1
|
Saby JN, Mulcahey PJ, Benke TA, Peters SU, Standridge SM, Lieberman DN, Key AP, Percy AK, Nelson CA, Roberts TPL, Neul JL, Marsh ED. Electroencephalographic Correlates of Clinical Severity in the Natural history study of RTT and Related Disorders. Ann Neurol 2024; 96:175-186. [PMID: 38721759 DOI: 10.1002/ana.26948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study was undertaken to characterize quantitative electroencephalographic (EEG) features in participants from the Natural history study of RTT and Related Disorders and to assess the potential for these features to act as objective measures of cortical function for Rett syndrome (RTT). METHODS EEG amplitude and power features were derived from the resting EEG of 60 females with RTT (median age = 10.7 years) and 26 neurotypical females (median age = 10.6 years). Analyses focus on group differences and within the RTT group, associations between the EEG parameters and clinical severity. For a subset of participants (n = 20), follow-up data were available for assessing the reproducibility of the results and the stability in the parameters over 1 year. RESULTS Compared to neurotypical participants, participants with RTT had greater amplitude variability and greater low-frequency activity as reflected by greater delta power, more negative 1/f slope, and lower theta/delta, alpha/delta, beta/delta, alpha/theta, and beta/theta ratios. Greater delta power, more negative 1/f slope, and lower power ratios were associated with greater severity. Analyses of year 1 data replicated the associations between 1/f slope and power ratios and clinical severity and demonstrated good within-subject consistency in these measures. INTERPRETATION Overall, group comparisons reflected a greater predominance of lower versus higher frequency activity in participants with RTT, which is consistent with prior clinical interpretations of resting EEG in this population. The observed associations between the EEG power measures and clinical assessments and the repeatability of these measures underscore the potential for EEG to provide an objective measure of cortical function and clinical severity for RTT. ANN NEUROL 2024;96:175-186.
Collapse
Affiliation(s)
- Joni N Saby
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Timothy A Benke
- Department of Pediatrics, Neurology, Pharmacology, and Otolaryngology, School of Medicine and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Sarika U Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Shannon M Standridge
- Cincinnati Children's Hospital Medical Center, Division of Neurology and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David N Lieberman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Alexandra P Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy P L Roberts
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Neurology Department and Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Brima T, Beker S, Prinsloo KD, Butler JS, Djukic A, Freedman EG, Molholm S, Foxe JJ. Probing a neural unreliability account of auditory sensory processing atypicalities in Rett Syndrome. J Neurodev Disord 2024; 16:28. [PMID: 38831410 PMCID: PMC11149250 DOI: 10.1186/s11689-024-09544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND In the search for objective tools to quantify neural function in Rett Syndrome (RTT), which are crucial in the evaluation of therapeutic efficacy in clinical trials, recordings of sensory-perceptual functioning using event-related potential (ERP) approaches have emerged as potentially powerful tools. Considerable work points to highly anomalous auditory evoked potentials (AEPs) in RTT. However, an assumption of the typical signal-averaging method used to derive these measures is "stationarity" of the underlying responses - i.e. neural responses to each input are highly stereotyped. An alternate possibility is that responses to repeated stimuli are highly variable in RTT. If so, this will significantly impact the validity of assumptions about underlying neural dysfunction, and likely lead to overestimation of underlying neuropathology. To assess this possibility, analyses at the single-trial level assessing signal-to-noise ratios (SNR), inter-trial variability (ITV) and inter-trial phase coherence (ITPC) are necessary. METHODS AEPs were recorded to simple 100 Hz tones from 18 RTT and 27 age-matched controls (Ages: 6-22 years). We applied standard AEP averaging, as well as measures of neuronal reliability at the single-trial level (i.e. SNR, ITV, ITPC). To separate signal-carrying components from non-neural noise sources, we also applied a denoising source separation (DSS) algorithm and then repeated the reliability measures. RESULTS Substantially increased ITV, lower SNRs, and reduced ITPC were observed in auditory responses of RTT participants, supporting a "neural unreliability" account. Application of the DSS technique made it clear that non-neural noise sources contribute to overestimation of the extent of processing deficits in RTT. Post-DSS, ITV measures were substantially reduced, so much so that pre-DSS ITV differences between RTT and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially improved these estimates in the RTT population, but robust differences between RTT and TD were still fully evident. CONCLUSIONS To accurately represent the degree of neural dysfunction in RTT using the ERP technique, a consideration of response reliability at the single-trial level is highly advised. Non-neural sources of noise lead to overestimation of the degree of pathological processing in RTT, and denoising source separation techniques during signal processing substantially ameliorate this issue.
Collapse
Affiliation(s)
- Tufikameni Brima
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience & Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Shlomit Beker
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | - Kevin D Prinsloo
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience & Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John S Butler
- School of Mathematical Sciences, Technological University Dublin, Kevin Street Campus, Dublin 8, Ireland
| | - Aleksandra Djukic
- Rett Syndrome Center, Department of Neurology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience & Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience & Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience & Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA.
| |
Collapse
|
3
|
Neklyudova A, Kuramagomedova R, Voinova V, Sysoeva O. Atypical brain responses to 40-Hz click trains in girls with Rett syndrome: Auditory steady-state response and sustained wave. Psychiatry Clin Neurosci 2024; 78:282-290. [PMID: 38321640 DOI: 10.1111/pcn.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
AIM The current study aimed to infer neurophysiological mechanisms of auditory processing in children with Rett syndrome (RTT)-rare neurodevelopmental disorders caused by MECP2 mutations. We examined two brain responses elicited by 40-Hz click trains: auditory steady-state response (ASSR), which reflects fine temporal analysis of auditory input, and sustained wave (SW), which is associated with integral processing of the auditory signal. METHODS We recorded electroencephalogram findings in 43 patients with RTT (aged 2.92-17.1 years) and 43 typically developing children of the same age during 40-Hz click train auditory stimulation, which lasted for 500 ms and was presented with interstimulus intervals of 500 to 800 ms. Mixed-model ancova with age as a covariate was used to compare amplitude of ASSR and SW between groups, taking into account the temporal dynamics and topography of the responses. RESULTS Amplitude of SW was atypically small in children with RTT starting from early childhood, with the difference from typically developing children decreasing with age. ASSR showed a different pattern of developmental changes: the between-group difference was negligible in early childhood but increased with age as ASSR increased in the typically developing group, but not in those with RTT. Moreover, ASSR was associated with expressive speech development in patients, so that children who could use words had more pronounced ASSR. CONCLUSION ASSR and SW show promise as noninvasive electrophysiological biomarkers of auditory processing that have clinical relevance and can shed light onto the link between genetic impairment and the RTT phenotype.
Collapse
Affiliation(s)
- Anastasia Neklyudova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia
| | - Rabiat Kuramagomedova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - Victoria Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - Olga Sysoeva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| |
Collapse
|
4
|
Darwish M, Passarell J, Youakim JM, Bradley H, Bishop KM. Exposure-Response Efficacy Modeling to Support Trofinetide Dosing in Individuals with Rett Syndrome. Adv Ther 2024; 41:1462-1480. [PMID: 38363467 PMCID: PMC10960884 DOI: 10.1007/s12325-024-02796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Trofinetide was recently approved for the treatment of Rett syndrome (RTT) on the basis of the efficacy and safety findings of the phase 3 LAVENDER study, which used a body weight-based dosing regimen. Exposure-response (E-R) efficacy modeling was used to characterize relationships between trofinetide exposure measures (maximum drug concentration and area under the concentration-time curve for the dosing interval of 0-12 h [AUC0-12]) and efficacy endpoints in RTT clinical studies to support the trofinetide dosing regimen. METHODS Efficacy endpoints were modeled using trofinetide exposure measures predicted from the population pharmacokinetic model and Bayesian estimates. The analysis population for each E-R model comprised individuals receiving placebo or trofinetide who had available trofinetide exposure measures. Efficacy endpoints were scores from the Rett Syndrome Behaviour Questionnaire (RSBQ), the Clinical Global Impression-Improvement, the Communication and Symbolic Behavior Scales Developmental Profile™ Infant-Toddler Checklist (CSBS-DP-IT) Social Composite, and the Rett Syndrome Clinician Rating of Ability to Communicate Choices (RTT-COMC). RESULTS Higher trofinetide exposure was associated with improvements in RSBQ, CSBS-DP-IT Social Composite, and RTT-COMC scores. Assuming target trofinetide AUC0-12 values of 800-1200 μg·h/mL, the reductions in RSBQ total scores at week 12 were approximately five- to seven-fold greater with trofinetide (range 3.55-4.94) versus placebo (0.76). Significant E-R relationships were also found for the CSBS-DP-IT Social Composite and RTT-COMC scores. CONCLUSION E-R efficacy modeling demonstrated significant relationships between trofinetide exposure and RSBQ, CSBS-DP-IT Social Composite, and RTT-COMC scores. Trofinetide is efficacious within the target exposure range, supporting the approved dosing regimen for trofinetide. TRIAL REGISTRATION NCT01703533, NCT02715115, NCT04181723.
Collapse
Affiliation(s)
- Mona Darwish
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, 92130, USA.
| | - Julie Passarell
- Cognigen Corporation (a Simulations Plus Company), Buffalo, NY, USA
| | - James M Youakim
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, 92130, USA
| | - Heather Bradley
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, 92130, USA
| | - Kathie M Bishop
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, 92130, USA
| |
Collapse
|
5
|
Mykins M, Bridges B, Jo A, Krishnan K. Multidimensional Analysis of a Social Behavior Identifies Regression and Phenotypic Heterogeneity in a Female Mouse Model for Rett Syndrome. J Neurosci 2024; 44:e1078232023. [PMID: 38199865 PMCID: PMC10957218 DOI: 10.1523/jneurosci.1078-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024] Open
Abstract
Regression is a key feature of neurodevelopmental disorders such as autism spectrum disorder, Fragile X syndrome, and Rett syndrome (RTT). RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). It is characterized by an early period of typical development with subsequent regression of previously acquired motor and speech skills in girls. The syndromic phenotypes are individualistic and dynamic over time. Thus far, it has been difficult to capture these dynamics and syndromic heterogeneity in the preclinical Mecp2-heterozygous female mouse model (Het). The emergence of computational neuroethology tools allows for robust analysis of complex and dynamic behaviors to model endophenotypes in preclinical models. Toward this first step, we utilized DeepLabCut, a marker-less pose estimation software to quantify trajectory kinematics and multidimensional analysis to characterize behavioral heterogeneity in Het in the previously benchmarked, ethologically relevant social cognition task of pup retrieval. We report the identification of two distinct phenotypes of adult Het: Het that display a delay in efficiency in early days and then improve over days like wild-type mice and Het that regress and perform worse in later days. Furthermore, regression is dependent on age and behavioral context and can be detected in the initial days of retrieval. Together, the novel identification of two populations of Het suggests differential effects on neural circuitry, opens new avenues to investigate the underlying molecular and cellular mechanisms of heterogeneity, and designs better studies for stratifying therapeutics.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Benjamin Bridges
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Angela Jo
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
6
|
Neul JL, Percy AK, Benke TA, Berry-Kravis EM, Glaze DG, Peters SU, Marsh ED, An D, Bishop KM, Youakim JM. Trofinetide Treatment Demonstrates a Benefit Over Placebo for the Ability to Communicate in Rett Syndrome. Pediatr Neurol 2024; 152:63-72. [PMID: 38232652 DOI: 10.1016/j.pediatrneurol.2023.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/27/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Trofinetide was approved by the US Food and Drug Administration for the treatment of Rett syndrome (RTT) in March 2023. Benefiting the ability to communicate in RTT is often identified as the most important caregiver goal for new therapies. This analysis reports the communication-related end points from the phase 3 LAVENDER study of trofinetide in RTT. METHODS Females with RTT, aged five to 20 years, were randomized 1:1 to trofinetide or placebo for 12 weeks. Secondary efficacy end points related to communication were based on change from baseline to week 12 and included the caregiver-rated Communication and Symbolic Behavior Scales Developmental Profile™ Infant-Toddler Checklist (CSBS-DP-IT) Social Composite score (key secondary end point; scores ranged from 0 to 26 [higher scores indicated better communication]) and novel clinician rating scales (0 [normal] to 7 [severe impairment]) measuring the ability to communicate choices nonverbally (RTT-COMC) and verbally (RTT-VCOM). RESULTS Trofinetide demonstrated a statistically significant difference versus placebo for the CSBS-DP-IT Social Composite score (least squares mean [LSM] difference = 1.0; 95% confidence interval [CI], 0.3 to 1.7; P = 0.0064; Cohen's d effect size = 0.43) and a nominally significant difference for the RTT-COMC (LSM difference: -0.3; 95% CI, -0.6 to -0.0; P = 0.0257; Cohen's d effect size = 0.36). As expected, there was no difference for the RTT-VCOM. CONCLUSIONS Significant treatment benefit for trofinetide versus placebo was observed in scales measuring the ability to communicate. These scales may be appropriate for future clinical studies in RTT and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jeffrey L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan K Percy
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy A Benke
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Daniel G Glaze
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Sarika U Peters
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric D Marsh
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Di An
- Acadia Pharmaceuticals Inc, San Diego, California
| | | | | |
Collapse
|
7
|
Brima T, Beker S, Prinsloo KD, Butler JS, Djukic A, Freedman EG, Molholm S, Foxe JJ. Probing a neural unreliability account of auditory sensory processing atypicalities in Rett Syndrome. RESEARCH SQUARE 2024:rs.3.rs-3863341. [PMID: 38352397 PMCID: PMC10862956 DOI: 10.21203/rs.3.rs-3863341/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background In the search for objective tools to quantify neural function in Rett Syndrome (RTT), which are crucial in the evaluation of therapeutic efficacy in clinical trials, recordings of sensory-perceptual functioning using event-related potential (ERP) approaches have emerged as potentially powerful tools. Considerable work points to highly anomalous auditory evoked potentials (AEPs) in RTT. However, an assumption of the typical signal-averaging method used to derive these measures is "stationarity" of the underlying responses - i.e. neural responses to each input are highly stereotyped. An alternate possibility is that responses to repeated stimuli are highly variable in RTT. If so, this will significantly impact the validity of assumptions about underlying neural dysfunction, and likely lead to overestimation of underlying neuropathology. To assess this possibility, analyses at the single-trial level assessing signal-to-noise ratios (SNR), inter-trial variability (ITV) and inter-trial phase coherence (ITPC) are necessary. Methods AEPs were recorded to simple 100Hz tones from 18 RTT and 27 age-matched controls (Ages: 6-22 years). We applied standard AEP averaging, as well as measures of neuronal reliability at the single-trial level (i.e. SNR, ITV, ITPC). To separate signal-carrying components from non-neural noise sources, we also applied a denoising source separation (DSS) algorithm and then repeated the reliability measures. Results Substantially increased ITV, lower SNRs, and reduced ITPC were observed in auditory responses of RTT participants, supporting a "neural unreliability" account. Application of the DSS technique made it clear that non-neural noise sources contribute to overestimation of the extent of processing deficits in RTT. Post-DSS, ITV measures were substantially reduced, so much so that pre-DSS ITV differences between RTT and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially improved these estimates in the RTT population, but robust differences between RTT and TD were still fully evident. Conclusions To accurately represent the degree of neural dysfunction in RTT using the ERP technique, a consideration of response reliability at the single-trial level is highly advised. Non-neural sources of noise lead to overestimation of the degree of pathological processing in RTT, and denoising source separation techniques during signal processing substantially ameliorate this issue.
Collapse
|
8
|
Brima T, Beker S, Prinsloo KD, Butler JS, Djukic A, Freedman EG, Molholm S, Foxe JJ. Probing a neural unreliability account of auditory sensory processing atypicalities in Rett Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.25.24301723. [PMID: 38343802 PMCID: PMC10854351 DOI: 10.1101/2024.01.25.24301723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Background In the search for objective tools to quantify neural function in Rett Syndrome (RTT), which are crucial in the evaluation of therapeutic efficacy in clinical trials, recordings of sensory-perceptual functioning using event-related potential (ERP) approaches have emerged as potentially powerful tools. Considerable work points to highly anomalous auditory evoked potentials (AEPs) in RTT. However, an assumption of the typical signal-averaging method used to derive these measures is "stationarity" of the underlying responses - i.e. neural responses to each input are highly stereotyped. An alternate possibility is that responses to repeated stimuli are highly variable in RTT. If so, this will significantly impact the validity of assumptions about underlying neural dysfunction, and likely lead to overestimation of underlying neuropathology. To assess this possibility, analyses at the single-trial level assessing signal-to-noise ratios (SNR), inter-trial variability (ITV) and inter-trial phase coherence (ITPC) are necessary. Methods AEPs were recorded to simple 100Hz tones from 18 RTT and 27 age-matched controls (Ages: 6-22 years). We applied standard AEP averaging, as well as measures of neuronal reliability at the single-trial level (i.e. SNR, ITV, ITPC). To separate signal-carrying components from non-neural noise sources, we also applied a denoising source separation (DSS) algorithm and then repeated the reliability measures. Results Substantially increased ITV, lower SNRs, and reduced ITPC were observed in auditory responses of RTT participants, supporting a "neural unreliability" account. Application of the DSS technique made it clear that non-neural noise sources contribute to overestimation of the extent of processing deficits in RTT. Post-DSS, ITV measures were substantially reduced, so much so that pre-DSS ITV differences between RTT and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially improved these estimates in the RTT population, but robust differences between RTT and TD were still fully evident. Conclusions To accurately represent the degree of neural dysfunction in RTT using the ERP technique, a consideration of response reliability at the single-trial level is highly advised. Non-neural sources of noise lead to overestimation of the degree of pathological processing in RTT, and denoising source separation techniques during signal processing substantially ameliorate this issue.
Collapse
Affiliation(s)
- Tufikameni Brima
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory Ernest J. Del Monte Institute for Neuroscience &Department of Neuroscience University of Rochester School of Medicine and Dentistry Rochester, New York 14642, USA
| | - Shlomit Beker
- The Cognitive Neurophysiology Laboratory Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine & Montefiore Medical Center Bronx, New York 10461, USA
| | - Kevin D. Prinsloo
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory Ernest J. Del Monte Institute for Neuroscience &Department of Neuroscience University of Rochester School of Medicine and Dentistry Rochester, New York 14642, USA
| | - John S. Butler
- School of Mathematical Sciences Technological University Dublin Kevin Street Campus, Dublin 8, Ireland
| | - Aleksandra Djukic
- Rett Syndrome Center Department of Neurology Albert Einstein College of Medicine & Montefiore Medical Center Bronx, New York 10467, USA
| | - Edward G. Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory Ernest J. Del Monte Institute for Neuroscience &Department of Neuroscience University of Rochester School of Medicine and Dentistry Rochester, New York 14642, USA
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory Ernest J. Del Monte Institute for Neuroscience &Department of Neuroscience University of Rochester School of Medicine and Dentistry Rochester, New York 14642, USA
- The Cognitive Neurophysiology Laboratory Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine & Montefiore Medical Center Bronx, New York 10461, USA
| | - John J. Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory Ernest J. Del Monte Institute for Neuroscience &Department of Neuroscience University of Rochester School of Medicine and Dentistry Rochester, New York 14642, USA
- The Cognitive Neurophysiology Laboratory Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine & Montefiore Medical Center Bronx, New York 10461, USA
| |
Collapse
|
9
|
Mykins M, Layo-Carris D, Dunn LR, Skinner DW, McBryar AH, Perez S, Shultz TR, Willems A, Lau BYB, Hong T, Krishnan K. Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome. J Neurosci Res 2023; 101:1236-1258. [PMID: 37026482 PMCID: PMC10332853 DOI: 10.1002/jnr.25190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Rett syndrome is characterized by an early period of typical development and then, regression of learned motor and speech skills in girls. Loss of MECP2 protein is thought to cause Rett syndrome phenotypes. The specific underlying mechanisms from typical developmental trajectory to regression features throughout life are unclear. Lack of established timelines to study the molecular, cellular, and behavioral features of regression in female mouse models is a major contributing factor. Due to random X-chromosome inactivation, female patients with Rett syndrome and female mouse models for Rett syndrome (Mecp2Heterozygous , Het) express a functional copy of wild-type MECP2 protein in approximately half of all cells. As MECP2 expression is regulated during early postnatal development and experience, we characterized the expression of wild-type MECP2 in the primary somatosensory cortex of female Het mice. Here, we report increased MECP2 levels in non-parvalbumin-positive neurons of 6-week-old adolescent Het relative to age-matched wild-type controls, while also displaying typical levels of perineuronal net expression in the barrel field subregion of the primary somatosensory cortex, mild tactile sensory perception deficits, and efficient pup retrieval behavior. In contrast, 12-week-old adult Het express MECP2 at levels similar to age-matched wild-type mice, show increased perineuronal net expression in the cortex, and display significant tactile sensory perception deficits. Thus, we have identified a set of behavioral metrics and the cellular substrates to study regression during a specific time in the female Het mouse model, which coincides with changes in wild-type MECP2 expression. We speculate that the precocious increase in MECP2 expression within specific cell types of adolescent Het may provide compensatory benefits at the behavioral level, while the inability to further increase MECP2 levels leads to regressive behavioral phenotypes over time.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dana Layo-Carris
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Logan Reid Dunn
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - David Wilson Skinner
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alexandra Hart McBryar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah Perez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Trinity Rose Shultz
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew Willems
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Billy You Bun Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Key AP, Roth S, Jones D, Hunt-Hawkins H. Typical and atypical neural mechanisms support spoken word processing in Angelman syndrome. BRAIN AND LANGUAGE 2023; 236:105215. [PMID: 36502770 PMCID: PMC9839587 DOI: 10.1016/j.bandl.2022.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Angelman syndrome (AS) is known to affect expressive and receptive communication abilities. This study examined individual differences in neural mechanisms underlying speech processing in children with AS (n = 24, M age = 10.01 years) and typical development (n = 30, M age = 10.82 years) using auditory event-related potentials during passive listening to common English words and novel pseudowords. A group of adults with AS (n = 7, M = 31.78 years) provided data about the upper developmental range. The typically developing group demonstrated the expected more negative amplitudes in response to words than pseudowords within 250-500 ms after stimulus onset at the left temporal scalp region. Children and adults with AS exhibited a similar left-lateralized pattern of word-pseudoword differentiation at temporal and parietal regions, but not the midline parietal memory response for known words observed in the typically developing group, suggesting typical-like word-pseudoword differentiation along with possible alterations in the automatic recall of word meaning. These results have important implications for understanding receptive and expressive communication processes in AS and support the use of auditory neural responses for characterizing individual differences in neurodevelopmental disorders with limited speech.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, USA; Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Sydney Roth
- Vanderbilt University, Nashville, TN 37235, USA
| | - Dorita Jones
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, USA; Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
11
|
Key AP, Roth S, Venker C. Spoken language comprehension in children and adults with Angelman Syndrome. JOURNAL OF COMMUNICATION DISORDERS 2022; 100:106272. [PMID: 36244082 PMCID: PMC9994640 DOI: 10.1016/j.jcomdis.2022.106272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Objective evaluation of receptive communication abilities in nonspeaking individuals using standardized behavioral measures can be complicated by co-occurring intellectual disabilities and motor difficulties. Eye tracking during listening may offer an informative complementary approach to directly evaluate receptive language skills. METHOD This study examined feasibility of eye gaze measures as an index of spoken language comprehension in nonspeaking children and adults with Angelman syndrome (AS; n = 23) using a looking-while-listening procedure. Typically developing children (n = 34) provided a reference data set. Primary caregivers of participants with AS completed standardized informant reports (MacArthur-Bates Communicative Development Inventory: Words and Gestures; Vineland Adaptive Behavior Scales-3; Aberrant Behavior Checklist-2) to characterize communicative skills and general adaptive functioning. RESULTS Gaze data in participants with AS, particularly in the individuals reported by caregivers to have larger receptive vocabularies and stronger adaptive communicative functioning, demonstrated the expected pattern of comprehension reflected by the increased probability of looks to the target images after vs. before they were named in a spoken sentence. However, processing speed (gaze reaction time) was significantly slower in participants with AS than in the typically developing group. CONCLUSIONS Gaze-based paradigms could be an informative measure of receptive communication processes in participants who are unable to complete traditional standardized behavioral assessments.
Collapse
|
12
|
Design and outcome measures of LAVENDER, a phase 3 study of trofinetide for Rett syndrome. Contemp Clin Trials 2022; 114:106704. [PMID: 35149233 DOI: 10.1016/j.cct.2022.106704] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Rett syndrome (RTT) is a debilitating neurodevelopmental disorder with no approved treatments. Trofinetide is a synthetic analog of glycine-proline-glutamate, the N-terminal tripeptide of insulin-like growth factor 1. In a phase 2, placebo-controlled trial in 82 females with RTT aged 5-15 years, a significant (p ≤ 0.042) improvement over placebo was observed with the highest trofinetide dose (200 mg/kg twice daily [BID]) on three measures: Rett Syndrome Behavior Questionnaire (RSBQ), Clinical Global Impression-Improvement (CGI-I), and RTT-Clinician Domain Specific Concerns-Visual Analog Scale (RTT-DSC-VAS). Trofinetide was well tolerated at all doses (50, 100, and 200 mg/kg BID). A phase 3 trial utilizing disease-specific and novel scales was designed to investigate the efficacy and safety of trofinetide in girls and women with RTT. METHODS This 12-week, double-blind, randomized, placebo-controlled study (LAVENDER; NCT04181723) will evaluate trofinetide in 187 females, aged 5-20 years, with RTT. Co-primary endpoints are the RSBQ and CGI-I scales. Clinical domains of the CGI-I include communication, ambulation, hand use, seizures, attentiveness, and social (eye contact) and autonomic (breathing) aspects. Secondary endpoints will leverage four novel RTT-specific clinician ratings (derived from the RTT-DSC-VAS) of hand function, ambulation, ability to communicate, and verbal communication, and existing scales, to evaluate other core symptoms of RTT, quality of life and caregiver burden. A 40-week, open-label extension study will follow. DISCUSSION This study was designed using disease-specific scales optimized to demonstrate changes in core symptoms of RTT and may provide the first phase 3 data demonstrating drug efficacy in individuals with RTT. TRIAL REGISTRATION Clinicaltrials.govNCT04181723.
Collapse
|
13
|
Key AP. Searching for a "Brain Signature" of Neurodevelopmental Disorders: Event-Related Potentials and the Quest for Biomarkers of Cognition. J Clin Neurophysiol 2022; 39:113-120. [PMID: 34366396 DOI: 10.1097/wnp.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY This review summarizes main applications of event-related potentials (ERPs) to the study of cognitive processes in persons with neurodevelopmental disorders, for whom traditional behavioral assessments may not be suitable. A brief introduction to the ERPs is followed by a review of empirical studies using passive ERP paradigms to address three main questions: characterizing individual differences, predicting risk for poor developmental outcomes, and documenting treatment effects in persons with neurodevelopmental disorders. Evidence across studies reveals feasibility of ERP methodology in a wide range of clinical populations and notes consistently stronger brain-behavior associations involving ERP measures of higher-order cognition compared with sensory-perceptual processes. The final section describes the current limitations of ERP methodology that need to be addressed before it could be used as a clinical tool and highlights the needed steps toward translating ERPs from group-level research applications to individually interpretable clinical use.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee, U.S.A
| |
Collapse
|
14
|
Stevenson P, Casenhiser DM, Lau BY, Krishnan K. Systematic analysis of goal-related movement sequences during maternal behaviour in a female mouse model for Rett syndrome. Eur J Neurosci 2021; 54:4528-4549. [PMID: 34043854 PMCID: PMC8450021 DOI: 10.1111/ejn.15327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
Rodent dams seek and gather scattered pups back to the nest (pup retrieval), an essential aspect of maternal care. Systematic analysis of the dynamic sequences of goal-related movements that comprise the entire behavioural sequence, which would be ultimately essential for understanding the underlying neurobiology, is not well-characterized. Here, we present such analysis across 3 days in alloparental female mice (Surrogates or Sur) of two genotypes; Mecp2Heterozygotes (Het), a female mouse model for Rett syndrome and their wild type (WT) siblings. We analysed CBA/CaJ and C57BL/6J WT surrogates for within-strain comparisons. Frame-by-frame analysis over different phases was performed manually using DataVyu software. We previously showed that surrogate Het are inefficient at pup retrieval, by end-point analysis such as latency index and errors. Here, the sequence of searching, pup-approach and successful retrieval streamlines over days for WT, while Het exhibits variations in this pattern. Goal-related movements between Het and WT are similar in other phases, suggesting context-driven atypical patterns in Het during the pup retrieval phase. We identified proximal pup approach and pup grooming as atypical tactile interactions between pups and Het. Day-by-day analysis showed dynamic changes in goal-related movements in individual animals across genotypes and strains. Overall, our approach (1) highlights natural variation in individual mice on different days, (2) establishes a "gold-standard" manually curated dataset to help build behavioural repertoires using machine learning approaches, and (3) suggests atypical tactile sensory processing and possible regression in a female mouse model for Rett syndrome.
Collapse
Affiliation(s)
- Parker Stevenson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Devin M. Casenhiser
- Audiology and Speech Pathology Department, University of Tennessee Health Sciences Center, Knoxville, TN 37996
| | - Billy Y.B. Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
15
|
Armstrong C, Marsh ED. Electrophysiological Biomarkers in Genetic Epilepsies. Neurotherapeutics 2021; 18:1458-1467. [PMID: 34642905 PMCID: PMC8609056 DOI: 10.1007/s13311-021-01132-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Precision treatments for epilepsy targeting the underlying genetic diagnoses are becoming a reality. Historically, the goal of epilepsy treatments was to reduce seizure frequency. In the era of precision medicine, however, outcomes such as prevention of epilepsy progression or even improvements in cognitive functions are both aspirational targets for any intervention. Developing methods, both in clinical trial design and in novel endpoints, will be necessary for measuring, not only seizures, but also the other neurodevelopmental outcomes that are predicted to be targeted by precision treatments. Biomarkers that quantitatively measure disease progression or network level changes are needed to allow for unbiased measurements of the effects of any gene-level treatments. Here, we discuss some of the promising electrophysiological biomarkers that may be of use in clinical trials of precision therapies, as well as the difficulties in implementing them.
Collapse
Affiliation(s)
- Caren Armstrong
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric D Marsh
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics and Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Saby JN, Benke TA, Peters SU, Standridge SM, Matsuzaki J, Cutri-French C, Swanson LC, Lieberman DN, Key AP, Percy AK, Neul JL, Nelson CA, Roberts TP, Marsh ED. Multisite Study of Evoked Potentials in Rett Syndrome. Ann Neurol 2021; 89:790-802. [PMID: 33480039 PMCID: PMC8882338 DOI: 10.1002/ana.26029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of the current study was to evaluate the utility of evoked potentials as a biomarker of cortical function in Rett syndrome (RTT). As a number of disease-modifying therapeutics are currently under development, there is a pressing need for biomarkers to objectively and precisely assess the effectiveness of these treatments. METHOD Yearly visual evoked potentials (VEPs) and auditory evoked potentials (AEPs) were acquired from individuals with RTT, aged 2 to 37 years, and control participants across 5 sites as part of the Rett Syndrome and Related Disorders Natural History Study. Baseline and year 1 data, when available, were analyzed and the repeatability of the results was tested. Two syndrome-specific measures from the Natural History Study were used for evaluating the clinical relevance of the VEP and AEP parameters. RESULTS At the baseline study, group level comparisons revealed reduced VEP and AEP amplitude in RTT compared to control participants. Further analyses within the RTT group indicated that this reduction was associated with RTT-related symptoms, with greater severity associated with lower VEP and AEP amplitude. In participants with RTT, VEP and AEP amplitude was also negatively associated with age. Year 1 follow-up data analyses yielded similar findings and evidence of repeatability of EPs at the individual level. INTERPRETATION The present findings indicate the promise of evoked potentials (EPs) as an objective measure of disease severity in individuals with RTT. Our multisite approach demonstrates potential research and clinical applications to provide unbiased assessment of disease staging, prognosis, and response to therapy. ANN NEUROL 2021;89:790-802.
Collapse
Affiliation(s)
- Joni N. Saby
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Timothy A. Benke
- Department of Pediatrics, Neurology, Pharmacology and Otolaryngology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Shannon M. Standridge
- Cincinnati Children’s Hospital Medical Center, Division of Neurology and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Junko Matsuzaki
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Clare Cutri-French
- Division of Child Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lindsay C. Swanson
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - David N. Lieberman
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Alexandra P. Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Alan K. Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey L. Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School
| | - Timothy P.L. Roberts
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric D. Marsh
- Division of Child Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Key AP, Venker CE, Sandbank MP. Psychophysiological and Eye-Tracking Markers of Speech and Language Processing in Neurodevelopmental Disorders: New Options for Difficult-to-Test Populations. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2020; 125:465-474. [PMID: 33211813 PMCID: PMC8011582 DOI: 10.1352/1944-7558-125.6.465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/01/2020] [Indexed: 06/02/2023]
Abstract
It can be challenging to accurately assess speech and language processing in preverbal or minimally verbal individuals with neurodevelopmental disabilities (NDD) using standardized behavioral tools. Event-related potential and eye tracking methods offer novel means to objectively document receptive language processing without requiring purposeful behavioral responses. Working around many of the cognitive, motor, or social difficulties in NDDs, these tools allow for minimally invasive, passive assessment of language processing and generate continuous scores that may have utility as biomarkers of individual differences and indicators of treatment effectiveness. Researchers should consider including physiological measures in assessment batteries to allow for more precise capture of language processing in individuals for whom it may not behaviorally apparent.
Collapse
|
18
|
Dong HW, Erickson K, Lee JR, Merritt J, Fu C, Neul JL. Detection of neurophysiological features in female R255X MeCP2 mutation mice. Neurobiol Dis 2020; 145:105083. [PMID: 32927061 PMCID: PMC7572861 DOI: 10.1016/j.nbd.2020.105083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder (NDD) that is nearly always caused by loss of function mutations in Methyl-CpG-binding Protein 2 (MECP2) and shares many clinical features with other NDD. Genetic restoration of Mecp2 in symptomatic mice lacking MeCP2 expression can reverse symptoms, providing hope that disease modifying therapies can be identified for RTT. Effective and rapid clinical trial completion relies on well-defined clinical outcome measures and robust biomarkers of treatment responses. Studies on other NDD have found evidence of differences in neurophysiological measures that correlate with disease severity. However, currently there are no well-validated biomarkers in RTT to predict disease prognosis or treatment responses. To address this, we characterized neurophysiological features in a mouse model of RTT containing a knock-in nonsense mutation (p.R255X) in the Mecp2 locus. We found a variety of changes in heterozygous female Mecp2R255X/X mice including age-related changes in sleep/wake architecture, alterations in baseline EEG power, increased incidence of spontaneous epileptiform discharges, and changes in auditory evoked potentials. Furthermore, we identified association of some neurophysiological features with disease severity. These findings provide a set of potential non-invasive and translatable biomarkers that can be utilized in preclinical therapy trials in animal models of RTT and eventually within the context of clinical trials.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Kirsty Erickson
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Jessica R Lee
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Jonathan Merritt
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Cary Fu
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Jeffrey L Neul
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
19
|
Sysoeva OV, Molholm S, Djukic A, Frey HP, Foxe JJ. Atypical processing of tones and phonemes in Rett Syndrome as biomarkers of disease progression. Transl Psychiatry 2020; 10:188. [PMID: 32522978 PMCID: PMC7287060 DOI: 10.1038/s41398-020-00877-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Due to severe motor impairments and the lack of expressive language abilities seen in most patients with Rett Syndrome (RTT), it has proven extremely difficult to obtain accurate measures of auditory processing capabilities in this population. Here, we examined early auditory cortical processing of pure tones and more complex phonemes in females with Rett Syndrome (RTT), by recording high-density auditory evoked potentials (AEP), which allow for objective evaluation of the timing and severity of processing deficits along the auditory processing hierarchy. We compared AEPs of 12 females with RTT to those of 21 typically developing (TD) peers aged 4-21 years, interrogating the first four major components of the AEP (P1: 60-90 ms; N1: 100-130 ms; P2: 135-165 ms; and N2: 245-275 ms). Atypicalities were evident in RTT at the initial stage of processing. Whereas the P1 showed increased amplitude to phonemic inputs relative to tones in TD participants, this modulation by stimulus complexity was absent in RTT. Interestingly, the subsequent N1 did not differ between groups, whereas the following P2 was hugely diminished in RTT, regardless of stimulus complexity. The N2 was similarly smaller in RTT and did not differ as a function of stimulus type. The P2 effect was remarkably robust in differentiating between groups with near perfect separation between the two groups despite the wide age range of our samples. Given this robustness, along with the observation that P2 amplitude was significantly associated with RTT symptom severity, the P2 has the potential to serve as a monitoring, treatment response, or even surrogate endpoint biomarker. Compellingly, the reduction of P2 in patients with RTT mimics findings in animal models of RTT, providing a translational bridge between pre-clinical and human research.
Collapse
Affiliation(s)
- Olga V. Sysoeva
- grid.412750.50000 0004 1936 9166The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY USA ,grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA ,grid.4886.20000 0001 2192 9124The Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Sophie Molholm
- grid.412750.50000 0004 1936 9166The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY USA ,grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA
| | - Aleksandra Djukic
- grid.240283.f0000 0001 2152 0791The Rett Syndrome Center, Department of Neurology, Montefiore Medical Center & Albert Einstein College of Medicine, Bronx, NY USA
| | - Hans-Peter Frey
- grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA
| | - John J. Foxe
- grid.412750.50000 0004 1936 9166The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY USA ,grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA
| |
Collapse
|
20
|
Saby JN, Peters SU, Roberts TPL, Nelson CA, Marsh ED. Evoked Potentials and EEG Analysis in Rett Syndrome and Related Developmental Encephalopathies: Towards a Biomarker for Translational Research. Front Integr Neurosci 2020; 14:30. [PMID: 32547374 PMCID: PMC7271894 DOI: 10.3389/fnint.2020.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Rett syndrome is a debilitating neurodevelopmental disorder for which no disease-modifying treatment is available. Fortunately, advances in our understanding of the genetics and pathophysiology of Rett syndrome has led to the development of promising new therapeutics for the condition. Several of these therapeutics are currently being tested in clinical trials with others likely to progress to clinical trials in the coming years. The failure of recent clinical trials for Rett syndrome and other neurodevelopmental disorders has highlighted the need for electrophysiological or other objective biological markers of treatment response to support the success of clinical trials moving forward. The purpose of this review is to describe the existing studies of electroencephalography (EEG) and evoked potentials (EPs) in Rett syndrome and discuss the open questions that must be addressed before the field can adopt these measures as surrogate endpoints in clinical trials. In addition to summarizing the human work on Rett syndrome, we also describe relevant studies with animal models and the limited research that has been carried out on Rett-related disorders, particularly methyl-CpG binding protein 2 (MECP2) duplication syndrome, CDKL5 deficiency disorder, and FOXG1 disorder.
Collapse
Affiliation(s)
- Joni N. Saby
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy P. L. Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric D. Marsh
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Eric D. Marsh
| |
Collapse
|
21
|
Fagiolini M, Patrizi A, LeBlanc J, Jin LW, Maezawa I, Sinnett S, Gray SJ, Molholm S, Foxe JJ, Johnston MV, Naidu S, Blue M, Hossain A, Kadam S, Zhao X, Chang Q, Zhou Z, Zoghbi H. Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience 2020; 445:190-206. [PMID: 32360592 DOI: 10.1016/j.neuroscience.2020.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Collapse
Affiliation(s)
- Michela Fagiolini
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Annarita Patrizi
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jocelyn LeBlanc
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Way Jin
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Izumi Maezawa
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Sarah Sinnett
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael V Johnston
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Sakkubai Naidu
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Mary Blue
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Ahamed Hossain
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Shilpa Kadam
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhaolan Zhou
- Department of Genetic, Epigenetic Institute, University of Pennsylvania Perelman School of Medicine, Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Faundez V, Wynne M, Crocker A, Tarquinio D. Molecular Systems Biology of Neurodevelopmental Disorders, Rett Syndrome as an Archetype. Front Integr Neurosci 2019; 13:30. [PMID: 31379529 PMCID: PMC6650571 DOI: 10.3389/fnint.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders represent a challenging biological and medical problem due to their genetic and phenotypic complexity. In many cases, we lack the comprehensive understanding of disease mechanisms necessary for targeted therapeutic development. One key component that could improve both mechanistic understanding and clinical trial design is reliable molecular biomarkers. Presently, no objective biological markers exist to evaluate most neurodevelopmental disorders. Here, we discuss how systems biology and "omic" approaches can address the mechanistic and biomarker limitations in these afflictions. We present heuristic principles for testing the potential of systems biology to identify mechanisms and biomarkers of disease in the example of Rett syndrome, a neurodevelopmental disorder caused by a well-defined monogenic defect in methyl-CpG-binding protein 2 (MECP2). We propose that such an approach can not only aid in monitoring clinical disease severity but also provide a measure of target engagement in clinical trials. By deepening our understanding of the "big picture" of systems biology, this approach could even help generate hypotheses for drug development programs, hopefully resulting in new treatments for these devastating conditions.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Meghan Wynne
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT, United States
| | - Daniel Tarquinio
- Rare Neurological Diseases (Private Research Institution), Atlanta, GA, United States
| |
Collapse
|