1
|
Schröder LJ, Thiesler H, Gretenkort L, Möllenkamp TM, Stangel M, Gudi V, Hildebrandt H. Polysialic acid promotes remyelination in cerebellar slice cultures by Siglec-E-dependent modulation of microglia polarization. Front Cell Neurosci 2023; 17:1207540. [PMID: 37492129 PMCID: PMC10365911 DOI: 10.3389/fncel.2023.1207540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Spontaneous restoration of myelin after demyelination occurs, but its efficiency declines during disease progression. Efficient myelin repair requires fine-tuning inflammatory responses by brain-resident microglia and infiltrating macrophages. Accordingly, promising therapeutic strategies aim at controlling inflammation to promote remyelination. Polysialic acid (polySia) is a polymeric glycan with variable chain lengths, presented as a posttranslational modification on select protein carriers. PolySia emerges as a negative regulator of inflammatory microglia and macrophage activation and has been detected on oligodendrocyte precursors and reactive astrocytes in multiple sclerosis lesions. As shown recently, polySia-modified proteins can also be released by activated microglia, and the intrinsically released protein-bound and exogenously applied free polySia were equally able to attenuate proinflammatory microglia activation via the inhibitory immune receptor Siglec-E. In this study, we explore polySia as a candidate substance for promoting myelin regeneration by immunomodulation. Lysophosphatidylcholine-induced demyelination of organotypic cerebellar slice cultures was used as an experimental model to analyze the impact of polySia with different degrees of polymerization (DP) on remyelination and inflammation. In lysophosphatidylcholine-treated cerebellar slice cultures, polySia-positive cells were abundant during demyelination but largely reduced during remyelination. Based on the determination of DP24 as the minimal polySia chain length required for the inhibition of inflammatory BV2 microglia activation, pools with short and long polySia chains (DP8-14 and DP24-30) were generated and applied to slice cultures during remyelination. Unlike DP8-14, treatment with DP24-30 significantly improved remyelination, increased arginase-1-positive microglia ratios, and reduced the production of nitric oxide in wildtype, but not in Siglec-E-deficient slice cultures. In vitro differentiation of oligodendrocytes was not affected by DP24-30. Collectively, these results suggest a beneficial effect of exogenously applied polySia DP24-30 on remyelination by Siglec-E-dependent microglia regulation.
Collapse
Affiliation(s)
- Lara-Jasmin Schröder
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Martin Stangel
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Translational Medicine, Novartis Institute for Biomedical Research, Novartis, Basel, Switzerland
| | - Viktoria Gudi
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
| | - Herbert Hildebrandt
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Zhuo Y, Li X, He Z, Lu M. Pathological mechanisms of neuroimmune response and multitarget disease-modifying therapies of mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2023; 14:80. [PMID: 37041580 PMCID: PMC10091615 DOI: 10.1186/s13287-023-03280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN); the etiology and pathological mechanism of the disease are still unclear. Recent studies have shown that the activation of a neuroimmune response plays a key role in the development of PD. Alpha-synuclein (α-Syn), the primary pathological marker of PD, can gather in the SN and trigger a neuroinflammatory response by activating microglia which can further activate the dopaminergic neuron's neuroimmune response mediated by reactive T cells through antigen presentation. It has been shown that adaptive immunity and antigen presentation processes are involved in the process of PD and further research on the neuroimmune response mechanism may open new methods for its prevention and therapy. While current therapeutic regimens are still focused on controlling clinical symptoms, applications such as immunoregulatory strategies can delay the symptoms and the process of neurodegeneration. In this review, we summarized the progression of the neuroimmune response in PD based on recent studies and focused on the use of mesenchymal stem cell (MSC) therapy and challenges as a strategy of disease-modifying therapy with multiple targets.
Collapse
Affiliation(s)
- Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Xuan Li
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China.
| | - Ming Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China.
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, 410003, Hunan, China.
| |
Collapse
|
3
|
Förster A, Brand F, Banan R, Hüneburg R, Weber CAM, Ewert W, Kronenberg J, Previti C, Elyan N, Beyer U, Martens H, Hong B, Bräsen JH, Erbersdobler A, Krauss JK, Stangel M, Samii A, Wolf S, Preller M, Aretz S, Wiese B, Hartmann C, Weber RG. Rare germline variants in the E-cadherin gene CDH1 are associated with the risk of brain tumors of neuroepithelial and epithelial origin. Acta Neuropathol 2021; 142:191-210. [PMID: 33929593 PMCID: PMC8217027 DOI: 10.1007/s00401-021-02307-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
The genetic basis of brain tumor development is poorly understood. Here, leukocyte DNA of 21 patients from 15 families with ≥ 2 glioma cases each was analyzed by whole-genome or targeted sequencing. As a result, we identified two families with rare germline variants, p.(A592T) or p.(A817V), in the E-cadherin gene CDH1 that co-segregate with the tumor phenotype, consisting primarily of oligodendrogliomas, WHO grade II/III, IDH-mutant, 1p/19q-codeleted (ODs). Rare CDH1 variants, previously shown to predispose to gastric and breast cancer, were significantly overrepresented in these glioma families (13.3%) versus controls (1.7%). In 68 individuals from 28 gastric cancer families with pathogenic CDH1 germline variants, brain tumors, including a pituitary adenoma, were observed in three cases (4.4%), a significantly higher prevalence than in the general population (0.2%). Furthermore, rare CDH1 variants were identified in tumor DNA of 6/99 (6%) ODs. CDH1 expression was detected in undifferentiated and differentiating oligodendroglial cells isolated from rat brain. Functional studies using CRISPR/Cas9-mediated knock-in or stably transfected cell models demonstrated that the identified CDH1 germline variants affect cell membrane expression, cell migration and aggregation. E-cadherin ectodomain containing variant p.(A592T) had an increased intramolecular flexibility in a molecular dynamics simulation model. E-cadherin harboring intracellular variant p.(A817V) showed reduced β-catenin binding resulting in increased cytosolic and nuclear β-catenin levels reverted by treatment with the MAPK interacting serine/threonine kinase 1 inhibitor CGP 57380. Our data provide evidence for a role of deactivating CDH1 variants in the risk and tumorigenesis of neuroepithelial and epithelial brain tumors, particularly ODs, possibly via WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Alisa Förster
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rouzbeh Banan
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Hüneburg
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christine A M Weber
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wiebke Ewert
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Köln, Germany
| | - Christopher Previti
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit W190, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Omics IT and Data Management Core Facility W610, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Elyan
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ulrike Beyer
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Bujung Hong
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Jan H Bräsen
- Nephropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit W190, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Stefan Aretz
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bettina Wiese
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Henriettenstift, Diakovere Krankenhaus gGmbH, Hannover, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Du X, Zhang Z, Zhou H, Zhou J. Differential Modulators of NG2-Glia Differentiation into Neurons and Glia and Their Crosstalk. Cell Mol Neurobiol 2020; 41:1-15. [PMID: 32285247 DOI: 10.1007/s10571-020-00843-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
As the fifth main cell population in the brain, NG2-glia are also known as oligodendrocyte precursor cells. NG2-glia express receptors and ion channels for fast modulation of neuronal activities and signaling with neuronal synapses, which are of functional significance in both physiological and pathological states. NG2-glia also participate in fast signaling with peripheral neurons via direct synaptic contacts in the brain. These distinctive glia have the unique capability of proliferating and differentiating into oligodendrocytes, which are critical for axonal myelination in the early developing brain. In neurodegenerative diseases, NG2-glia play an important role and undergo morphological modification, adapt the expression of their membrane receptors and ion channels, and display gene-modulated cell reprogramming and excitotoxicity-caused cell death. These modifications directly and indirectly influence populations of neurons and other glial cells. NG2-glia regulate their action and dynamics in response to neuronal behavior and disease, indicating a critical function to preserve and remodel myelin in physiological states and to repair it in pathological states. Here, we review in detail the differential modulators of NG2-glia into neurons and astrocytes, as well as interactions of NG2-glia with neurons, astrocytes, and microglia. We will also summarize a future potential exploitation of NG2-glia.
Collapse
Affiliation(s)
- Xiaohuang Du
- Department of Scientific Research, Army Medical University, Chongqing, 400037, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|