1
|
Olszewska MA, Zimińska A, Draszanowska A, Sawicki T. Blackthorn fruit peel polyphenol extracts and photodynamic effect under blue light against Listeria monocytogenes. Food Microbiol 2024; 124:104608. [PMID: 39244360 DOI: 10.1016/j.fm.2024.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024]
Abstract
Photodynamic inactivation is an emerging antimicrobial treatment that can be enhanced by employing exogenous photosensitizers to eradicate foodborne pathogens. This study investigated a novel combinatory strategy to eradicate Listeria monocytogenes using blackthorn fruit peel (BFP) and blue light (BL). Extracts of BFP were characterized in terms of polyphenolic content, individual constituents, and antioxidant and antimicrobial activity. The concentration of phenolic compounds and antioxidant activity were both found to be determinants of antimicrobial activity. It was further speculated that flavonols, predominantly quercetin and rutin, were responsible for the activity of BFP against L. monocytogenes. A combination of BFP and BL resulted in a rapid inactivation of the pathogen by up to 4 log CFU/mL at 58.5 J/cm2, corresponding to 15 min BL illumination. Flow cytometry analysis revealed that the bacterial cells lost activity and suffered extensive membrane damage, exceeding 90% of the population. After photosensitizing L. monocytogenes with the BFP constituents quercetin and rutin, a 1.3-log reduction was observed. When applied together, these compounds could inflict the same damaging effect on cells as they did individually when effects were added. Therefore, the results indicate that BFP represents a natural source of (pro-)photosensitizers, which act additively to create inactivation effects. This study may help identify more effective plant-based photosensitizers to control L. monocytogenes in food-related applications.
Collapse
Affiliation(s)
- Magdalena A Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland.
| | - Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718, Olsztyn, Poland
| |
Collapse
|
2
|
Shen Z, Lin L, Zhai Z, Liang J, Chen L, Hao Y, Zhao L. bglG Regulates the Heterogeneity Driven by the Acid Tolerance Response in Lacticaseibacillus paracasei L9. Foods 2023; 12:3971. [PMID: 37959089 PMCID: PMC10650579 DOI: 10.3390/foods12213971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The acid tolerance of lactic acid bacteria is crucial for their fermentation and probiotic functions. Acid adaption significantly enhances the acid tolerance of strains, and the phenotypic heterogeneity driven by the acid tolerance response (ATR) contributes to this process by providing a selective advantage in harsh environments. The mechanism of heterogeneity under the ATR is not yet clear, but individual gene expression differences are recognized as the cause. In this study, we observed four heterogeneous subpopulations (viable, injured, dead, and unstained) of Lacticaseibacillus paracasei L9 (L9) induced by acid adaption (pH 5.0, 40 min) using flow cytometry. The viable subpopulation represented a significantly superior acid tolerance to the injured subpopulation or total population. Different subpopulations were sorted and transcriptomic analysis was performed. Five genes were found to be upregulated in the viable subpopulation and downregulated in the injured subpopulation, and bglG (LPL9_RS14735) was identified as having a key role in this process. Using salicin (glucoside)-inducing gene expression and gene insertion mutagenesis, we verified that bglG regulated the heterogeneity of the acid stress response and that the relevant mechanisms might be related to activating hsp20. This study provides new evidence for the mechanism of the ATR and may contribute to the theoretical basis of improving the acid tolerance of Lacticaseibacillus paracasei L9.
Collapse
Affiliation(s)
- Zhichao Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.S.); (L.L.); (Z.Z.); (J.L.); (L.C.)
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Li Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.S.); (L.L.); (Z.Z.); (J.L.); (L.C.)
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.S.); (L.L.); (Z.Z.); (J.L.); (L.C.)
| | - Jingjing Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.S.); (L.L.); (Z.Z.); (J.L.); (L.C.)
| | - Long Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.S.); (L.L.); (Z.Z.); (J.L.); (L.C.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.S.); (L.L.); (Z.Z.); (J.L.); (L.C.)
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
- Research Center for Probiotics, China Agricultural University, Sanhe 065200, China
| |
Collapse
|
3
|
Robben M, Nasr MS, Das A, Veerla JP, Huber M, Jaworski J, Weidanz J, Luber J. Comparison of the Strengths and Weaknesses of Machine Learning Algorithms and Feature Selection on KEGG Database Microbial Gene Pathway Annotation and Its Effects on Reconstructed Network Topology. J Comput Biol 2023; 30:766-782. [PMID: 37437088 DOI: 10.1089/cmb.2022.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
The development of tools for the annotation of genes from newly sequenced species has not evolved much from homologous alignment to prior annotated species. While the quality of gene annotations continues to decline as we sequence and assemble more evolutionary distant gut microbiome species, machine learning presents a high quality alternative to traditional techniques. In this study, we investigate the relative performance of common classical and nonclassical machine learning algorithms in the problem of gene annotation using human microbiome-associated species genes from the KEGG database. The majority of the ensemble, clustering, and deep learning algorithms that we investigated showed higher prediction accuracy than CD-Hit in predicting partial KEGG function. Motif-based, machine-learning methods of annotation in new species were faster and had higher precision-recall than methods of homologous alignment or orthologous gene clustering. Gradient boosted ensemble methods and neural networks also predicted higher connectivity in reconstructed KEGG pathways, finding twice as many new pathway interactions than blast alignment. The use of motif-based, machine-learning algorithms in annotation software will allow researchers to develop powerful tools to interact with bacterial microbiomes in ways previously unachievable through homologous sequence alignment alone.
Collapse
Affiliation(s)
- Michael Robben
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Avishek Das
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Jai Prakash Veerla
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Manfred Huber
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Justyn Jaworski
- Department of Bioengineering, and University of Texas at Arlington, Arlington, Texas, USA
| | - Jon Weidanz
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| | - Jacob Luber
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
4
|
Kubota H, Serata M, Matsumoto H, Shida K, Okumura T. Detection of Glycolytically Active Lacticaseibacillus paracasei Strain Shirota by Flow Cytometry Targeting the Efflux Activity of Fluorescent Dye: a Potential Tool for Quality Assessment of Probiotic Cells in Milk Products. Appl Environ Microbiol 2023; 89:e0215622. [PMID: 37022200 PMCID: PMC10132099 DOI: 10.1128/aem.02156-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
The rapid and accurate detection of viable probiotic cells in dairy products is important for assessing product quality in manufacturing. Flow cytometry is widely used for the rapid analysis of bacterial cells. However, further investigation is needed into the optimum property to use it for assessing cell viability. Here, we proposed using the efflux activity of a fluorescent dye, carboxyfluorescein (CF), as an indicator of cell viability. CF is generated from 5(6)-carboxyfluorescein diacetate as a result of cleavage by intracellular esterase. It generally accumulates in the cell, but certain bacterial species are known to extrude it. We found here that the probiotic strain Lacticaseibacillus paracasei strain Shirota (LcS) also extruded CF in the presence of energy sources, such as glucose. To investigate the mechanism of its CF-efflux activity, we screened CF-efflux-negative mutants from a random mutagenesis LcS library and examined the whole genome for genes responsible for CF efflux. We identified a base substitution in the pfkA gene in the glycolytic pathway, and we demonstrated that intact pfkA was essential for CF efflux, indicating that CF-efflux-positive cells must have uncompromised glycolytic activity. We also confirmed that there was a good correlation between the rate of CF-efflux-positive cells and that of colony-forming cells of LcS in a fermented milk product, whereas other properties, such as esterase activity and cell membrane integrity, lost their correlation with the colony-forming activity after long storage. We propose that CF-efflux activity could be an appropriate indicator of cell viability in certain probiotic strains. IMPORTANCE To our knowledge, this is the first report to demonstrate that CF efflux requires uncompromised glycolytic activity in certain lactic acid bacteria. Compared with the cell properties currently widely used for cell viability assessment, such as intracellular esterase activity and membrane integrity, CF-efflux activity enables the accurate detection of culturable cells, especially in products stored for long periods at cold temperatures. These results indicate strongly that CF-efflux activity can be an adequate cell-viability indicator and that flow cytometric quantification could be an alternative to conventional CFU counting. Our findings should be especially informative for dairy/probiotic product manufacturing.
Collapse
Affiliation(s)
| | | | | | - Kan Shida
- Yakult Central Institute, Tokyo, Japan
| | | |
Collapse
|
5
|
Dunkers JP, Iyer H, Jones B, Camp CH, Stranick SJ, Lin NJ. Toward absolute viability measurements for bacteria. JOURNAL OF BIOPHOTONICS 2021; 14:e202100175. [PMID: 34510771 DOI: 10.1002/jbio.202100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1 , τ2 and p1 ), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.
Collapse
Affiliation(s)
- Joy P Dunkers
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Hariharan Iyer
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Brynna Jones
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Charles H Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Stephan J Stranick
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
6
|
Seok JH, Ha JW. Synergistic mechanism and enhanced inactivation exhibited by UVA irradiation combined with citric acid against pathogenic bacteria on sliced cheese. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Ethanol in Combination with Oxidative Stress Significantly Impacts Mycobacterial Physiology. J Bacteriol 2020; 202:JB.00222-20. [PMID: 32928928 DOI: 10.1128/jb.00222-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we investigate the mycobacterial response to the combined stress of an organic oxidant (cumene hydroperoxide [CHP]) and a solvent (ethanol). To understand the interaction between the two stressors, we treated Mycobacterium smegmatis cells to a range of ethanol concentrations (2.5% to 10% [vol/vol]) in combination with a subinhibitory concentration of 1 mM CHP. It was observed that the presence of CHP increases the efficacy of ethanol in inducing rapid cell death. The data further suggest that ethanol reacts with the alkoxy radicals to produce ethanol-derived peroxides. These radicals induce significant membrane damage and lead to cell lysis. The ethanol-derived radicals were primarily recognized by the cells as organic radicals, as was evident by the differential upregulation of the ohr-ohrR genes that function in cells treated with the combination of ethanol and CHP. The role of organic peroxide reductase, Ohr, was further confirmed by the significantly higher sensitivity of the deletion mutant to CHP and the combined stress treatment of CHP and ethanol. Moreover, we also observed the sigma factor σB to be important for the cells treated with ethanol alone as well as the aforementioned combination. A ΔsigB mutant strain had significantly higher susceptibility to the stress conditions. This finding was correlated with the σB-dependent transcriptional regulation of ohr and ohrR In summary, our data indicate that the combination of low levels of ethanol and organic peroxides induce ethanol-derived organic radicals that lead to significant oxidative stress on the cells in a concentration-dependent manner.IMPORTANCE Bacterial response to a combination of stresses can be unexpected and very different compared with that of an individual stress treatment. This study explores the physiological and transcriptional response of mycobacteria in response to the combinatorial treatment of an oxidant with the commonly used solvent ethanol. The presence of a subinhibitory concentration of organic peroxide increases the effectiveness of ethanol by inducing reactive peroxides that destroy the membrane integrity of cells in a significantly short time span. Our work elucidates a mechanism of targeting the complex mycobacterial membrane, which is its primary source of intrinsic resistance. Furthermore, it also demonstrates the importance of exploring the effect of various stress conditions on inducing bacterial clearance.
Collapse
|
8
|
Zhao Y, Fu R, Li J. Effects of the β-glucan, curdlan, on the fermentation performance, microstructure, rheological and textural properties of set yogurt. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Cal-Sabater P, Caro I, Castro MJ, Cao MJ, Mateo J, Quinto EJ. Flow Cytometry to Assess the Counts and Physiological State of Cronobacter sakazakii Cells after Heat Exposure. Foods 2019; 8:foods8120688. [PMID: 31888256 PMCID: PMC6963341 DOI: 10.3390/foods8120688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/26/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that is associated with outbreaks of neonatal necrotizing enterocolitis, septicaemia, and meningitis. Reconstituted powdered infant formulae is the most common vehicle of infection. The aim of the present study is to gain insight into the physiological states of C. sakazakii cells using flow cytometry to detect the compromised cells, which are viable but non-culturable using plate-based methods, and to evaluate the impact of milk heat treatments on those populations. Dead-cell suspensions as well as heat-treated and non-heat-treated cell suspensions were used. After 60 or 65 °C treatments, the number of compromised cells increased as a result of cells with compromised membranes shifting from the heat-treated suspension. These temperatures were not effective at killing all bacteria but were effective at compromising their membranes. Thus, mild heat treatments are not enough to guarantee the safety of powered infant formulae. Flow cytometry was capable of detecting C. sakazakii’s compromised cells that cannot be detected with classical plate count methods; thus, it could be used as a screening test to decrease the risk derived from the presence of pathogenic viable but non-culturable cells in this food that is intended for newborns’ nutrition.
Collapse
Affiliation(s)
- Paloma Cal-Sabater
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
| | - María J. Castro
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - María J. Cao
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - Javier Mateo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain;
| | - Emiliano J. Quinto
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
- Correspondence:
| |
Collapse
|
10
|
Jeong YJ, Ha JW. Combined treatment of UV-A radiation and acetic acid to control foodborne pathogens on spinach and characterization of their synergistic bactericidal mechanisms. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Tarrah A, Noal V, Giaretta S, Treu L, da Silva Duarte V, Corich V, Giacomini A. Effect of different initial pH on the growth of Streptococcus macedonicus and Streptococcus thermophilus strains. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Collado S, Oulego P, Alonso S, Díaz M. Flow cytometric characterization of bacterial abundance and physiological status in a nitrifying-denitrifying activated sludge system treating landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21262-21271. [PMID: 28741203 DOI: 10.1007/s11356-017-9596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Flow cytometry has recently been presented as a research tool in the assessment of the viability/activity of activated sludge from municipal wastewater treatment plants, but it has not put in practice for industrial biotreatments yet. In this study, for the first time ever, the reliability and significance of the multiparameter flow cytometry applied to the biological nitrification-denitrification treatment of leachate have been evaluated. Using a double staining procedure (cFDA/PI), the viable, damaged, and dead subpopulations were determined, and the results were compared to those obtained with conventional methods, such as nitrogen and oxygen uptake rates or plate counting. Flow cytometry showed that viable cells represented approximately 47% of the total population, whereas active cells accounted for 90%. For both sludge from nitrification and denitrification processes, with less than 1% of them being also culturable in plate. Either flow cytometry or uptake rates revealed that health status of sludge remained constant throughout the biotreatment, which is consistent with the high recirculation rates. Under anaerobic starvation conditions, physiological status of sludge remained constant as well as specific oxygen and denitrification rates. Nevertheless, both the culturability in plate and the nitrification rate significantly decreased. These findings proved that multiparameter flow cytometry is a useful tool for the assessment of the viability and activity of sludge from a nitrification-denitrification biotreatment process. These results gathered all the bacterial communities in the sludge, so the decay in minority populations, such as nitrifying bacteria, requires the use of a complementary technique to evaluate specific activities.
Collapse
Affiliation(s)
- Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Saúl Alonso
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
13
|
Pal I, Brahmkhatri VP, Bera S, Bhattacharyya D, Quirishi Y, Bhunia A, Atreya HS. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J Colloid Interface Sci 2016; 483:385-393. [DOI: 10.1016/j.jcis.2016.08.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 11/27/2022]
|
14
|
Olszewska MA, Kocot AM, Nynca A, Łaniewska-Trokenheim Ł. Utilization of physiological and taxonomic fluorescent probes to study Lactobacilli cells and response to pH challenge. Microbiol Res 2016; 192:239-246. [DOI: 10.1016/j.micres.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/29/2016] [Accepted: 07/31/2016] [Indexed: 11/29/2022]
|
15
|
Manti A, Ciandrini E, Campana R, Dominici S, Ciacci C, Federici S, Sisti D, Rocchi MB, Papa S, Baffone W. A dual-species microbial model for studying the dynamics between oral streptococci and periodontal pathogens during biofilm development on titanium surfaces by flow cytometry. Res Microbiol 2016; 167:393-402. [DOI: 10.1016/j.resmic.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
16
|
Evaluation of Ultrasound-Induced Damage to Escherichia coli and Staphylococcus aureus by Flow Cytometry and Transmission Electron Microscopy. Appl Environ Microbiol 2016; 82:1828-1837. [PMID: 26746712 DOI: 10.1128/aem.03080-15] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/31/2015] [Indexed: 11/20/2022] Open
Abstract
As a nonthermal sterilization technique, ultrasound has attracted great interest in the field of food preservation. In this study, flow cytometry and transmission electron microscopy were employed to investigate ultrasound-induced damage to Escherichia coli and Staphylococcus aureus. For flow cytometry studies, single staining with propidium iodide (PI) or carboxyfluorescein diacetate (cFDA) revealed that ultrasound treatment caused cell death by compromising membrane integrity, inactivating intracellular esterases, and inhibiting metabolic performance. The results showed that ultrasound damage was independent of initial bacterial concentrations, while the mechanism of cellular damage differed according to the bacterial species. For the Gram-negative bacterium E. coli, ultrasound worked first on the outer membrane rather than the cytoplasmic membrane. Based on the double-staining results, we inferred that ultrasound treatment might be an all-or-nothing process: cells ruptured and disintegrated by ultrasound cannot be revived, which can be considered an advantage of ultrasound over other nonthermal techniques. Transmission electron microscopy studies revealed that the mechanism of ultrasound-induced damage was multitarget inactivation, involving the cell wall, cytoplasmic membrane, and inner structure. Understanding of the irreversible antibacterial action of ultrasound has great significance for its further utilization in the food industry.
Collapse
|
17
|
Al-Hashimi AM, Mason TJ, Joyce EM. Combined Effect of Ultrasound and Ozone on Bacteria in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11697-11702. [PMID: 25982841 DOI: 10.1021/es5045437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study is to assess the synergetic effect of combined ultrasound and ozone treatment on the biological disinfection of water on a large-scale application using viable plate counts and flow cytometry. Escherichia coli B bacteria in saline suspension was treated using a commercially available combined ultrasound and ozone system (USO3 (Ultrasonic Systems Gmbh)) for 16 min. Two analytical methods were used to assess the results in terms of live and dead cells in the bulk liquid: standard viable plate counting recorded in terms of colony forming units per milliliter and flow cytometry. In the latter case 1 mL of bacterial suspension was stained simultaneously with the fluorescent stains SYTO9 and propidium iodide (PI). Transmission electron microscopy was used to generate images identifying the biological effects of different treatments using ultrasound and ozone on bacterial cell walls. Results demonstrated that treatment with ozone alone (1 mg/L) resulted in a significant reduction (93%) in the number of live cells after 16 min treatment whereas ultrasound alone showed only a small reduction (24%). However, a combination of ozone and ultrasound showed a synergistic effect and enhanced the inactivation to 99% after 4 min. A combined ultrasound and ozone treatment of bacterial suspensions using a commercial system affords a promising method for water disinfection that is better than treatment using either method alone. Standard viable plate count analysis is normally used to assess the effectiveness of disinfection treatments; however flow cytometry proved to be a more sensitive method to determine the actual effects in terms of not only live and dead cells but also damaged cells. This type of analysis (cell damage) is difficult if not impossible to achieve using traditional plate counting methodology.
Collapse
Affiliation(s)
- Amna M Al-Hashimi
- The Sonochemistry Centre, Faculty of Health and Life Sciences, Coventry University , Priory Street, Coventry CV1 5FB, U.K
| | - Timothy J Mason
- The Sonochemistry Centre, Faculty of Health and Life Sciences, Coventry University , Priory Street, Coventry CV1 5FB, U.K
| | - Eadaoin M Joyce
- The Sonochemistry Centre, Faculty of Health and Life Sciences, Coventry University , Priory Street, Coventry CV1 5FB, U.K
| |
Collapse
|
18
|
Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions. J Biotechnol 2015; 200:19-26. [DOI: 10.1016/j.jbiotec.2015.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
|
19
|
Prado R, García R, Rioboo C, Herrero C, Cid Á. Suitability of cytotoxicity endpoints and test microalgal species to disclose the toxic effect of common aquatic pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:117-125. [PMID: 25637746 DOI: 10.1016/j.ecoenv.2015.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Pulse discharges of chemicals to aquatic environments may lead to high concentrations of them in surface waters for short periods of time, but enough to induce toxic effects on aquatic organisms; however, no many methods allow an early warning of toxicity of these agents. Acute effects of one representative chemical from each of three of the main groups of aquatic pollutants (pesticides, metals and pharmaceuticals) are studied on two green microalgal species (Chlamydomonas moewusii and Chlorella vulgaris). Flow cytometry protocols were used to detect the potential application of chlorophyll a fluorescent emission, cell viability, metabolic activity and membrane potential as cytotoxicity endpoints, besides an epifluorescence microscopy protocol for comet assay to detect genotoxicity level of cells. Obtained results confirm the suitability of them for the prospective assessment of the potential cytotoxicity of these aquatic pollutants. The two microalgal species analysed could be used as indicators in toxicity bioassays, being C. moewusii more sensitive than C. vulgaris. Among cell parameters assayed, the metabolic activity and the primary DNA damage stood out as sensitive cytotoxicity endpoints.
Collapse
Affiliation(s)
- Raquel Prado
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Rosa García
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain.
| |
Collapse
|
20
|
Krujatz F, Lode A, Brüggemeier S, Schütz K, Kramer J, Bley T, Gelinsky M, Weber J. Green bioprinting: Viability and growth analysis of microalgae immobilized in 3D-plotted hydrogels versus suspension cultures. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Felix Krujatz
- Institute of Food Technology and Bioprocess Engineering; TU Dresden; Dresden Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden; Dresden Germany
| | - Sophie Brüggemeier
- Centre for Translational Bone, Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden; Dresden Germany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden; Dresden Germany
| | - Julius Kramer
- Institute of Food Technology and Bioprocess Engineering; TU Dresden; Dresden Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; TU Dresden; Dresden Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden; Dresden Germany
| | - Jost Weber
- Institute of Food Technology and Bioprocess Engineering; TU Dresden; Dresden Germany
| |
Collapse
|
21
|
Olszewska MA, Panfil-Kuncewicz H, Łaniewska-Trokenheim Ł. Detection of Viable but Nonculturable Cells of L
isteria monocytogenes
with the Use of Direct Epifluorescent Filter Technique. J Food Saf 2014. [DOI: 10.1111/jfs.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Magdalena A. Olszewska
- Department of Industrial and Food Microbiology; Faculty of Food Science; University of Warmia and Mazury in Olsztyn; Pl. Cieszyński 1 Olsztyn PL-10-726 Poland
| | - Helena Panfil-Kuncewicz
- Department of Dairy Science and Quality Management; Faculty of Food Science; University of Warmia and Mazury in Olsztyn; Pl. Cieszyński 1 Olsztyn PL-10-726 Poland
| | - Łucja Łaniewska-Trokenheim
- Department of Industrial and Food Microbiology; Faculty of Food Science; University of Warmia and Mazury in Olsztyn; Pl. Cieszyński 1 Olsztyn PL-10-726 Poland
| |
Collapse
|
22
|
Hong J, Guan W, Jin G, Zhao H, Jiang X, Dai J. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol Res 2014; 170:69-77. [PMID: 25267486 DOI: 10.1016/j.micres.2014.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/19/2014] [Accepted: 08/24/2014] [Indexed: 01/15/2023]
Abstract
Tachyplesin I is a 17 amino acid, cationic, antimicrobial peptide with a typical cyclic antiparallel β-sheet structure. Interactions of tachyplesin I with living bacteria are not well understood, although models have been used to elucidate how tachyplesin I permeabilizes membranes. There are several questions to be answered, such as (i) how does tachyplesin I kill bacteria after it penetrates the membrane and (ii) does bacterial death result from the inactivation of intracellular esterases as well as cell injury? In this study, the dynamic antibacterial processes of tachyplesin I and its interactions with Escherichia coli and Staphylococcus aureus were investigated using laser confocal scanning microscopy in combination with electron microscopy. The effects of tachyplesin I on E. coli cell membrane integrity, intracellular enzyme activity, and cell injury and death were investigated by flow cytometric analysis of cells following single- or double-staining with carboxyfluorescein diacetate or propidium iodide. The results of microscopy indicated that tachyplesin I kills bacteria by acting on the cell membrane and intracellular contents, with the cell membrane representing the primary target. Microscopy results also revealed that tachyplesin I uses different modes of action against E. coli and S. aureus. The results of flow cytometry showed that tachyplesin I caused E. coli cell death mainly by compromising cell membrane integrity and causing the inactivation of intracellular esterases. Flow cytometry also revealed dynamic changes in the different subpopulations of cells with increase in tachyplesin I concentrations. Bacteria exposed to 5 μg/mL of tachyplesin I did not die instantaneously; instead, they died gradually via a sublethal injury. However, upon exposure to 10-40 μg/mL of tachyplesin I, the bacteria died almost immediately. These results contribute to our understanding of the antibacterial mechanism employed by tachyplesin I.
Collapse
Affiliation(s)
- Jun Hong
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, PR China; College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan 467036, PR China; College of Animal Science, South China Agriculture University, Guangzhou 510642, PR China.
| | - Wutai Guan
- College of Animal Science, South China Agriculture University, Guangzhou 510642, PR China.
| | - Gang Jin
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| | - Hongya Zhao
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| | - Xiaohua Jiang
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| | - Jianguo Dai
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
23
|
Applications of flow cytometry to characterize bacterial physiological responses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461941. [PMID: 25276788 PMCID: PMC4174974 DOI: 10.1155/2014/461941] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/13/2014] [Indexed: 12/30/2022]
Abstract
Although reports of flow cytometry (FCM) applied to bacterial analysis are increasing, studies of FCM related to human cells still vastly outnumber other reports. However, current advances in FCM combined with a new generation of cellular reporter probes have made this technique suitable for analyzing physiological responses in bacteria. We review how FCM has been applied to characterize distinct physiological conditions in bacteria including responses to antibiotics and other cytotoxic chemicals and physical factors, pathogen-host interactions, cell differentiation during biofilm formation, and the mechanisms governing development pathways such as sporulation. Since FCM is suitable for performing studies at the single-cell level, we describe how this powerful technique has yielded invaluable information about the heterogeneous distribution of differently and even specialized responding cells and how it may help to provide insights about how cell interaction takes place in complex structures, such as those that prevail in bacterial biofilms.
Collapse
|
24
|
Sohier D, Pavan S, Riou A, Combrisson J, Postollec F. Evolution of microbiological analytical methods for dairy industry needs. Front Microbiol 2014; 5:16. [PMID: 24570675 PMCID: PMC3916730 DOI: 10.3389/fmicb.2014.00016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry’s needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards.
Collapse
Affiliation(s)
- Danièle Sohier
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Sonia Pavan
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Armelle Riou
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Jérôme Combrisson
- Bretagne Biotechnologie Alimentaire dairy association member, Analytical Sciences, Danone Research, Palaiseau, France
| | - Florence Postollec
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| |
Collapse
|
25
|
Patakova P, Linhova M, Vykydalova P, Branska B, Rychtera M, Melzoch K. Use of fluorescent staining and flow cytometry for monitoring physiological changes in solventogenic clostridia. Anaerobe 2013; 29:113-7. [PMID: 24211310 DOI: 10.1016/j.anaerobe.2013.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/07/2013] [Accepted: 10/25/2013] [Indexed: 12/23/2022]
Abstract
Physiological changes in populations of Clostridium beijerinckii and Clostridium tetanomorphum were monitored by fluorescence staining and flow cytometry. To estimate the number of metabolically active cells in exponential growth, a combination of the dyes propidium iodide and carboxy fluorescein diacetate appeared to be a good choice for both species. During stationary phase, these stains did not reflect physiological changes sufficiently and therefore additional labeling with bis-(1,3-dibutylbarbituric acid) trimethineoxonol was applied. Results of fluorescence staining in solventogenic batch fermentations were compared with substrate-use data, the concentration of key metabolites and growth curves. We demonstrate that measurements by all methods were mutually compatible.
Collapse
Affiliation(s)
- Petra Patakova
- Department of Biotechnology, Institute of Chemical Technology in Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Michaela Linhova
- Biopreparaty spol. s r. o., Na Vinicnich horach 37, 16000 Prague 6, Czech Republic
| | - Pavla Vykydalova
- Department of Biotechnology, Institute of Chemical Technology in Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, Institute of Chemical Technology in Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Mojmir Rychtera
- Department of Biotechnology, Institute of Chemical Technology in Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Karel Melzoch
- Department of Biotechnology, Institute of Chemical Technology in Prague, Technicka 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
26
|
Radiation tolerance of Bacillus cereus pre-treated with carvacrol alone or in combination with nisin after exposure to single and multiple sub-lethal radiation treatment. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Shafiei R, Delvigne F, Babanezhad M, Thonart P. Evaluation of viability and growth of Acetobacter senegalensis under different stress conditions. Int J Food Microbiol 2013; 163:204-13. [DOI: 10.1016/j.ijfoodmicro.2013.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/25/2013] [Accepted: 03/10/2013] [Indexed: 11/24/2022]
|
28
|
Bouix M, Ghorbal S. Rapid enumeration of Oenococcus oeni
during malolactic fermentation by flow cytometry. J Appl Microbiol 2013; 114:1075-81. [DOI: 10.1111/jam.12117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/21/2012] [Accepted: 12/16/2012] [Indexed: 11/28/2022]
Affiliation(s)
- M. Bouix
- AgroParisTech; INRA; UMR 782 Génie et Microbiologie des Procédés Alimentaires; Thiverval-Grignon France
| | - S. Ghorbal
- AgroParisTech; INRA; UMR 782 Génie et Microbiologie des Procédés Alimentaires; Thiverval-Grignon France
| |
Collapse
|
29
|
Prado R, Rioboo C, Herrero C, Cid A. Screening acute cytotoxicity biomarkers using a microalga as test organism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:219-226. [PMID: 23084039 DOI: 10.1016/j.ecoenv.2012.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 06/01/2023]
Abstract
The present study checked the suitability of the integration of flow cytometry (FCM) as technique and a freshwater microalga (Chlamydomonas moewusii) as cell system model for ecotoxicological studies, looking for sensitive biomarkers of acute cytotoxicity of potential contaminants in aquatic systems. The detection of the potential acute toxicity of a pollutant is of interest because pulse discharges of contaminants to natural waters could lead to high concentrations of these substances that are only present for short periods of time but can affect aquatic organisms such as microalgae. Physiological alterations in C. moewusii cells were analysed after 1h of exposure to different concentrations of the herbicide paraquat. Cell viability was not affected, but the acute toxicity of paraquat was evident at other levels of cell physiology. Herbicide-treated cells showed lower autofluorescence and higher size and internal complexity, lower esterase activity and lower mitochondrial membrane potential. Paraquat induced the depolarisation of the plasma membrane and the increase of intracellular free calcium level and cytosolic pH in a concentration-dependent percentage of cells. All these effects can be related to the oxidative stress induced by the herbicide, as revealed the significantly increased intracellular levels of reactive oxygen species in cultures exposed to paraquat concentrations which induced the physiological alterations mentioned above. Excluding cell viability and mitochondrial membrane potential, these cytotoxicity endpoints could be considered sensitive biomarkers for the short-term exposure to pollutants such as herbicides.
Collapse
Affiliation(s)
- Raquel Prado
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | | | | | | |
Collapse
|
30
|
Ayari S, Dussault D, Hayouni EA, Vu KD, Hamdi M, Lacroix M. Response of Bacillus cereus vegetative cells after exposure to repetitive sublethal radiation processing in combination with nisin. Food Microbiol 2012; 32:361-70. [DOI: 10.1016/j.fm.2012.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 11/29/2022]
|
31
|
Monthéard J, Garcier S, Lombard E, Cameleyre X, Guillouet S, Molina-Jouve C, Alfenore S. Assessment of Candida shehatae viability by flow cytometry and fluorescent probes. J Microbiol Methods 2012; 91:8-13. [DOI: 10.1016/j.mimet.2012.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
32
|
Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production. Appl Microbiol Biotechnol 2012; 96:1465-77. [DOI: 10.1007/s00253-012-4254-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022]
|
33
|
Rapid flow cytometric method for viability determination of solventogenic clostridia. Folia Microbiol (Praha) 2012; 57:307-11. [DOI: 10.1007/s12223-012-0131-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022]
|
34
|
Flow cytometric assessment of the protectants for enhanced in vitro survival of probiotic lactic acid bacteria through simulated human gastro-intestinal stresses. Appl Microbiol Biotechnol 2012; 95:345-56. [DOI: 10.1007/s00253-012-4030-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 01/22/2023]
|
35
|
Prado R, Rioboo C, Herrero C, Suárez-Bregua P, Cid A. Flow cytometric analysis to evaluate physiological alterations in herbicide-exposed Chlamydomonas moewusii cells. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:409-420. [PMID: 21971972 DOI: 10.1007/s10646-011-0801-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Abstract
Investigation of herbicide toxicology in non-target aquatic primary producers such as microalgae is of great importance from an ecological point of view. In order to study the toxicity of the widely used herbicide paraquat on freshwater green microalga Chlamydomonas moewusii, physiological changes associated with 96 h-exposures to this pollutant were monitored using flow cytometry (FCM) technique. Intracellular reactive oxygen species concentration, cytoplasmic membrane potential, metabolic activity and cell protein content were monitored to evaluate the toxicological impact of paraquat on algal physiology. Results showed that herbicide paraquat induced oxidative stress in C. moewusii cells, as it indicated the increase of both superoxide anion and hydrogen peroxide levels observed in non-chlorotic cells of cultures exposed to increasing herbicide concentrations. Furthermore, a progressive increase in the percentage of depolarised cells and a decrease in the metabolic activity level were observed in response to paraquat when non-chlorotic cells were analysed. Chlorotic cells were probably non-viable cells, based on the cytoplasmic membrane depolarisation, its metabolically non-active state and its drastically reduced protein content. In view of the obtained results, we have concluded that a range of significant physiological alterations, detected by flow cytometry, occur when C. moewusii, an ubiquitous microalga in freshwater environments, is challenged with environmentally relevant concentrations of the herbicide paraquat.
Collapse
Affiliation(s)
- Raquel Prado
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Coruña, Spain
| | | | | | | | | |
Collapse
|
36
|
Adhikari MD, Panda BR, Vudumula U, Chattopadhyay A, Ramesh A. A facile method for estimating viable bacterial cells in solution based on “subtractive-aggregation” of gold nanoparticles. RSC Adv 2012. [DOI: 10.1039/c1ra01023a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
A Method for Viability Testing of Pectobacterium carotovorum in Postharvest Processing by Means of Flow Cytometry. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0749-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
The application of flow cytometry to the characterisation of a probiotic strain Lactobacillus reuteri DPC16 and the evaluation of sugar preservatives for its lyophilization. Lebensm Wiss Technol 2011. [DOI: 10.1016/j.lwt.2011.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Zotta T, Guidone A, Tremonte P, Parente E, Ricciardi A. A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria. World J Microbiol Biotechnol 2011; 28:919-27. [DOI: 10.1007/s11274-011-0889-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/10/2011] [Indexed: 11/29/2022]
|
40
|
El Arbi A, Ghorbal S, Delacroix-Buchet A, Bouix M. Assessment of the dynamics of the physiological states of Lactococcus lactis ssp. cremoris SK11 during growth by flow cytometry. J Appl Microbiol 2011; 111:1205-11. [PMID: 21787374 DOI: 10.1111/j.1365-2672.2011.05114.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to improve knowledge about the dynamics of the physiological states of Lactococcus lactis ssp. cremoris SK11, a chain-forming bacterium, during growth, and to evaluate whether flow cytometry (FCM) combined with fluorescent probes can assess these different physiological states. METHODS AND RESULTS Cellular viability was assessed using double labelling with carboxyfluorescein diacetate and propidium iodide. FCM makes it possible to discriminate between three cell populations: viable cells, dead cells and cells in an intermediate physiological state. During exponential and stationary phases, the cells in the intermediate physiological state were culturable, whereas this population was no longer culturable at the end of the stationary phase. CONCLUSIONS, AND IMPACT OF THE STUDY We introduced a new parameter, the ratio of the means of the fluorescence cytometric index to discriminate between viable culturable and viable nonculturable cells. Finally, this work confirms the relevance of FCM combined with two fluorescent stains to evaluate the physiological states of L. lactis SK11 cells during their growth and to distinguish viable cells from viable but not culturable cells.
Collapse
Affiliation(s)
- A El Arbi
- AgroParisTech, INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Thiverval-Grignon, France
| | | | | | | |
Collapse
|
41
|
Arku B, Fanning S, Jordan K. Flow cytometry to assess biochemical pathways in heat-stressed Cronobacter spp. (formerly Enterobacter sakazakii). J Appl Microbiol 2011; 111:616-24. [PMID: 21672098 DOI: 10.1111/j.1365-2672.2011.05075.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Using a flow cytometry (FC)-based approach in combination with four selected fluorescent probes, the biochemical pathway activated following the adaptation of Cronobacter spp. to lethal heat stress was investigated. This approach assessed the physiological changes induced in four strains of Cronobacter spp. METHODS AND RESULTS Using the commercially available live/dead viability assessment fluorescence probes, live, injured or dead bacterial cells were studied. Cellular respiration and membrane potential were evaluated using the dye-labelled probe 3,3'-dihexylocarbocyanine iodide, metabolic activity was evaluated using a fluorescein diacetate (FDA) probe, intracellular pH changes were measured using a carboxy-fluorescein diacetate succinimidyl ester probe, and reactive oxygen species were measured using a hydroethidine fluorescent probe. Adaptation to lethal heat stress induced physiological changes that potentially improve the survival of Cronobacter spp. CONCLUSIONS These data showed that in situ assessment of physiological behaviour of lethally stressed cells using multiparameter FC is a useful, rapid and sensitive tool to study and assess the viability and physiological state of Cronobacter cells. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that FC is a valuable tool in the study of physiological aspects of increased survival because of sublethal adaptation to heat.
Collapse
Affiliation(s)
- B Arku
- Teagasc, Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | |
Collapse
|
42
|
Physiological parameters of Bacillus cereus marking the end of acid-induced lag phases. Int J Food Microbiol 2011; 148:42-7. [DOI: 10.1016/j.ijfoodmicro.2011.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 11/19/2022]
|
43
|
Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: A multivariate screening study. Int J Food Microbiol 2010; 144:270-9. [DOI: 10.1016/j.ijfoodmicro.2010.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022]
|
44
|
Rault A, Bouix M, Béal C. Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is influenced by the physiological state during fermentation. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2010.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Łaniewska-Trokenheim Ł, Olszewska M, Miks-Krajnik M, Zadernowska A. Patterns of survival and volatile metabolites of selected Lactobacillus strains during long-term incubation in milk. J Microbiol 2010; 48:445-51. [PMID: 20799085 DOI: 10.1007/s12275-010-0056-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/14/2010] [Indexed: 11/30/2022]
Abstract
The focus of this study was to monitor the survival of populations and the volatile compound profiles of selected Lactobacillus strains during long-term incubation in milk. The enumeration of cells was determined by both the Direct Epifluorescent Filter Technique using carboxyfluorescein diacetate (CFDA) staining and the plate method. Volatile compounds were analysed by the gas-chromatography technique. All strains exhibited good survival in cultured milks, but Lactobacillus crispatus L800 was the only strain with comparable growth and viability in milk, assessed by plate and epifluorescence methods. The significant differences in cell numbers between plate and microscopic counts were obtained for L. acidophilus strains. The investigated strains exhibited different metabolic profiles. Depending on the strain used, 3 to 8 compounds were produced. The strains produced significantly higher concentrations of acetic acid, compared to other volatiles. Lactobacillus strains differed from one another in number and contents of the volatile compounds.
Collapse
Affiliation(s)
- Łucja Łaniewska-Trokenheim
- Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Pl. Cieszyński 1, Olsztyn, Poland
| | | | | | | |
Collapse
|
46
|
Araki E, Matsuzaki T, Sekita T, Saito M, Matsuoka H. Development of a density slicer for the simple collection of respective density layers after stepwise density gradient centrifugation. Biocontrol Sci 2010; 15:39-43. [PMID: 20616430 DOI: 10.4265/bio.15.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Density gradient centrifugation (DGC) is useful for the separation of living microbial cells from food samples that are not filterable. After DGC, however, careful operation is necessary to collect each density layer. For a simple and reproducible collection after DGC, we have developed a seamless operation system composed of a 5-needle unit, a microchannel plate, and a microflow controller, and named this a density slicer system. Two types of 5-needle units were devised and both showed nearly the same performance. Reproducible results with the automatic operation system could be demonstrated using an Escherichia coli cell suspension.
Collapse
Affiliation(s)
- Emiko Araki
- Japan Food Research Laboratories, Shibuya-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Sträuber H, Müller S. Viability states of bacteria-Specific mechanisms of selected probes. Cytometry A 2010; 77:623-34. [DOI: 10.1002/cyto.a.20920] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Hayouni EA, Bouix M, Abedrabba M, Leveau JY, Hamdi M. Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chem 2008. [DOI: 10.1016/j.foodchem.2008.04.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Rault A, Bouix M, Béal C. Dynamic analysis of Lactobacillus delbrueckii subsp. bulgaricus CFL1 physiological characteristics during fermentation. Appl Microbiol Biotechnol 2008; 81:559-70. [PMID: 18800182 DOI: 10.1007/s00253-008-1699-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/27/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.
Collapse
Affiliation(s)
- Aline Rault
- AgroParisTech, INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, CBAI, 78850, Thiverval-Grignon, France
| | | | | |
Collapse
|