p < 0.05). In the animal study, increased NTD rates (13.5% frequency), Casp8 hypomethylation, caspase-8 upregulation, increased caspase-8 cleavage, and excessive apoptosis were found in mouse embryos cultured with benz(a)pyrene (BaP) in vitro. Antioxidant N-acetyl-L-cysteine (NAC) and BaP co-treatment attenuated the changes found in BaP treatment group. Conclusions Hypomethylation of Casp8 promoter is associated with the formation of NTDs, and Casp8 hypomethylation may be induced by oxidative stress that resulted from exposure to PAHs. Electronic supplementary material The online version of this article (10.1186/s13148-019-0673-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Huang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China. .,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China. .,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Shanshan Lin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China.,Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, 722 West 168th Street, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
19
|
Wang B, Zhu Y, Yan L, Zhang J, Wang X, Cheng H, Li Z, Ye R, Ren A. Association of maternal chronic arsenic exposure with the risk of neural tube defects in Northern China. ENVIRONMENT INTERNATIONAL 2019; 126:222-227. [PMID: 30807959 DOI: 10.1016/j.envint.2019.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Numerous animal studies have shown that high arsenic exposure can induce neural tube defect (NTD) formation. However, epidemiological evidence related to this finding is scarce. The key objective of our study is to evaluate whether maternal arsenic exposure is associated with NTD risk in Northern China. Our case-control study was conducted in 11 countries or cities in Shanxi and Hebei provinces during 2003-2007. A total of 774 mothers were included as participants: 511 controls and 263 cases (including 123 with anencephaly, 115 with spina bifida, 18 with encephalocele, and 7 with other NTD subtypes). The arsenic concentration was measured in a specific section of hair that grew from 3 months before to 3 months after conception. We found a higher hair arsenic concentration in the NTD cases with median (inter-quartile range) of 0.093 (0.025-0.387) μg/g hair than that in the controls with a value of 0.082 (0.030-0.414) μg/g hair. Maternal hair arsenic concentration above its median of the controls was associated with an increased risk of the total NTDs with an adjusted odds ratio (OR) of 1.32 [95% confidence interval (CI): (0.91-1.92)], which was not statistically significant (p = 0.14), although the crude OR without adjusting for the confounders of 1.68 (95% CI: 1.24-2.27; p < 0.001) suggested that hair arsenic is a risk factor of NTDs. There was no dose-response relationship between maternal hair arsenic concentration and the risk of total NTDs. Similar phenomena were found for anencephaly and spina bifida, respectively. Overall, our findings showed that maternal periconceptional arsenic exposure may not significantly contribute to the risk of NTD development in Northern China; other risk factors need to be further examined in future studies.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China.
| | - Yibing Zhu
- Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jingxu Zhang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, PR China
| | - Xilong Wang
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; College of Urban and Environmental Sciences, Peking University, 100871, PR China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, 100871, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China.
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China
| |
Collapse
|
20
|
Suhl J, Leonard S, Weyer P, Rhoads A, Siega-Riz AM, Renée Anthony T, Burns TL, Conway KM, Langlois PH, Romitti PA. Maternal arsenic exposure and nonsyndromic orofacial clefts. Birth Defects Res 2018; 110:1455-1467. [PMID: 30367712 DOI: 10.1002/bdr2.1386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Arsenic is widely distributed in the environment in both inorganic and organic forms. Evidence from animal studies suggests that maternal inorganic arsenic may lead to the development of orofacial clefts (OFC)s in offspring. This evidence, together with the limited epidemiologic data available, supports the need for a comprehensive examination of major sources of arsenic exposure and OFCs in humans. METHODS Using interview data collected in the National Birth Defects Prevention Study, public and well water arsenic sampling data, and dietary arsenic estimates, we compared expert-rater assessed occupational arsenic exposure, individual-level exposure to arsenic through drinking water, and dietary arsenic exposure between mothers of OFC cases (N = 435) and unaffected controls (N = 1267). Associations for each source of exposure were estimated for cleft lip ± palate (CL/P) and cleft palate (CP) using unconditional logistic regression analyses. RESULTS Associations for maternal drinking water arsenic exposure and CL/P were near or below unity, whereas those for dietary arsenic exposure tended to be positive. For CP, positive associations were observed for maternal occupational arsenic and inorganic arsenic exposures, with confidence intervals that excluded the null value, whereas those for drinking water or dietary arsenic exposures tended to be near or below unity. CONCLUSIONS Positive associations were observed for maternal occupational arsenic exposure and CP and for maternal dietary arsenic exposure and CL/P; the remainder of associations estimated tended to be near or below unity. Given the exploratory nature of our study, the results should be interpreted cautiously, and continued research using improved exposure assessment methodologies is recommended.
Collapse
Affiliation(s)
- Jonathan Suhl
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Stephanie Leonard
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Peter Weyer
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa
| | - Anthony Rhoads
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Anna Maria Siega-Riz
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - T Renée Anthony
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Trudy L Burns
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Kristin M Conway
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, Texas
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
21
|
Developing a link between toxicants, claudins and neural tube defects. Reprod Toxicol 2018; 81:155-167. [DOI: 10.1016/j.reprotox.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
22
|
Timme-Laragy AR, Hahn ME, Hansen JM, Rastogi A, Roy MA. Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Semin Cell Dev Biol 2018; 80:17-28. [PMID: 28927759 PMCID: PMC5650060 DOI: 10.1016/j.semcdb.2017.09.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate embryonic development requires specific signaling events that regulate cell proliferation and differentiation to occur at the correct place and the correct time in order to build a healthy embryo. Signaling pathways are sensitive to perturbations of the endogenous redox state, and are also susceptible to modulation by reactive species and antioxidant defenses, contributing to a spectrum of passive vs. active effects that can affect redox signaling and redox stress. Here we take a multi-level, integrative approach to discuss the importance of redox status for vertebrate developmental signaling pathways and cell fate decisions, with a focus on glutathione/glutathione disulfide, thioredoxin, and cysteine/cystine redox potentials and the implications for protein function in development. We present a tissue-specific example of the important role that reactive species play in pancreatic development and metabolic regulation. We discuss NFE2L2 (also known as NRF2) and related proteins, their roles in redox signaling, and their regulation of glutathione during development. Finally, we provide examples of xenobiotic compounds that disrupt redox signaling in the context of vertebrate embryonic development. Collectively, this review provides a systems-level perspective on the innate and inducible antioxidant defenses, as well as their roles in maintaining redox balance during chemical exposures that occur in critical windows of development.
Collapse
Affiliation(s)
- Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Nanoformulated Antiretroviral Therapy Attenuates Brain Metabolic Oxidative Stress. Mol Neurobiol 2018; 56:2896-2907. [PMID: 30069830 PMCID: PMC6403019 DOI: 10.1007/s12035-018-1273-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
Antiretroviral therapy (ART) restricts human immunodeficiency virus type one (HIV-1) replication and by so doing, improves the quality and longevity of life for infected people. Nonetheless, treatment can also lead to adverse clinical outcomes such as drug resistance and systemic adverse events. Both could be affected by long-acting slow effective release ART. Indeed, maintenance of sustained plasma drug levels, for weeks or months, after a single high-level dosing, could improve regimen adherence but, at the same time, affect systemic toxicities. Of these, the most troubling are those that affect the central nervous system (CNS). To address this, dolutegravir (Tivicay, DTG), a potent and durable HIV integrase inhibitor used effectively in combination ART was tested. Rodents were administered parenteral 45-mg/kg doses. DTG-associated changes in CNS homeostasis were assessed by measuring brain metabolic activities. After antiretroviral treatment, brain subregions were dissected and screened by mass spectrometry-based metabolomics. Metabolic drug-related dysregulation of energy and oxidative stress were readily observed within the cerebellum and frontal cortex following native drug administrations. Each was associated with alterations in neural homeostasis and depleted canonical oxidation protection pools that included glutathione and ascorbic acid. Surprisingly, the oxidative stress-related metabolites were completely attenuated when DTG was administered as nanoformulations. These data demonstrate the importance of formulation design in control of DTG or perhaps other antiretroviral drug-associated CNS events.
Collapse
|
24
|
Mazumdar M. Does arsenic increase the risk of neural tube defects among a highly exposed population? A new case-control study in Bangladesh. Birth Defects Res 2018; 109:92-98. [PMID: 27801974 DOI: 10.1002/bdra.23577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neural tube defects are debilitating birth defects that occur when the developing neural plate fails to close in early gestation. Arsenic induces neural tube defects in animal models, but whether environmental arsenic exposure increases risk of neural tube defects in humans is unknown. METHODS We describe a new case-control study in Bangladesh, a country currently experiencing an epidemic of arsenic poisoning through contaminated drinking water. We plan to understand how arsenic influences risk of neural tube defects in humans through mechanisms that include disruption of maternal glucose and folate metabolism, as well as epigenetic effects. We also investigate whether sweat chloride concentration, a potential new biomarker for arsenic toxicity, can be used to identify women at higher risk for having a child affected by neural tube defect. We will collect dural tissue from cases, obtained at the time of surgical closure of the defect, and believe investigation of these samples will provide insight into the epigenetic mechanisms by which prenatal arsenic exposure affects the developing nervous system. CONCLUSION These studies explore mechanisms by which arsenic may increase risk of neural tube defects in humans and use a unique population with high arsenic exposure to test hypotheses. If successful, these studies may assist countries with high arsenic exposure such as Bangladesh to identify populations at high risk of neural tube defects, as well as direct development of novel screening strategies for maternal risk.Birth Defects Research 109:92-98, 2017.© 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
25
|
Xue J, Gu H, Liu D, Ma W, Wei X, Zhao L, Liu Y, Zhang C, Yuan Z. Mitochondrial dysfunction is implicated in retinoic acid-induced spina bifida aperta in rat fetuses. Int J Dev Neurosci 2018; 68:39-44. [PMID: 29689339 DOI: 10.1016/j.ijdevneu.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/21/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023] Open
Abstract
Neural tube defects (NTDs) are the most common and severe congenital malformations, which result from failure of the neural tube to close during embryonic development. The etiology of NTDs is complex, caused by interactions between genetic defects and environmental factors, but the exact mechanisms of this disease are still not fully understood. We herein employ a Seahorse Bioscience microplate-based extracellular flux (XF) analyzer to determine mitochondrial function and quantify respiratory coupling to various bioenergetic functions using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in coupling between ATP turnover and proton leak are correlated with NTDs. Further, we determined that the ATP content and oxidative stress levels in posterior spinal cords of rat embryos with NTDs between E11 and E14 was lower than that of normal controls. The present study reveals that mitochondrial dysfunction is associated with all-trans retinoic acid (atRA)-induced NTDs in rat embryos. Oxidative stress results from decreased antioxidant enzyme activity. This study provides a novel viewpoint for exploring the embryonic pathogenesis of atRA-induced NTDs.
Collapse
Affiliation(s)
- Jia Xue
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Lianshuai Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Chaonan Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China.
| |
Collapse
|
26
|
Özel Ş, Ozyer S, Aykut O, Çinar M, Yılmaz OH, Caglar A, Engin-Ustun Y. Maternal second trimester blood levels of selected heavy metals in pregnancies complicated with neural tube defects. J Matern Fetal Neonatal Med 2018; 32:2547-2553. [DOI: 10.1080/14767058.2018.1441280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Şule Özel
- Zekai Tahir Burak Womens Health Education and Research Hospital, Ankara, Turkey
| | - Sebnem Ozyer
- Zekai Tahir Burak Womens Health Education and Research Hospital, Ankara, Turkey
| | - Osman Aykut
- Zekai Tahir Burak Womens Health Education and Research Hospital, Ankara, Turkey
| | - Mehmet Çinar
- Zekai Tahir Burak Womens Health Education and Research Hospital, Ankara, Turkey
| | - Omer Hınc Yılmaz
- Zekai Tahir Burak Womens Health Education and Research Hospital, Ankara, Turkey
| | - Ali Caglar
- Zekai Tahir Burak Womens Health Education and Research Hospital, Ankara, Turkey
| | - Yaprak Engin-Ustun
- Zekai Tahir Burak Womens Health Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
27
|
Yang S, Wang LL, Shi Z, Ou X, Wang W, Chen X, Liu G. Transcriptional profiling of liver tissues in chicken embryo at day 16 and 20 using RNA sequencing reveals differential antioxidant enzyme activity. PLoS One 2018; 13:e0192253. [PMID: 29408927 PMCID: PMC5800670 DOI: 10.1371/journal.pone.0192253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/18/2018] [Indexed: 12/31/2022] Open
Abstract
Considering the high proportion of polyunsaturated fatty acids, the antioxidant defense of chick embryo tissues is vital during the oxidative stress experienced at hatching. In order to better understand the mechanisms of the defense system during chicken embryo development, we detected the activity of antioxidant enzymes during the incubation of chicken embryo. Results showed that the activity of superoxide dismutase (SOD) and (GSH-PX) in livers were higher than those in hearts. Based on these results, liver tissues were used as the follow-up study materials, which were obtained from chicken embryo at day 16 and day 20. Thus, we used RNA sequencing (RNA-Seq) analysis to identify the transcriptome from 6 liver tissues. In total, we obtained 45,552,777-45,462,856 uniquely mapped reads and 18,837 mRNA transcripts, across the 6 liver samples. Among these, 1,154 differentially expressed genes (p<0.05, foldchange≥1) were identified between the high and low groups, and 1,069 GO terms were significantly enriched (p<0.05). Of these, 10 GO terms were related to active oxygen defense and antioxidant enzyme activity. GO enrichment and KEGG pathway analysis indicated that GSTA2, GSTA4, MGST1, GPX3, and HAO2 participated in glutathione metabolism, and were considered as the most promising candidate genes affecting the antioxidant enzyme activity of chicken embryo at day 16 and day 20. Using RNA-Seq and differential gene expression, our study here investigated the complexity of the liver transcriptome in chick embryos and analyzed the key genes associated with the antioxidant enzyme.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Lu Lu Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Zhaoyuan Shi
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xiaoqian Ou
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Wei Wang
- Agricultural Products Quality and Safety Supervision and Management Bureau, Xuancheng, Anhui, P. R. China
| | - Xue Chen
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Guoqing Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| |
Collapse
|
28
|
Demir N, Başaranoğlu M, Huyut Z, Değer İ, Karaman K, Şekeroğlu MR, Tuncer O. The relationship between mother and infant plasma trace element and heavy metal levels and the risk of neural tube defect in infants. J Matern Fetal Neonatal Med 2017; 32:1433-1440. [DOI: 10.1080/14767058.2017.1408064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nihat Demir
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Murat Başaranoğlu
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Zübeyir Huyut
- Department of Medical Biochemistry, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - İbrahim Değer
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Kamuran Karaman
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - M. Ramazan Şekeroğlu
- Department of Medical Biochemistry, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Oğuz Tuncer
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| |
Collapse
|
29
|
Huo W, Zhu Y, Li Z, Pang Y, Wang B, Li Z. A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in north China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:89-93. [PMID: 28411498 DOI: 10.1016/j.envpol.2017.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/18/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Rare earth elements (REEs) have many applications in industry, agriculture, and medicine, resulting in occupational and environmental exposure and concerns regarding REE-associated health effects. However, few epidemiological studies have examined the adverse effects of REEs on pregnancy outcomes. Therefore, this study examined the relationship between the REE concentrations in maternal hair growing during early pregnancy and the risk of neural tube defects (NTDs) in offspring. We included 191 women with NTD-affected pregnancies (cases) and 261 women delivering healthy infants (controls). The cases were divided into three subtypes: anencephaly, spina bifida, and encephalocele. Four REEs in maternal hair were analyzed by inductively coupled plasma-mass spectrometry: lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). A questionnaire was used to collect information about maternal sociodemographic characteristics and dietary habits. The median concentrations of Ce and Pr in the NTD group were higher than those in the control group, whereas there were no significant differences for La and Nd. The adjusted odds ratios (ORs) for the four REE concentrations above the median in the case groups were not significantly > 1. An increasing frequency of the consumption of beans or bean products and fresh fruit was negatively correlated with the four REE concentrations. Our results did not suggest that the concentrations of REEs in maternal hair were associated with the risk of NTDs or any subtype of NTDs in the general population.
Collapse
Affiliation(s)
- Wenhua Huo
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yibing Zhu
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zhenjiang Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China.
| |
Collapse
|
30
|
Bae S, Kamynina E, Farinola AF, Caudill MA, Stover PJ, Cassano PA, Berry R, Peña-Rosas JP. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [DOI: 10.1002/14651858.cd012649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sajin Bae
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Elena Kamynina
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Adetutu F Farinola
- University of Ibadan; Faculty of Public Health, Department of Human Nutrition and Dietetics; Seat of Wisdom Chapel Ibadan Oyo State Nigeria 200282
| | - Marie A Caudill
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patrick J Stover
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patricia A Cassano
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Robert Berry
- Independent cosultant; 1376 N Decatur Rd NE Atlanta Georgia USA 30306
| | - Juan Pablo Peña-Rosas
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; 20 Avenue Appia Geneva GE Switzerland 1211
| |
Collapse
|
31
|
Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2017; 255:955-962. [PMID: 28124145 DOI: 10.1007/s00417-017-3594-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/11/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In the pathogenesis of diabetic retinopathy, damaged retinal mitochondria accelerate apoptosis of retinal capillary cells, and regulation of oxidative stress by manipulating mitochondrial superoxide dismutase (SOD2) protects mitochondrial homeostasis and prevents the development of diabetic retinopathy. Diabetes also activates matrix metalloproteinase-9 (MMP-9), and activated MMP-9 damages retinal mitochondria. Recent studies have shown a dynamic DNA methylation process playing an important role in regulation of retinal MMP-9 transcription in diabetes; the aim of this study is to investigate the role of oxidative stress in MMP-9 transcription. METHODS The effect of regulation of mitochondrial superoxide on DNA methylation of MMP-9 promoter region was investigated in retinal endothelial cells incubated in the presence or absence of a MnSOD mimetic MnTBAP, by quantifying the levels of 5 methyl cytosine (5mC) and hydroxyl-methyl cytosine (5hmC). The binding of DNA methylating, and of hydroxymenthylating enzymes (Dnmts and Tets, respectively), at MMP-9 promoter (by chromatin immunoprecipitation) was also evaluated. The in vitro results were confirmed in the retina of diabetic mice overexpressing SOD2. RESULTS MnTBAP attenuated glucose-induced decrease in 5mC levels and increase on Dnmt1 binding at the MMP-9 promoter region. MnTBAP also ameliorated alterations in 5hmC levels and Tet binding, regulated MMP-9 transcription, and prevented mitochondrial damage. Similarly, mice overexpressing SOD2 were protected from diabetes-induced alteration in MMP-9 promoter methylation, and its transcription. CONCLUSIONS Thus, regulation of oxidative stress by pharmacologic/genetic approaches maintains retinal mitochondrial homeostasis by ameliorating epigenetic modifications in the MMP-9 promoter region.
Collapse
|
32
|
Choiniere J, Wang L. Exposure to inorganic arsenic can lead to gut microbe perturbations and hepatocellular carcinoma. Acta Pharm Sin B 2016; 6:426-429. [PMID: 27709011 PMCID: PMC5045549 DOI: 10.1016/j.apsb.2016.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
Arsenic is a carcinogenic environmental factor found in food and drinking water around the world. The mechanisms in which arsenic alters homeostasis are not fully understood. Over the past few decades, light has been shed on varying mechanisms in which arsenic induces cancer. Such mechanisms include gut microbe perturbations, genotoxic effects, and epigenetic modification. Gut microbe perturbations have been shown to increase the level of pathogen-associated molecular patterns such as lipopolysaccharide (LPS) leading to uncontained inflammation. Increase in inflammation is the major factor in cirrhosis leading to hepatocellular carcinoma. Alterations in gut permeability and metabolites have also been observed as a fallout of arsenic induced gut microbe modification. The guts proximity and interaction through portal flow make the liver susceptible to gut perturbations and ensuing inflammatory responses. Genotoxic and epigenetic dysregulation induced by arsenic and its toxic metabolites present a more direct mechanism that works synergistically with gut microbe perturbations to induce the incidence of cancers. These pathways combined could be some of the main causes of arsenic-induced carcinogenesis.
Collapse
|
33
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
34
|
Li L, Chen F. Oxidative stress, epigenetics, and cancer stem cells in arsenic carcinogenesis and prevention. ACTA ACUST UNITED AC 2016; 2:57-63. [PMID: 27134817 DOI: 10.1007/s40495-016-0049-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The carcinogenic role of arsenic has been extensively studied for more than half century. How arsenic causes human cancer, however, remains to be fully elucidated. In this brief review, we focus our attentions on the most recent discoveries by us and others on the capabilities of arsenic in inducing generation of reactive oxygen species (ROS), expression of microRNAs (miRNAs) and the generation of the cancer stem cells. We believe that these new understandings on the mechanisms of arsenic-induced carcinogenesis will shed light on the prevention and treatment of human cancers resulted from environmental or occupational arsenic exposure. Furthermore, these latest findings on arsenic-induced cellular responses will also have an important impact on the investigation of the carcinogenic effects of other environmental or occupational carcinogens or hazards.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201
| |
Collapse
|
35
|
Mukhopadhyay P, Greene RM, Pisano MM. Cigarette smoke induces proteasomal-mediated degradation of DNA methyltransferases and methyl CpG-/CpG domain-binding proteins in embryonic orofacial cells. Reprod Toxicol 2015; 58:140-8. [PMID: 26482727 DOI: 10.1016/j.reprotox.2015.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Orofacial clefts, the most prevalent of developmental anomalies, occur with a frequency of 1 in 700 live births. Maternal cigarette smoking during pregnancy represents a risk factor for having a child with a cleft lip and/or cleft palate. Using primary cultures of first branchial arch-derived cells (1-BA cells), which contribute to the formation of the lip and palate, the present study addressed the hypothesis that components of cigarette smoke alter global DNA methylation, and/or expression of DNA methyltransferases (Dnmts) and various methyl CpG-binding proteins. Primary cultures of 1-BA cells, exposed to 80μg/mL cigarette smoke extract (CSE) for 24h, exhibited a >13% decline in global DNA methylation and triggered proteasomal-mediated degradation of Dnmts (DNMT-1 and -3a), methyl CpG binding protein 2 (MeCP2) and methyl-CpG binding domain protein 3 (MBD-3). Pretreatment of 1-BA cells with the proteasomal inhibitor MG-132 completely reversed such degradation. Collectively, these data allow the suggestion of a potential epigenetic mechanism underlying maternal cigarette smoke exposure-induced orofacial clefting.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, United States.
| | - M Michele Pisano
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
36
|
Mazumdar M, Valeri L, Rodrigues EG, Ibne Hasan MOS, Hamid R, Paul L, Selhub J, Silva F, Mostofa MG, Quamruzzaman Q, Rahman M, Christiani DC. Polymorphisms in maternal folate pathway genes interact with arsenic in drinking water to influence risk of myelomeningocele. ACTA ACUST UNITED AC 2015; 103:754-62. [PMID: 26250961 DOI: 10.1002/bdra.23399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/06/2015] [Accepted: 05/29/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arsenic induces neural tube defects in many animal models. Additionally, studies have shown that mice with specific genetic defects in folate metabolism and transport are more susceptible to arsenic-induced neural tube defects. We sought to determine whether 14 single-nucleotide polymorphisms in genes involved in folate metabolism modified the effect of exposure to drinking water contaminated with inorganic arsenic and posterior neural tube defect (myelomeningocele) risk. METHODS Fifty-four mothers of children with myelomeningocele and 55 controls were enrolled through clinical sites in rural Bangladesh in a case-control study of the association between environmental arsenic exposure and risk of myelomeningocele. We assessed participants for level of myelomeningocele, administered questionnaires, conducted biological and environmental sample collection, and performed genotyping. Inductively coupled plasma mass spectrometry was used to measure inorganic arsenic concentration in drinking water. Candidate single-nucleotide polymorphisms were identified through review of the literature. RESULTS Drinking water inorganic arsenic concentration was associated with increased risk of myelomeningocele for participants with 4 of the 14 studied single-nucleotide polymorphisms in genes involved in folate metabolism: the AA/AG genotype of rs2236225 (MTHFD1), the GG genotype of rs1051266 (SLC19A1), the TT genotype of rs7560488 (DNMT3A), and the GG genotype of rs3740393 (AS3MT) with adjusted odds ratio of 1.13, 1.31, 1.20, and 1.25 for rs2236225, rs1051266, rs7560488, and rs3740393, respectively. CONCLUSION Our results support the hypothesis that environmental arsenic exposure increases the risk of myelomeningocele by means of interaction with folate metabolic pathways.
Collapse
Affiliation(s)
- Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Linda Valeri
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ema G Rodrigues
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | | | - Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Fareesa Silva
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
37
|
Mazumdar M, Ibne Hasan MOS, Hamid R, Valeri L, Paul L, Selhub J, Rodrigues EG, Silva F, Mia S, Mostofa MG, Quamruzzaman Q, Rahman M, Christiani DC. Arsenic is associated with reduced effect of folic acid in myelomeningocele prevention: a case control study in Bangladesh. Environ Health 2015; 14:34. [PMID: 25885259 PMCID: PMC4404044 DOI: 10.1186/s12940-015-0020-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Arsenic induces neural tube defects in several animal models, but its potential to cause neural tube defects in humans is unknown. Our objective was to investigate the associations between maternal arsenic exposure, periconceptional folic acid supplementation, and risk of posterior neural tube defect (myelomeningocele) among a highly exposed population in rural Bangladesh. METHODS We performed a case-control study that recruited physician-confirmed cases from community health clinics served by Dhaka Community Hospital in Bangladesh, as well as local health facilities that treat children with myelomeningocele. Controls were selected from pregnancy registries in the same areas. Maternal arsenic exposure was estimated from drinking water samples taken from wells used during the first trimester of pregnancy. Periconceptional folic acid use was ascertained by self-report, and maternal folate status was further assessed by plasma folate levels measured at the time of the study visit. RESULTS Fifty-seven cases of myelomeningocele were identified along with 55 controls. A significant interaction was observed between drinking water inorganic arsenic and periconceptional folic acid use. As drinking water inorganic arsenic concentrations increased from 1 to 25 μg/L, the estimated protective effect of folic acid use declined (OR 0.22 to 1.03), and was not protective at higher concentrations of arsenic. No main effect of arsenic exposure on myelomeningocele risk was identified. CONCLUSIONS Our study found a significant interaction between drinking water inorganic arsenic concentration from wells used during the first trimester of pregnancy and reported intake of periconceptional folic acid supplements. Results suggest that environmental arsenic exposure reduces the effectiveness of folic acid supplementation in preventing myelomeningocele.
Collapse
Affiliation(s)
- Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA.
| | | | - Rezina Hamid
- Bangladesh Medical College, 14/A Dhanmondi, Dhaka, 1209, Bangladesh.
| | - Linda Valeri
- Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA, USA.
| | - Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, USA.
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, USA.
| | - Ema G Rodrigues
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA.
| | - Fareesa Silva
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
| | - Selim Mia
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - Md Golam Mostofa
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - Quazi Quamruzzaman
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - Mahmuder Rahman
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA.
| |
Collapse
|
38
|
Li C, Guo S, Zhang M, Gao J, Guo Y. DNA methylation and histone modification patterns during the late embryonic and early postnatal development of chickens. Poult Sci 2015; 94:706-21. [PMID: 25691759 DOI: 10.3382/ps/pev016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Early mammalian embryonic cells have been proven to be essential for embryonic development and the health of neonates. A series of epigenetic reprogramming events, including DNA methylation and histone modifications, occur during early embryonic development. However, epigenetic marks in late embryos and neonates are not well understood, especially in avian species. To investigate the epigenetic patterns of developing embryos and posthatched chicks, embryos at embryonic day 5 (E5), E8, E11, E14, E17, and E20 and newly hatched chicks on day of life 1 (D1), D7, D14, D21 were collected. The levels of global DNA methylation and histone H3 at lysine 9 residue (H3K9) modifications were measured in samples of liver, jejunum, and breast skeletal muscles by Western blotting and immunofluorescence staining. According to our data, decreased levels of proliferating cell nuclear antigen expression were found in the liver and a V-shaped pattern of proliferating cell nuclear antigen expression was found in the jejunum. The level of proliferating cell nuclear antigen in muscle was relatively stable. Caspase 3 expression gradually decreased over time in liver, was stable in the jejunum, and increased in muscle. Levels of DNA methylation and H3K9 acetylation decreased in liver over time, while the pattern was N-shaped in jejunal tissue and W-shaped in pectoral muscles, and these changes were accompanied by dynamic changes of DNA methyltransferases, histone acetyltransferases 1, and histone deacetylase 2. Moreover, dimethylation, trimethylation, and acetylation of H3K9 were expressed in a time- and tissue-dependent manner. After birth, epigenetic marks were relatively stable and found at lower levels. These results indicate that spatiotemporal specific epigenetic alterations could be critical for the late development of chick embryos and neonates.
Collapse
Affiliation(s)
- Changwu Li
- State Key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuangshuang Guo
- State Key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Ming Zhang
- State Key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jing Gao
- State Key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
39
|
Zhang A, Gao C, Han X, Wang L, Yu C, Zeng X, Chen L, Li D, Chen W. Inactivation of p15 INK4b in chronic arsenic poisoning cases. Toxicol Rep 2014; 1:692-698. [PMID: 28962283 PMCID: PMC5598098 DOI: 10.1016/j.toxrep.2014.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/30/2014] [Accepted: 08/13/2014] [Indexed: 11/27/2022] Open
Abstract
Arsenic exposure from burning high arsenic-containing coal has been associated with human skin lesion and cancer. However, the mechanisms of arsenic-related carcinogenesis are not fully understood. Inactivation of critical tumor suppression genes by epigenetic regulation or genetic modification might contribute to arsenic-induced carcinogenicity. This study aims to clarify the correlation between arsenic pollution and functional defect of p15INK4b gene in arsenic exposure residents from a region of Guizhou Province, China. To this end, 103 arsenic exposure residents and 105 control subjects were recruited in this study. The results showed that the exposure group exhibited higher levels of urinary and hair arsenic compared with the control group (55.28 vs 28.87 μg/L, 5.16 vs 1.36 μg/g). Subjects with higher arsenic concentrations are more likely to have p15INK4b methylation and gene deletion (χ2 = 4.28, P = 0.04 and χ2 = 4.31, P = 0.04). We also found that the degree of p15INK4b hypermethylation and gene deletion occurred at higher incidence in the poisoning cases with skin cancer (3.7% and 14.81% in non-skin cancer group, 41.18% and 47.06 in skin cancer group), and were significantly associated with the stage of skin lesions (χ2 = 12.82, P < 0.01 and χ2 = 7.835, P = 0.005). These observations indicate that inactivation of p15INK4b through genetic alteration or epigenetic modification is a common event that is associated with arsenic exposure and the development of arsenicosis.
Collapse
Affiliation(s)
- Aihua Zhang
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Chen Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Han
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Lifang Wang
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Chun Yu
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Xiaowen Zeng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
40
|
Bustaffa E, Stoccoro A, Bianchi F, Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 2014; 88:1043-67. [PMID: 24691704 DOI: 10.1007/s00204-014-1233-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Arsenic is a human carcinogen with weak mutagenic properties that induces tumors through mechanisms not yet completely understood. People worldwide are exposed to arsenic-contaminated drinking water, and epidemiological studies showed a high percentage of lung, bladder, liver, and kidney cancer in these populations. Several mechanisms by which arsenical compounds induce tumorigenesis were proposed including genotoxic damage and chromosomal abnormalities. Over the past decade, a growing body of evidence indicated that epigenetic modifications have a role in arsenic-inducing adverse effects on human health. The main epigenetic mechanisms are DNA methylation in gene promoter regions that regulate gene expression, histone tail modifications that regulate the accessibility of transcriptional machinery to genes, and microRNA activity (noncoding RNA able to modulate mRNA translation). The "double capacity" of arsenic to induce mutations and epimutations could be the main cause of arsenic-induced carcinogenesis. The aim of this review is to better clarify the mechanisms of the initiation and/or the promotion of arsenic-induced carcinogenesis in order to understand the best way to perform an early diagnosis and a prompt prevention that is the key point for protecting arsenic-exposed population. Studies on arsenic-exposed population should be designed in order to examine more comprehensively the presence and consequences of these genetic/epigenetic alterations.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56123, Pisa, Italy
| | | | | | | |
Collapse
|
41
|
Sun Y, Liu C, Liu Y, Hosokawa T, Saito T, Kurasaki M. Changes in the expression of epigenetic factors during copper-induced apoptosis in PC12 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1023-1028. [PMID: 24798901 DOI: 10.1080/10934529.2014.894847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite extensive research on copper toxicity the mechanisms involved are not fully characterized. There have been many recent reports concerning the relationship between epigenetic factors and cell metabolism, but the effects of copper exposure on epigenetic factors have not been investigated. In this study, an in vitro culture system was employed to study the influence of copper on apoptosis and epigenetic factors in PC12 cells. When PC12 cells were exposed to copper, DNA damage was observed as DNA fragmentation. In addition, cytosolic cytochrome c levels were increased by copper treatment. These results suggested that copper induced apoptosis via an oxidative stress pathway. This was consistent with the observation that copper-induced apoptosis was enhanced by further oxidative stress induced by exposing cells to H₂O₂. In addition, the epigenetic factors were significantly increased in apoptotic cells following exposure to copper and oxidative stress.
Collapse
Affiliation(s)
- Yongkun Sun
- a Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University , Sapporo , Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ahir BK, Sanders AP, Rager JE, Fry RC. Systems biology and birth defects prevention: blockade of the glucocorticoid receptor prevents arsenic-induced birth defects. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:332-8. [PMID: 23458687 PMCID: PMC3616967 DOI: 10.1289/ehp.1205659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/21/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology-based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. OBJECTIVES First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. METHODS Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. RESULTS The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. CONCLUSIONS Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention.
Collapse
Affiliation(s)
- Bhavesh K Ahir
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|