1
|
Ahmad-Hanafi S, Zulkifli I, Ramiah SK, Chung ELT, Kamil R, Sazili AQ, Mashitah J. Prenatal auditory stimulation and impacts on physiological response to feed restriction in broiler chickens at market age. Poult Sci 2024; 103:103948. [PMID: 39127008 PMCID: PMC11367141 DOI: 10.1016/j.psj.2024.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 08/12/2024] Open
Abstract
Feed restriction could induce physiological stress in broiler chickens, leading to welfare issues. Prenatal stimulation could improve stress-coping mechanisms in poultry. The present study aimed to elucidate the effects of subjecting developing embryos to auditory stimulation on physiological stress response to feed restriction in broiler chickens at market age. A total of 423 hatching eggs of Cobb 500 (Gallus domesticus) were subjected to the following auditory treatments: 1) no additional sound treatment other than the background sound of the incubator's compressors at 40 dB (CONTROL), 2) exposure to pre-recorded traffic noise at 90 dB (NOISE), and 3) exposure to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. On d 42, an equal number of birds from each prenatal auditory stimulation (PAS) group were subjected to either ad libitum feeding (AL) or 30-h of feed restriction (FR) in a completely randomised design. The FR chickens exhibited significantly higher serum levels of corticosterone (CORT), and heat shock protein (HSP) 70 compared to those of AL. Prenatal auditory stimulation, particularly NOISE, led to lower serum levels of CORT and alpha-1-acid glycoprotein (AGP) levels compared to the CONTROL group. Additionally, NOISE significantly increased brain mRNA glucocorticoid receptor and HSP70 gene expression. The cecal population of E. coli and Lactobacillus spp. was not significantly affected by prenatal auditory stimulation. In conclusion, our findings suggest that prenatal auditory stimulation, particularly NOISE, positively impacts broiler chickens' ability to cope with feed restriction.
Collapse
Affiliation(s)
- S Ahmad-Hanafi
- School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, 22200, Terengganu, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - I Zulkifli
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia.
| | - S K Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - E L T Chung
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - R Kamil
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Laboratory of Computational Statistics and Operations Research, Institute for Mathematical Research, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - A Q Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Selangor, Malaysia
| | - J Mashitah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Hanafi S, Zulkifli I, Ramiah S, Chung E, Kamil R, Awad E. Prenatal auditory stimulation induces physiological stress responses in developing embryos and newly hatched chicks. Poult Sci 2022; 102:102390. [PMID: 36608455 PMCID: PMC9826867 DOI: 10.1016/j.psj.2022.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Prenatal stress may evoke considerable physiological consequences on the developing poultry embryos and neonates. The present study aimed to determine prenatal auditory stimulation effects on serum levels of ceruloplasmin (CPN), alpha-1-acid glycoprotein (AGP), corticosterone (CORT), and heat shock protein 70 (Hsp70) regulations in developing chicken embryos and newly hatched chicks. Hatching eggs were subjected to the following auditory treatments; 1) control (no additional sound treatment other than the background sound of the incubator's compressors at 40 dB), 2) noise exposure (eggs were exposed to pre-recorded traffic noise at 90 dB) (NOISE), and 3) music exposure (eggs were exposed to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. The MUSIC (1.37 ± 0.1 ng/mL) and NOISE (1.49 ± 0.2 ng/mL) treatments significantly elevated CPN at ED 15 compared to the Control (0.82 ± 0.04 ng/mL) group and post-hatch day 1 (Control, 1.86 ± 0.2 ng/mL; MUSIC, 2.84 ± 0.4 ng/mL; NOISE, 3.04 ± 0.3 ng/mL), AGP at ED 15 (Control, 39.1 ± 7.1 mg/mL; MUSIC, 85.5 ± 12.9 mg/mL; NOISE, 85.4 ± 15.1 mg/mL) and post-hatch day 1 (Control, 20.4 ± 2.2 mg/mL; MUSIC, 30.5 ± 4.7 mg/mL; NOISE, 30.3 ± 1.4 mg/mL). CORT significantly increased at ED 15 in both MUSIC (9.024 ± 1.4 ng/mL) and NOISE (12.15 ± 1.6 ng/mL) compared to the Control (4.39 ± 0.7 ng/mL) group. On the other hand, MUSIC exposed embryos had significantly higher Hsp70 expression than their Control and NOISE counterparts at ED 18 (Control, 12.9 ± 1.2 ng/mL; MUSIC, 129.6 ± 26.4 ng/mL; NOISE, 13.3 ± 2.3 ng/mL) and post-hatch day 1 (Control, 15.2 ± 1.7 ng/mL; MUSIC, 195.5 ± 68.5 ng/mL; NOISE, 13.2 ± 2.7 ng/mL). In conclusion, developing chicken embryos respond to auditory stimulation by altering CPN, AGP, CORT, and Hsp70. The alterations of these analytes could be important in developing embryos and newly hatched chicks to cope with stress attributed to auditory stimulation.
Collapse
Affiliation(s)
- S.A. Hanafi
- School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Terengganu, Malaysia,Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - I. Zulkifli
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Animal Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Corresponding author:
| | - S.K. Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - E.L.T. Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Animal Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - R. Kamil
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Laboratory of Computational Statistics and Operations Research, Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - E.A. Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Poultry Production, University of Khartoum, Khartoum North 13314, Sudan
| |
Collapse
|
3
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
4
|
Snowdon CT. Animal Signals, Music and Emotional Well-Being. Animals (Basel) 2021; 11:2670. [PMID: 34573636 PMCID: PMC8472833 DOI: 10.3390/ani11092670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
Playing music or natural sounds to animals in human care is thought to have beneficial effects. An analysis of published papers on the use of human-based music with animals demonstrates a variety of different results even within the same species. These mixed results suggest the value of tailoring music to the sensory systems of the species involved and in selecting musical structures that are likely to produce the desired effects. I provide a conceptual framework based on the combined knowledge of the natural communication system of a species coupled with musical structures known to differentially influence emotional states, e.g., calming an agitated animal versus stimulating a lethargic animal. This new concept of animal-based music, which is based on understanding animal communication, will lead to more consistent and specific effects of music. Knowledge and appropriate use of animal-based music are important in future research and applications if we are to improve the well-being of animals that are dependent upon human care for their survival.
Collapse
Affiliation(s)
- Charles T Snowdon
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
5
|
Long-term effects of prenatal sound experience on songbird behavior and their relation to song learning. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02939-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Incubation and hatching conditions of laying hen chicks explain a large part of the stress effects from commercial large-scale hatcheries. Poult Sci 2020; 100:1-8. [PMID: 33357671 PMCID: PMC7772692 DOI: 10.1016/j.psj.2020.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022] Open
Abstract
In commercial egg production, laying hen chicks are exposed to several stressful events during incubation, hatching, and their first hours in life. We have previously shown that hatching and processing are associated with increased corticosterone concentration and further affect behavior and stress sensitivity in a short- as well as long-term perspective. However, it is not known whether these long-term stress effects are caused by the hatchery processing (sex sorting, vaccination, conveying, and loading for transport) or if they are mainly caused by potentially stressful events before processing, during incubation and hatching. In the present study, the aim was to assess the effects of incubation and hatching only, compared to stress effects from the entire hatchery processing. We compared Lohmann LSL chicks incubated, hatched, and processed in a commercial hatchery with chicks incubated and hatched at the same time but not further processed. We studied behavior in a novel arena and during tonic immobility, as well as weight development and corticosterone reaction during a stress challenge. Processed chicks had poorer weight development and were more active in the novel arena test. However, there were no significant differences between the groups in corticosterone reactivity or tonic immobility. When comparing with previous data, both groups had elevated corticosterone concentrations compared to what we had previously reported from chicks hatched under calm and non-stressful conditions. In conclusion, incubation and hatching alone caused long-term stress effects in chickens, but further processing exacerbated these effects to some extent.
Collapse
|
7
|
Neuroanatomical changes of the medial prefrontal cortex of male pups of Wistar rat after prenatal and postnatal noise stress. Acta Histochem 2020; 122:151589. [PMID: 32778245 DOI: 10.1016/j.acthis.2020.151589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Recent evidences showed that, noise stress causes abnormal changes in structure and function of central nervous system (CNS). The Current study was conducted to evaluate some stereological parameters of the medial prefrontal cortex (mPFC) of male pups of Wistar rat after prenatal and early postnatal noise stress. 18 pregnant Wistar rats were randomly divided into prenatal noise-exposed (NE) group, postnatal NE group, and controls. Male pups of NE groups were exposed to noise 100 dB at the frequency ranges of 500-8000 Hz, 4 h per day from gestational day one (GD1) to GD21 for the prenatal NE group, and from postnatal day one (PND1) to PND21 in the postnatal NE group. The Control group animals were maintained under standard condition without noise stimulation. Corticosterone level in plasma was measured using ELISA technique. Changes of the neurons and non-neurons cells number and volume of the mPFC were evaluated by stereological analysis. Tunnel assay was also used for detection of apoptotic cells. Increase in plasma corticosterone level, decrease in the number of neurons, and increase in the apoptotic cells number were observed in both NE groups. Decrease in volume of mPFC and also in non-neurons cells number was observed in the prenatal NE group. An increase in the non-neurons number was seen in the postnatal NE group. Data of the current comparative study showed that, noise stress during prenatal and early postnatal periods can induce the abnormal alteration in some stereological parameters of mPFC in male pups of Wistar rat. These negative alterations were more remarkable after prenatal noise stress.
Collapse
|
8
|
Pandey M, Singh C, Goud ESK, Vedamurthy VG, Singh D, Onteru SK. Effect of Vedic music on steroidogenic gene expression in 3D-cultured buffalo granulosa cell spheroids model system, a pilot study. Reprod Domest Anim 2020; 56:231-238. [PMID: 32144832 DOI: 10.1111/rda.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Abstract
Music is known for reducing stress, anxiety and depression, improving cognitive performance, and enhancing oestrogen levels. However, its effect on non-auditory mammalian cell system and the molecular events leading to higher oestrogen levels is less explored. Therefore, the present study targeted to know the direct effects of a peaceful Vedic music on 3D cultured buffalo granulosa cell spheroids. The spheroids were daily exposed to the Mahamrityunjaya mantra, a kind of Vedic chants, for 1.5 hr for 6 days. After 6 days, the music effect was analysed by the expression analysis of steroidogenic (CYP19A1, STAR and HSD17β1) and proliferative marker (PCNA) genes. Interestingly, the CYP19A1 gene expression was significantly upregulated by 3.464 ± 0.15 folds in the music exposed spheroids than the non-exposed spheroids. However, the expression of other steroidogenic and proliferative genes was unaltered. These observations provided a transcriptional clue for higher estradiol levels by the music and a scope to use Vedic chants for increasing the CYP19A1 expression to help tackle some pathophysiological conditions.
Collapse
Affiliation(s)
- Mamta Pandey
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Chhama Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Emmagouni Sharath K Goud
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Veerappa G Vedamurthy
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
9
|
Donofre AC, da Silva IJO, Ferreira IEP. Sound exposure and its beneficial effects on embryonic growth and hatching of broiler chicks. Br Poult Sci 2019; 61:79-85. [PMID: 31559840 DOI: 10.1080/00071668.2019.1673315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. The physical factors that involve artificial incubation determine embryonic growth and hatching of broiler chicks, and have important implications for the poultry production chain and chick welfare. This study explored the effects of sound exposure on incubation responses (hatching, embryonic development and chick quality).2. A 2 × 2 factorial experiment with the factors 'sound pressure level' (at 70 and 90 dB) and 'species-specific vocalisations' (at 75dB - 85dB) was performed in four experimental incubators (loaded with 90 eggs each) for eight consecutive cycles of incubation, totalling 2880 Cobb-500® broiler breeder eggs.3. Embryonic growth was not influenced by any experimental factor, but the highest sound pressure level (90 dB) led to earlier hatching, higher hatchability, better chick quality and lower weight at hatching. Additional effects of species-specific vocalisations were found at 70 dB noise, which caused early hatching and better chick quality.4. It was concluded that the loud noise found in commercial hatcheries (at 90 dB) can be beneficial. Furthermore, the presence of species-specific vocalisations could improve the hatching time and chick quality from experimental incubators (at 70 dB). However, this would not provide additional benefits in commercial hatcheries, due to the machinery noise masking them.
Collapse
Affiliation(s)
- A C Donofre
- Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture - University of São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - I J O da Silva
- Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture - University of São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - I E P Ferreira
- Center of Natural Sciences Federal University of São Carlos (UFSCar), Buri, SP, Brazil
| |
Collapse
|
10
|
Kathpalia P, Nag TC, Chattopadhyay P, Sharma A, Bhat MA, Roy TS, Wadhwa S. In ovo Sound Stimulation Mediated Regulation of BDNF in the Auditory Cortex and Hippocampus of Neonatal Chicks. Neuroscience 2019; 408:293-307. [PMID: 31026564 DOI: 10.1016/j.neuroscience.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to mediate activity-dependent changes in the developing auditory system. Its expression in the brainstem auditory nuclei, auditory cortex and hippocampus of neonatal chicks (Gallus gallus domesticus) in response to in ovo high intensity sound exposure at 110 dB (arrhythmic sound: recorded traffic noise, 30-3000 Hz with peak at 2700 Hz, rhythmic sound: sitar music, 100-4000 Hz) was examined to understand the previously reported altered volume and neuronal number in these regions. In the brainstem auditory nuclei, no mature BDNF, but proBDNF at the protein level was detected, and no change in its levels was observed after in ovo sound stimulation (music and noise). Increased ProBDNF protein levels were found in the auditory cortex in response to arrhythmic sound, along with decreased levels of one of the BDNF mRNA transcripts, in response to both rhythmic and arrhythmic sound stimulation. In the hippocampus, increased levels of mature BDNF were found in response to music. Expression microarray analysis was performed to understand changes in gene expression in the hippocampus in response to music and noise, followed by gene ontology analysis showing enrichment of probable signaling pathways. Differentially expressed genes like CAMK1 and STAT1 were found to be involved in downstream signaling on comparing music versus noise-exposed chicks. In conclusion, we report that BDNF is differentially regulated in the auditory cortex at the transcriptional and post-translational level, and in the hippocampus at the post-translational level in response to in ovo sound stimulation.
Collapse
Affiliation(s)
- Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India; Department of Anatomy, North Delhi Municipal Medical College, New Delhi, India
| |
Collapse
|
11
|
Bieńkowska M, Mitas AW. Linear sound attenuation model for assessing external stimuli in prenatal period. Comput Biol Med 2018; 100:289-295. [PMID: 29198465 DOI: 10.1016/j.compbiomed.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
The popularization of acoustic stimulation during the prenatal period encourages the analysis of sounds reaching the inside of the uterus. To assess the distortion of any sound stimuli, a mathematical model of attenuation has to be used. In this paper a mathematical model is proposed on the basis of data from a physical model. The physical model consisted of muscle slices of two different thicknesses placed in a tank filled with water. The amplitudes of sinusoidal waves between 160 and 2000 Hz were measured under the water surface. Using the collected data, a linear mathematical model of sound attenuation on the way to the fetal ear was created. The results indicated a rise in the amount of sound attenuation for increasing frequencies. Analysis of slope coefficients for two muscle thicknesses revealed that there is no significant difference between attenuation by the thinner and the thicker tissue. Finally, the model was verified with data obtained during experiments on animals. The proposed model of the sound transmission allowed assessment of the attenuation by a soft tissue. It reveals changes in the sound reaching fetal ears, which can make acoustic stimulation different than what is heard in postnatal life. The model can be used to simulate the distortion of any sound which is proposed to prenatal stimulation and to assess its quality.
Collapse
Affiliation(s)
- Maria Bieńkowska
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.
| | - Andrzej W Mitas
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
| |
Collapse
|
12
|
Salehi MS, Namavar MR, Tamadon A, Bahmani R, Jafarzadeh Shirazi MR, Khazali H, Dargahi L, Pandamooz S, Mohammad-Rezazadeh F, Rashidi FS. The Effects of Acoustic White Noise on the Rat Central Auditory System During the Fetal and Critical Neonatal Periods: A Stereological Study. Noise Health 2017; 19:24-30. [PMID: 28164936 PMCID: PMC5397999 DOI: 10.4103/1463-1741.199239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
AIM To evaluate the effects of long-term, moderate level noise exposure during crucial periods of rat infants on stereological parameters of medial geniculate body (MGB) and auditory cortex. MATERIALS AND METHODS Twenty-four male offspring of 12 pregnant rats were divided into four groups: fetal-to-critical period group, which were exposed to noise from the last 10 days of fetal life till postnatal day (PND) 29; fetal period group that exposed to noise during the last 10 days of fetal life; critical period group, exposed to noise from PND 15 till PND 29, and control group. White noise at 90 dB for 2 h per day was used. STATISTICAL ANALYSIS USED Variance for variables was performed using Proc GLM followed by mean comparison by Duncan's multiple range test. RESULTS Numerical density of neurons in MGB of fetal-to-critical period group was lower than control group. Similar results were seen in numerical density of neurons in layers IV and VI of auditory cortex. Furthermore, no significant difference was observed in the volume of auditory cortex among groups, and only MGB volume in fetal-to-critical period group was higher than other groups. Estimated total number of neurons in MGB was not significantly different among groups. CONCLUSION It seems necessary to prevent long-term moderate level noise exposure during fetal-to-critical neonatal period.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
- Department of Animal Sciences, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Tamadon
- Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raziyeh Bahmani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Homayoun Khazali
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Lee SM, Kim BK, Kim TW, Ji ES, Choi HH. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups. J Exerc Rehabil 2016; 12:148-55. [PMID: 27419108 PMCID: PMC4934957 DOI: 10.12965/jer.1632638.319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 01/22/2023] Open
Abstract
Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.
Collapse
Affiliation(s)
- Sung-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Bo-Kyun Kim
- KBS Institute of the Sports, Arts and Science, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Hee Choi
- Division of Leisure & Sports Science, Department of Exercise Prescription, Dongseo University, Busan, Korea
| |
Collapse
|
14
|
|
15
|
Kumar V, Nag TC, Sharma U, Mewar S, Jagannathan NR, Wadhwa S. High resolution 1H NMR-based metabonomic study of the auditory cortex analogue of developing chick (Gallus gallus domesticus) following prenatal chronic loud music and noise exposure. Neurochem Int 2014; 76:99-108. [DOI: 10.1016/j.neuint.2014.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/16/2014] [Accepted: 07/04/2014] [Indexed: 02/07/2023]
|
16
|
Prenatal music stimulation facilitates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus). J Biosci 2014; 39:107-17. [PMID: 24499795 DOI: 10.1007/s12038-013-9401-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rhythmic sound or music is known to improve cognition in animals and humans. We wanted to evaluate the effects of prenatal repetitive music stimulation on the remodelling of the auditory cortex and visual Wulst in chicks. Fertilized eggs (0 day) of white leghorn chicken (Gallus domesticus) during incubation were exposed either to music or no sound from embryonic day 10 until hatching. Auditory and visual perceptual learning and synaptic plasticity, as evident by synaptophysin and PSD-95 expression, were done at posthatch days (PH) 1, 2 and 3. The number of responders was significantly higher in the music stimulated group as compared to controls at PH1 in both auditory and visual preference tests. The stimulated chicks took significantly lesser time to enter and spent more time in the maternal area in both preference tests. A significantly higher expression of synaptophysin and PSD-95 was observed in the stimulated group in comparison to control at PH1-3 both in the auditory cortex and visual Wulst. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results suggest facilitation of postnatal perceptual behaviour and synaptic plasticity in both auditory and visual systems following prenatal stimulation with complex rhythmic music.
Collapse
|
17
|
Differential effects of prenatal chronic high-decibel noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus). Neuroscience 2014; 269:302-17. [DOI: 10.1016/j.neuroscience.2014.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023]
|