1
|
Chen Y, Chen Y, Pouillot R, Dennis S, Xian Z, Luchansky JB, Porto-Fett ACS, Lindsay JA, Hammack TS, Allard M, Van Doren JM, Brown EW. Genetic diversity and profiles of genes associated with virulence and stress resistance among isolates from the 2010-2013 interagency Listeria monocytogenes market basket survey. PLoS One 2020; 15:e0231393. [PMID: 32352974 PMCID: PMC7192433 DOI: 10.1371/journal.pone.0231393] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Whole genome sequencing (WGS) was performed on 201 Listeria monocytogenes isolates recovered from 102 of 27,389 refrigerated ready-to-eat (RTE) food samples purchased at retail in U.S. FoodNet sites as part of the 2010-2013 interagency L. monocytogenes Market Basket Survey (Lm MBS). Core genome multi-locus sequence typing (cgMLST) and in-silico analyses were conducted, and these data were analyzed with metadata for isolates from five food groups: produce, seafood, dairy, meat, and combination foods. Six of 201 isolates, from 3 samples, were subsequently confirmed as L. welshimeri. Three samples contained one isolate per sample; mmong the 96 samples that contained two isolates per sample, 3 samples each contained two different strains and 93 samples each contained duplicate isolates. After 93 duplicate isolates were removed, the remaining 102 isolates were delineated into 29 clonal complexes (CCs) or singletons based on their sequence type. The five most prevalent CCs were CC155, CC1, CC5, CC87, and CC321. The Shannon's diversity index for clones per food group ranged from 1.49 for dairy to 2.32 for produce isolates, which were not significantly different in pairwise comparisons. The most common molecular serogroup as determined by in-silico analysis was IIa (45.6%), followed by IIb (27.2%), IVb (20.4%), and IIc (4.9%). The proportions of isolates within lineages I, II, and III were 48.0%, 50.0% and 2.0%, respectively. Full-length inlA was present in 89.3% of isolates. Listeria pathogenicity island 3 (LIPI-3) and LIPI-4 were found in 51% and 30.6% of lineage I isolates, respectively. Stress survival islet 1 (SSI-1) was present in 34.7% of lineage I isolates, 80.4% of lineage II isolates and the 2 lineage III isolates; SSI-2 was present only in the CC121 isolate. Plasmids were found in 48% of isolates, including 24.5% of lineage I isolates and 72.5% of lineage II isolates. Among the plasmid-carrying isolates, 100% contained at least one cadmium resistance cassette and 89.8% contained bcrABC, involved in quaternary ammonium compound tolerance. Multiple clusters of isolates from different food samples were identified by cgMLST which, along with available metadata, could aid in the investigation of possible cross-contamination and persistence events.
Collapse
Affiliation(s)
- Yi Chen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Yuhuan Chen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Régis Pouillot
- Consultant, Buenos Aires, Argentina, United States of America
| | - Sherri Dennis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Zhihan Xian
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - John B. Luchansky
- USDA Agricultural Research Service, Wyndmoor, Pennsylvania, United States of America
| | - Anna C. S. Porto-Fett
- USDA Agricultural Research Service, Wyndmoor, Pennsylvania, United States of America
| | - James A. Lindsay
- USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Thomas S. Hammack
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Jane M. Van Doren
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| |
Collapse
|
2
|
Strain Variability of Listeria monocytogenes under NaCl Stress Elucidated by a High-Throughput Microbial Growth Data Assembly and Analysis Protocol. Appl Environ Microbiol 2020; 86:AEM.02378-19. [PMID: 31900307 DOI: 10.1128/aem.02378-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes causes the severe foodborne illness listeriosis and survives in food-associated environments due to its high stress tolerance. A data assembly and analysis protocol for microbial growth experiments was compiled to elucidate the strain variability of L. monocytogenes stress tolerance. The protocol includes measurement of growth ability under stress (step 1), selection of a suitable method for growth parameter calculation (step 2), comparison of growth patterns between strains (step 3), and biological interpretation of the discovered differences (step 4). In step 1, L. monocytogenes strains (n = 388) of various serovars and origins grown on media with 9.0% NaCl were measured using a Bioscreen C microbiology reader. Technical variability of the growth measurements was assessed and eliminated. In step 2, the growth parameters determined by Gompertz, modified-Gompertz, logistic, and Richards models and model-free splines were compared, illustrating differences in the suitability of these methods to describe the experimental data. In step 3, hierarchical clustering was used to describe the NaCl tolerance of L. monocytogenes measured by strain-specific variation in growth ability; tolerant strains had higher growth rates and maximum optical densities and shorter lag phases than susceptible strains. The spline parameter area under the curve best classified "poor," "average," and "good" growers. In step 4, the tested L. monocytogenes lineage I strains (serovars 4b and 1/2b) proved to be significantly more tolerant toward 9.0% NaCl than lineage II strains (serovars 1/2a, 1/2c, and 3a). Our protocol provides systematic tools to gain comparable data for investigating strain-specific variation of bacterial growth under stress.IMPORTANCE The pathogen Listeria monocytogenes causes the foodborne disease listeriosis, which can be fatal in immunocompromised individuals. L. monocytogenes tolerates several environmental stressors and can persist in food-processing environments and grow in foodstuffs despite traditional control measures such as high salt content. Nonetheless, L. monocytogenes strains differ in their ability to withstand stressors. Elucidating the intraspecies strain variability of L. monocytogenes stress tolerance is crucial for the identification of particularly tolerant strains. To enhance reliable identification of variability in bacterial stress tolerance phenotypes, we compiled a large-scale protocol for the entire data assembly and analysis of microbial growth experiments, providing a systematic approach and checklist for experiments on strain-specific growth ability. Our study illustrated the diversity and strain-specific variation of L. monocytogenes stress tolerance with an unprecedented scope and discovered biologically relevant serovar- and lineage-dependent phenotypes of NaCl tolerance.
Collapse
|
3
|
Phylogenetically Defined Isoforms of Listeria monocytogenes Invasion Factor InlB Differently Activate Intracellular Signaling Pathways and Interact with the Receptor gC1q-R. Int J Mol Sci 2019; 20:ijms20174138. [PMID: 31450632 PMCID: PMC6747193 DOI: 10.3390/ijms20174138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/19/2023] Open
Abstract
The pathogenic Gram-positive bacterium Listeria monocytogenes has been evolving into a few phylogenetic lineages. Phylogenetically defined substitutions were described in the L. monocytogenes virulence factor InlB, which mediates active invasion into mammalian cells via interactions with surface receptors c-Met and gC1q-R. InlB internalin domain (idInlB) is central to interactions with c-Met. Here we compared activity of purified recombinant idInlB isoforms characteristic for L. monocytogenes phylogenetic lineage I and II. Size exclusion chromatography and intrinsic fluorescence were used to characterize idInlBs. Western blotting was used to study activation of c-Met-dependent MAPK- and PI3K/Akt-pathways. Solid-phase microplate binding and competition assay was used to quantify interactions with gCq1-R. Isogenic recombinant L. monocytogenes strains were used to elucidate the input of idInlB isoforms in HEp-2 cell invasion. Physicochemical parameters of idInlB isoforms were similar but not identical. Kinetics of Erk1/2 and Akt phosphorylation in response to purified idInlBs was lineage specific. Lineage I but not lineage II idInlB specifically bound gC1q-R. Antibody against gC1q-R amino acids 221–249 inhibited invasion of L. monocytogenes carrying lineage I but not lineage II idInlB. Taken together, obtained results suggested that phylogenetically defined substitutions in idInlB provide functional distinctions and might be involved in phylogenetically determined differences in virulence potential.
Collapse
|
4
|
Félix B, Feurer C, Maillet A, Guillier L, Boscher E, Kerouanton A, Denis M, Roussel S. Population Genetic Structure of Listeria monocytogenes Strains Isolated From the Pig and Pork Production Chain in France. Front Microbiol 2018; 9:684. [PMID: 29681897 PMCID: PMC5897532 DOI: 10.3389/fmicb.2018.00684] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is an ubiquitous pathogenic bacterium, transmissible to humans through the consumption of contaminated food. The pork production sector has been hit hard by a series of L. monocytogenes-related food poisoning outbreaks in France. An overview of the diversity of strains circulating at all levels of the pork production chain, from pig farming (PF) to finished food products (FFP), is needed to identify the contamination routes and improve food safety. Until now, no typing data has been available on strains isolated across the entire pig and pork production chain. Here, we analyzed the population genetic structure of 687 L. monocytogenes strains isolated over the last 20 years in virtually all the French départements from three compartments of this production sector: PF, the food processing environment (FPE), and FFP. The genetic structure was described based on Multilocus sequence typing (MLST) clonal complexes (CCs). The CCs were obtained by mapping the PFGE profiles of the strains. The distribution of CCs was compared firstly between the three compartments and then with CCs obtained from 1106 strains isolated from other food production sectors in France. The predominant CCs of pig and pork strains were not equally distributed among the three compartments: the CC37, CC59, and CC77 strains, rarely found in FPE and FFP, were prevalent in PF. The two most prevalent CCs in the FPE and FFP compartments, CC9 and CC121, were rarely or never detected in PF. No CC was exclusively associated with the pork sector. Three CCs (CC5, CC6, and CC2) were considered ubiquitous, because they were observed in comparable proportions in all food production sectors. The two most prevalent CCs in all sectors were CC9 and CC121, but their distribution was disparate. CC9 was associated with meat products and food products combining several food categories, whereas CC121 was not associated with any given sector. Based on these results, CC121 is likely able to colonize a larger diversity of food products than CC9. Both CCs being associated with the food production suggests, that certain processing steps, such as slaughtering or stabilization treatments, favor their settlement and the recontamination of the food produced.
Collapse
Affiliation(s)
- Benjamin Félix
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Carole Feurer
- The French Institute for Pig and Pork Industry, IFIP, Le Rheu, France
| | - Aurelien Maillet
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Laurent Guillier
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Evelyne Boscher
- Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Annaëlle Kerouanton
- Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Martine Denis
- Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Sophie Roussel
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
5
|
Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing. Appl Environ Microbiol 2016; 82:5720-8. [PMID: 27235443 PMCID: PMC5007763 DOI: 10.1128/aem.00583-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view of L. monocytogenes strain populations associated with specific food matrices. We clearly showed that some STs were associated with food matrices, such as meat, meat products, and dairy products. We opened the way to source attribution modeling in order to quantify the relative importance of the main food matrices.
Collapse
|
6
|
Nyarko EB, Donnelly CW. Listeria monocytogenes: Strain Heterogeneity, Methods, and Challenges of Subtyping. J Food Sci 2015; 80:M2868-78. [PMID: 26588067 DOI: 10.1111/1750-3841.13133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/02/2015] [Indexed: 12/28/2022]
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen that is associated with 20% to 30% case fatality rate. L. monocytogenes is a genetically heterogeneous species, with a small fraction of strains (serotypes 1/2a, 1/2b, 4b) implicated in human listeriosis. Monitoring and source tracking of L. monocytogenes involve the use of subtyping methods, with the performance of genetic-based methods found to be superior to phenotypic-based ones. Various methods have been used to subtype L. monocytogenes isolates, with the pulsed-field gel electrophoresis (PFGE) being the gold standard. Although PFGE has had a massive impact on food safety through the establishment of the PulseNet, there is no doubt that whole genome sequence (WGS) typing is accurate, has a discriminatory power superior to any known method, and allows genome-wide differences between strains to be quantified through the comparison of nucleotide sequences. This review focuses on the different techniques that have been used to type L. monocytogenes strains, their performance challenges, and the tremendous impact WGS typing could have on the food safety landscape.
Collapse
Affiliation(s)
- Esmond B Nyarko
- Dept. of Animal and Food Science, Univ. of Delaware, 044 Townsend Hall, 531 S. College Avenue, Newark, Del., 19716, U.S.A
| | - Catherine W Donnelly
- Dept. of Nutrition and Food Science, Univ. of Vermont, 109 Carrigan Drive, 256 Carrigan Wing, Burlington, Vt., 05405, U.S.A
| |
Collapse
|
7
|
Assessment of microbiological quality and safety of marinated pork products from German retail during shelf life. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Chen M, Wu Q, Zhang J, Yan Z, Wang J. Prevalence and characterization of Listeria monocytogenes isolated from retail-level ready-to-eat foods in South China. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ribeiro VB, Mujahid S, Orsi RH, Bergholz TM, Wiedmann M, Boor KJ, Destro MT. Contributions of σ(B) and PrfA to Listeria monocytogenes salt stress under food relevant conditions. Int J Food Microbiol 2014; 177:98-108. [PMID: 24631633 DOI: 10.1016/j.ijfoodmicro.2014.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/13/2014] [Accepted: 02/22/2014] [Indexed: 01/22/2023]
Abstract
Listeria monocytogenes is well known to survive and grow under several stress conditions, including salt stress, which is important for growth in certain foods as well as for host infection. To characterize the contributions, to salt stress response, of transcriptional regulators important for stress response and virulence (i.e., σ(B) and PrfA), we analyzed three L. monocytogenes parent strains and isogenic mutants (ΔsigB, ΔprfA, and ΔsigBΔprfA), representing different serotypes and lineages, for their ability to grow, at 25°C, in BHI with 1.9 M NaCl. With regard to growth rate, only the lineage IV strain presented a significant difference between the parent strain and both of its respective mutants lacking prfA (ΔprfA and ΔsigBΔprfA). Conversely, the lineage I and II parent strains showed significantly shorter lag phase in comparison to their respective ΔsigB mutant strains. Intestinal epithelial cell invasion assay and hemolytic activity assays showed a significant role for σ(B) in the former and for PrfA in the latter. To explore the mechanism that may contribute to the extended lag phase in the ΔsigB mutant strain and survival and growth of the parent strain upon salt shock, whole genome transcription profiling was performed to compare transcript levels between the lineage I, serotype 1/2b, parent strain and its isogenic ΔsigB mutant after 30 min of lag phase growth at 25°C in the presence of 1.9M NaCl (salt shock) without aeration. Microarray data showed significantly higher transcript levels for 173 genes in the parent strain as compared to the ΔsigB strain. Overall, 102 of the 173 σ(B) up-regulated genes had been identified in previous studies, indicating that 71 genes were newly identified as being up-regulated by σ(B) in this study. We hypothesize that, among these genes newly identified as σ(B) up-regulated, four genes (lmo2174, lmo0530, lmo0527 and lmo0529) may play a major role in response to salt stress. Lmo2174 contains domains that facilitate sensing and producing a transduction signal in the form of cyclic di-GMP, which may activate the enzymes Lmo0527, Lmo0529 and Lmo0530, which encode proteins similar to those responsible for synthesis of exopolysaccharides that may protect the cell by changing the cell wall structure during salt stress. Overall, our data showed that σ(B), but not PrfA, contributes to growth under salt stress. Moreover, we show that the σ(B) regulon of a L. monocytogenes lineage I strain challenged with salt shock includes salt stress-specific as well as previously unidentified σ(B) up-regulated genes.
Collapse
Affiliation(s)
- V B Ribeiro
- Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - S Mujahid
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | - R H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | - T M Bergholz
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | - M Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | - K J Boor
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | - M T Destro
- Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Lambertz ST, Ivarsson S, Lopez-Valladares G, Sidstedt M, Lindqvist R. Subtyping of Listeria monocytogenes isolates recovered from retail ready-to-eat foods, processing plants and listeriosis patients in Sweden 2010. Int J Food Microbiol 2013; 166:186-92. [PMID: 23911759 DOI: 10.1016/j.ijfoodmicro.2013.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Identification and prioritisation of food safety interventions requires an understanding of the relationship between food, pathogens and cases. Such understanding can be gained through different approaches, e.g. microbial subtyping to attribute cases of foodborne disease to food vehicles or other sources of illness. In this study, Listeria monocytogenes isolates (n=166) from (i) three categories of ready-to-eat (RTE) foods, (ii) food processing plant environments, and (iii) human listeriosis cases, all sampled during 2010 in Sweden, were subtyped. In addition, 121 isolates from human listeriosis cases, collected 2005-2009, were subtyped. Subtyping consisted of both serotyping (conventional method and PCR) and genotyping using pulsed-field gel electrophoresis (PFGE). Serotype 1/2a dominated in all three groups of isolates (range 73-96%). Eighteen percent of the human isolates (2010) belonged to serotype 4b, but only 1.4% of the food isolates. The food isolates differentiated into 19 pulsotypes (ID=0.843), the human isolates collected 2010 into 31 pulsotypes (ID=0.950) and the processing plant isolates into 22 pulsotypes (ID=0.991). Six of the pulsotypes were shared between the food and human isolates. These pulsotypes comprised 42% of the human isolates and 59% of the food isolates. For some processing plants, there was suggested persistence of one or more specific L. monocytogenes strains, as indicated by repetitive isolation of the same pulsotype from food. This study indicated the presence of L. monocytogenes in the processing plant environment as a likely source of contamination of gravad and cold-smoked fish, and this food category as an important source of human exposure to the pathogen.
Collapse
|
11
|
Korsak D, Borek A, Daniluk S, Grabowska A, Pappelbaum K. Antimicrobial susceptibilities of Listeria monocytogenes strains isolated from food and food processing environment in Poland. Int J Food Microbiol 2012; 158:203-8. [PMID: 22874767 DOI: 10.1016/j.ijfoodmicro.2012.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 11/30/2022]
Abstract
A total of 471 Listeria monocytogenes isolates from different types of food and food-related sources in Poland during 2004-2010 were examined. This number includes 200 isolates from fish, 144 from fresh and frozen vegetables, 43 ready-to-eat products (deli foods, cold cuts), 13 from dairy products, 16 from raw meats, 15 from confectionery products and 40 directly from processing plants. All isolates were subjected to serotyping and lineage assays using PCR, and antimicrobial susceptibility using E-test and a broth microdilution method. Of all isolates, 256 (54.4%), 120 (25.5%), 59 (12.5%), 36 (7.6%) were identified as serotypes 1/2a (or 3a), 1/2c (or 3c), 1/2b (or 3b or 7), and 4b (or 4d or 4e), respectively. A direct correlation between the most common serotypes and three L. monocytogenes lineages was also observed. All L. monocytogenes isolates belonged to lineages I (20.2%) and II (79.8%). All strains were sensitive to ampicillin, amoxicillin, gentamicin, erythromycin, trimethoprim, rifampicin, vancomycin, chloramphenicol and sulfamethoxazol. Two of the L. monocytogenes strains (0.42%) showed phenotypic resistance. One strain was resistant to tetracycline and minocycline due to the presence of tet(M). It did not carry gene int, which may indicate that the tet(M) gene in this strain was not integrated in the transposon Tn916-Tn1545 family. The resistance of the second strain to ciprofloxacin and norfloxacin was attributed to active efflux associated with overexpression of gene lde. Our data indicate the low prevalence of antimicrobial resistance among L. monocytogenes isolates from food and food-related sources in Poland.
Collapse
Affiliation(s)
- Dorota Korsak
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
12
|
Tsai YHL, Maron SB, McGann P, Nightingale KK, Wiedmann M, Orsi RH. Recombination and positive selection contributed to the evolution of Listeria monocytogenes lineages III and IV, two distinct and well supported uncommon L. monocytogenes lineages. INFECTION GENETICS AND EVOLUTION 2011; 11:1881-90. [PMID: 21854875 DOI: 10.1016/j.meegid.2011.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Listeriamonocytogenes lineages III and IV represent two uncommon lineages of the human and animal pathogen L. monocytogenes, characterized by occurrence of unusual phenotypic and genetic characteristics that differentiate them from the common lineages I and II. To gain further insights into the evolution of lineages III and IV, we amplified and sequenced housekeeping genes (i.e., gap, prs, purM, ribC, and sigB), internalin genes (i.e., inlA, inlB, inlC, inlG, inlC2, inlD, inlE, inlF, and inlH) and the virulence gene cluster containing prfA, plcA, hly, mpl, actA, and plcB for lineages III (n = 7) and IV (n = 4) isolates. Phylogenetic analyses of the sequences obtained along with previously reported sequence data for 40 isolates representing lineages I (n = 18), II (n = 21), and III (n = 1), showed that lineages III and IV represent divergent and monophyletic lineages. The virulence gene cluster as well as the inlAB operon were present in all isolates, with inlF absent from all lineages III and IV isolates. While all lineage IV isolates contained only inlC (in addition to inlAB), lineage III isolates showed considerable diversity with regard to internalin gene presence, including presence of (i) only inlC (n = 2), (ii) inlC and inlGC2DE (n = 3), (iii) only inlGC2DE (n = 2), and (iv) inlC and inlC2DE (n = 1). In addition to evidence for horizontal gene transfer events, among lineages III and IV isolates, in prs, actA, plcB, mpl, inlA, inlB, inlG, inlD, and inlE, we also found significant evidence for positive selection in the hly promoter region and, along the lineages III and IV branches, for actA (including in sites recognized for interactions with proteins involved in actin tail polymerization). In conclusion, lineages III and IV represent two distinct monophyletic groups with contributions of intragenic recombination to the evolution of their internalin genes as well as contributions of positive selection to evolution of the virulence genes island.
Collapse
|
13
|
Leclercq A, Clermont D, Bizet C, Grimont PAD, Le Flèche-Matéos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M, Allerberger F. Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 2010; 60:2210-2214. [PMID: 19915117 DOI: 10.1099/ijs.0.017376-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
A Listeria-like strain isolated in Austria from pre-cut lettuce fitted the description of the genus Listeria although it could not be assigned to any of the known species. Comparison of the rrs gene (encoding 16S rRNA) sequence and gene content by DNA-array indicated affiliation to the genus Listeria. Phylogenetic distance from known species of the genus Listeria indicated that it represents a novel species. Since it can be differentiated from all other known species of the genus Listeria by using phenotypic tests, the name Listeria rocourtiae sp. nov. is proposed for the novel species. The type strain is CIP 109804(T) (=DSM 22097(T) =Allerberger 700284/02(T)). The type strain is avirulent as assessed by cell culture assays and inoculation of mice.
Collapse
Affiliation(s)
- Alexandre Leclercq
- Institut Pasteur, Groupe Microorganismes et barrières de l'hôte, WHO Collaborating Center for Foodborne Listeriosis and French National Reference Center for Listeria, Paris, France
| | | | - Chantal Bizet
- Institut Pasteur, Collection de l'Institut Pasteur (CIP), Paris, France
| | - Patrick A D Grimont
- Institut Pasteur, Unité Biodiversité des Bactéries Pathogènes Emergentes, Paris, France
| | - Anne Le Flèche-Matéos
- Institut Pasteur, Unité Biodiversité des Bactéries Pathogènes Emergentes, Paris, France
| | - Sylvie M Roche
- Institut National de Recherche Agronomique, Infectiologie Animale et Santé Publique Tours, UR1282 Nouzilly, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des bactéries Intracellulaires and CNRS URA 2171, Paris, France
| | - Véronique Cadet-Daniel
- Institut Pasteur, Groupe Microorganismes et barrières de l'hôte, WHO Collaborating Center for Foodborne Listeriosis and French National Reference Center for Listeria, Paris, France
| | - Alban Le Monnier
- Institut Pasteur, Groupe Microorganismes et barrières de l'hôte, WHO Collaborating Center for Foodborne Listeriosis and French National Reference Center for Listeria, Paris, France
| | - Marc Lecuit
- Université Paris Descartes, Department of Infectious Diseases and Tropical Medicine, Necker-Pasteur Center for Infectious Diseases, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Institut Pasteur, Groupe Microorganismes et barrières de l'hôte, WHO Collaborating Center for Foodborne Listeriosis and French National Reference Center for Listeria, Paris, France
| | - Franz Allerberger
- Österreichische Agentur für Gesundheit und Ernährungssicherheit (AGES), Wien, Austria
| |
Collapse
|
14
|
HELLSTRÖM SANNA, LAUKKANEN RIIKKA, SIEKKINEN KIRSIMAARIT, RANTA JUKKA, MAIJALA RIITTA, KORKEALA HANNU. Listeria monocytogenes Contamination in Pork Can Originate from Farms. J Food Prot 2010; 73:641-8. [DOI: 10.4315/0362-028x-73.4.641] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of Listeria monocytogenes in the pork production chain was followed from farm to slaughterhouse by examining the farm and slaughterhouse levels in the same 364 pigs, and finally by analyzing the cut meats from the same pig lots. Both organic and conventional farms were included in the study. Altogether, 1,962 samples were collected, and the 424 L. monocytogenes isolates were analyzed by pulsed-field gel electrophoresis. The results from microbial analyses were combined with data from an on-farm observation and a questionnaire to clarify the associations between farm factors and prevalence of L. monocytogenes. The prevalence of L. monocytogenes was 11, 1, 1, 24, 5, 1, and 4% in feed and litter, rectal swabs, intestinal contents, tonsils, pluck sets (including lungs, heart, liver, and kidney), carcasses, and meat cuts, respectively. The prevalence was significantly higher in organic than in conventional pig production at the farm and slaughterhouse level, but not in meat cuts. Similar L. monocytogenes genotypes were recovered in different steps of the production chain in pigs originating from the same farm. Specific farm management factors, i.e., large group size, contact with pet and pest animals, manure treatment, use of coarse feed, access to outdoor area, hygiene practices, and drinking from the trough, influenced the presence of L. monocytogenes in pigs. L. monocytogenes was present in the production chain, and transmission of the pathogen was possible throughout the chain, from the farm to pork. Good farm-level practices can therefore be utilized to reduce the prevalence of this pathogen.
Collapse
Affiliation(s)
- SANNA HELLSTRÖM
- 1Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, P.O. Box 66, 00014 University of Helsinki, Finland
| | - RIIKKA LAUKKANEN
- 1Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, P.O. Box 66, 00014 University of Helsinki, Finland
| | - KIRSI-MAARIT SIEKKINEN
- 2Risk Assessment Unit, Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
| | - JUKKA RANTA
- 2Risk Assessment Unit, Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
| | - RIITTA MAIJALA
- 2Risk Assessment Unit, Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
| | - HANNU KORKEALA
- 1Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, P.O. Box 66, 00014 University of Helsinki, Finland
| |
Collapse
|
15
|
Bueno VF, Banerjee P, Banada PP, José de Mesquita A, Lemes-Marques EG, Bhunia AK. Characterization of Listeria monocytogenes isolates of food and human origins from Brazil using molecular typing procedures and in vitro cell culture assays. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2010; 20:43-59. [PMID: 20104385 DOI: 10.1080/09603120903281283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The spreading of diseases through foods is a worldwide concern. Here, molecular and in vitro cell-culture assays were employed to characterize 63 Brazilian Listeria monocytogenes isolates (food, 47; clinical, 16). Serotype 4b was the most predominant (49%) followed by (1/2)b (30%), (1/2)a (10%), (1/2)c (6%), 3c (3%) and 3b (2%). Ribotyping yielded 17 ribopatterns, which were grouped into four phylogenetic clusters. Cluster A comprised of 39/63 isolates primarily of food origin, and clusters B, C and D contained both food and clinical isolates. Isolates were positive for virulence determinants prfA, hlyA and inlA: clinical isolates were more invasive to Caco-2 cells and expressed high levels of inlA transcripts than the food isolates. Highly invasive isolates also provoked more Ped-2E9 cells to die by apoptosis than the weakly-invasive strains. These data demonstrate a strong genetic relatedness among clinical and food isolates and suggest transmission of a subset of L. monocytogenes strains from food to humans.
Collapse
Affiliation(s)
- Valter F Bueno
- Department of Veterinary Medicine, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Chen J, Jiang L, Chen Q, Zhao H, Luo X, Chen X, Fang W. lmo0038Is Involved in Acid and Heat Stress Responses and Specific forListeria monocytogenesLineages I and II, andListeria ivanovii. Foodborne Pathog Dis 2009; 6:365-76. [DOI: 10.1089/fpd.2008.0207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianshun Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Lingli Jiang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Qiaomiao Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Huancan Zhao
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaokai Luo
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xueyan Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
17
|
López V, Ortiz S, Corujo A, López P, Poza D, Navas J, Moreno R, Martínez-Suárez JV. Different contamination patterns of lineage I and II strains of Listeria monocytogenes in a Spanish broiler abattoir. Poult Sci 2008; 87:1874-82. [PMID: 18753457 DOI: 10.3382/ps.2007-00417] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine whether genetically similar or diverse strains of Listeria monocytogenes colonize the environment and carcasses in a single Spanish broiler abattoir over time. The study was composed of 5 surveys over a 1.5-yr period and included the monitoring of cleaning and disinfection procedures. Overall, a total of 212 samples were tested for the presence of L. monocytogenes, and 31% of the samples were found to be positive. Listeria monocytogenes was isolated from carcasses and product contact and noncontact sites in the evisceration and carcass classification areas of the abattoir. A total of 132 L. monocytogenes isolates were characterized by PCR-based serotyping and pulsed-field gel electrophoresis (PFGE) restriction analysis with the endonucleases ApaI and AscI. Molecular serotyping showed that L. monocytogenes isolates were of serotypes 1/2a and 1/2b. Isolates of serotype 1/2b (89.4%) were contaminating carcasses as well as environmental product contact and noncontact sites, whereas isolates of serotype 1/2a (10.6%) were recovered only from environmental product noncontact sites. A relatively low genetic diversity was found in this group of L. monocytogenes isolates from the abbatoir; only 14 different PFGE types (A1 to A14) were obtained. Nine pulsotypes belonging to serotype 1/2b (lineage I) were grouped in only one PFGE genetic cluster, whereas 5 pulsotypes belonging to serotype 1/2a (lineage II) were grouped into 4 PFGE genetic clusters. Two genetically related pulsotypes of serotype 1/2b (A1 and A2, 64.4% of the isolates) predominated and persisted in the abattoir. Our study indicated that a few strains of L. monocytogenes lineage I that were genetically very closely related might be specifically adapted to colonizing the evisceration zone of the abattoir and were predominant on carcasses over 1 yr. On the other hand, a genetically diverse group of lineage II strains were present in the abattoir environment, but never contaminated carcasses.
Collapse
Affiliation(s)
- V López
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña km 7'5, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S. A new perspective on Listeria monocytogenes evolution. PLoS Pathog 2008; 4:e1000146. [PMID: 18773117 PMCID: PMC2518857 DOI: 10.1371/journal.ppat.1000146] [Citation(s) in RCA: 441] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/07/2008] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a model organism for cellular microbiology and host-pathogen interaction studies and an important food-borne pathogen widespread in the environment, thus representing an attractive model to study the evolution of virulence. The phylogenetic structure of L. monocytogenes was determined by sequencing internal portions of seven housekeeping genes (3,288 nucleotides) in 360 representative isolates. Fifty-eight of the 126 disclosed sequence types were grouped into seven well-demarcated clonal complexes (clones) that comprised almost 75% of clinical isolates. Each clone had a unique or dominant serotype (4b for clones 1, 2 and 4, 1/2b for clones 3 and 5, 1/2a for clone 7, and 1/2c for clone 9), with no association of clones with clinical forms of human listeriosis. Homologous recombination was extremely limited (r/m<1 for nucleotides), implying long-term genetic stability of multilocus genotypes over time. Bayesian analysis based on 438 SNPs recovered the three previously defined lineages, plus one unclassified isolate of mixed ancestry. The phylogenetic distribution of serotypes indicated that serotype 4b evolved once from 1/2b, the likely ancestral serotype of lineage I. Serotype 1/2c derived once from 1/2a, with reference strain EGDe (1/2a) likely representing an intermediate evolutionary state. In contrast to housekeeping genes, the virulence factor internalin (InlA) evolved by localized recombination resulting in a mosaic pattern, with convergent evolution indicative of natural selection towards a truncation of InlA protein. This work provides a reference evolutionary framework for future studies on L. monocytogenes epidemiology, ecology, and virulence.
Collapse
Affiliation(s)
- Marie Ragon
- Institut Pasteur, Laboratoire des Listeria, Paris, France
- Institut Pasteur, Centre National de Référence des Listeria and World Health Organization Collaborating Centre for Foodborne Listeriosis, Paris, France
| | - Thierry Wirth
- Ecole Pratique des Hautes Etudes, Muséum National d'Histoire Naturelle, Department of Systematics and Evolution, Paris, France
| | - Florian Hollandt
- Ecole Pratique des Hautes Etudes, Muséum National d'Histoire Naturelle, Department of Systematics and Evolution, Paris, France
| | - Rachel Lavenir
- Institut Pasteur, Genotyping of Pathogens and Public Health Platform (PF8), Paris, France
| | - Marc Lecuit
- Institut Pasteur, Centre National de Référence des Listeria and World Health Organization Collaborating Centre for Foodborne Listeriosis, Paris, France
- Institut Pasteur, Microbes and Host Barriers Group, Paris, France
- Inserm, Avenir U604, Paris, France
- Université Paris Descartes, Hôpital Necker-Enfants malades, Service des Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker-Pasteur, Paris, France
| | - Alban Le Monnier
- Institut Pasteur, Laboratoire des Listeria, Paris, France
- Institut Pasteur, Centre National de Référence des Listeria and World Health Organization Collaborating Centre for Foodborne Listeriosis, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Genotyping of Pathogens and Public Health Platform (PF8), Paris, France
| |
Collapse
|
19
|
van der Veen S, Moezelaar R, Abee T, Wells-Bennik MHJ. The growth limits of a large number of Listeria monocytogenes strains at combinations of stresses show serotype--and niche-specific traits. J Appl Microbiol 2008; 105:1246-58. [PMID: 18713284 DOI: 10.1111/j.1365-2672.2008.03873.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The aim of this study was to associate the growth limits of Listeria monocytogenes during exposure to combined stresses with specific serotypes or origins of isolation, and identify potential genetic markers. METHODS AND RESULTS The growth of 138 strains was assessed at different temperatures using combinations of low pH, sodium lactate, and high salt concentrations in brain heart infusion broth. None of the strains was able to grow at pH < or = 4.4, a(w) < or = 0.92, or pH < or = 5.0 combined with a(w) < or = 0.94. In addition, none of the strains grew at pH < or = 5.2 and NaLac > or = 2%. At 30 degrees C, the serotype 4b strains showed the highest tolerance to low pH and high NaCl concentrations at both pH neutral (pH 7.4) and mild acidic conditions (pH 5.5). At 7 degrees C, the serotype 1/2b strains showed the highest tolerance to high NaCl concentrations at both pH 7.4 and 5.5. Serotype 1/2b meat isolates showed the highest tolerance to low pH in the presence of 2% sodium lactate at 7 degrees C. ORF2110 and gadD1T1 were identified as potential biomarkers for phenotypic differences. CONCLUSIONS Differences in growth limits were identified between specific L. monocytogenes strains and serotypes, which could in some cases be associated with specific genetic markers. SIGNIFICANCE AND IMPACT OF THE STUDY Our data confirm the growth limits of L. monocytogenes as set out by the European Union for ready-to-eat foods and provides an additional criterion. The association of L. monocytogenes serotypes with certain stress responses might explain the abundance of certain serotypes in retail foods while others are common in clinical cases.
Collapse
Affiliation(s)
- S van der Veen
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal, Wageningen, the Netherlands.
| | | | | | | |
Collapse
|
20
|
Request for updating the former SCVPH opinion on Listeria monocytogenes risk related to ready-to-eat foods and scientific advice on different levels of Listeria monocytogenes in ready-to-eat foods and the related risk for human illness - Scientific Opinio. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.599] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Bou-m'handi N, Jacquet C, El Marrakchi A, Martin P. Phenotypic and Molecular Characterization ofListeria monocytogenesStrains Isolated from a Marine Environment in Morocco. Foodborne Pathog Dis 2007; 4:409-17. [DOI: 10.1089/fpd.2007.0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Naïma Bou-m'handi
- Institut National de Recherche Halieutique, Centre Spécialisé de Valorisation et de Technologie des Produits de la Mer, Agadir, Maroc
| | - Christine Jacquet
- Laboratoire des Listeria, Centre National de Référence des Listeria, Institut Pasteur, Paris, France
| | - Abdelhaq El Marrakchi
- Institut Agronomique et Vétérinaire Hassan II, Département d’Hygiène et Industrie des Denrées Alimentaire d’Origine Animale, Rabat, Maroc
| | - Paul Martin
- Laboratoire des Listeria, Centre National de Référence des Listeria, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Hain T, Chatterjee SS, Ghai R, Kuenne CT, Billion A, Steinweg C, Domann E, Kärst U, Jänsch L, Wehland J, Eisenreich W, Bacher A, Joseph B, Schär J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T. Pathogenomics of Listeria spp. Int J Med Microbiol 2007; 297:541-57. [PMID: 17482873 DOI: 10.1016/j.ijmm.2007.03.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 11/20/2022] Open
Abstract
This review provides an overview of recent progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism utilized by the bacteria when growing in diverse and varied environments.
Collapse
Affiliation(s)
- Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Severino P, Dussurget O, Vêncio RZN, Dumas E, Garrido P, Padilla G, Piveteau P, Lemaître JP, Kunst F, Glaser P, Buchrieser C. Comparative transcriptome analysis of Listeria monocytogenes strains of the two major lineages reveals differences in virulence, cell wall, and stress response. Appl Environ Microbiol 2007; 73:6078-88. [PMID: 17704270 PMCID: PMC2075013 DOI: 10.1128/aem.02730-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 08/06/2007] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a food-borne, opportunistic, bacterial pathogen causing a wide spectrum of diseases, including meningitis, septicemia, abortion, and gastroenteritis, in humans and animals. Among the 13 L. monocytogenes serovars described, human listeriosis is mostly associated with strains of serovars 4b, 1/2b, and 1/2a. Within the species L. monocytogenes, three phylogenetic lineages are described. Serovar 1/2a belongs to phylogenetic lineage I, while serovars 4b and 1/2b group in phylogenetic lineage II. To explore the role of gene expression in the adaptation of L. monocytogenes strains of these two major lineages to different environments, as well as in virulence, we performed whole-genome expression profiling of six L. monocytogenes isolates of serovars 4b, 1/2b, and 1/2a of distinct origins, using a newly constructed Listeria multigenome DNA array. Comparison of the global gene expression profiles revealed differences among strains. The expression profiles of two strains having distinct 50% lethal doses, as assessed in the mouse model, were further analyzed. Gene ontology term enrichment analysis of the differentially expressed genes identified differences in protein-, nucleic acid-, carbon metabolism-, and virulence-related gene expression. Comparison of the expression profiles of the core genomes of all strains revealed differences between the two lineages with respect to cell wall synthesis, the stress-related sigma B regulon and virulence-related genes. These findings suggest different patterns of interaction with host cells and the environment, key factors for host colonization and survival in the environment.
Collapse
Affiliation(s)
- Patricia Severino
- Unité de Génomique des Microorganismes Pathogènes, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
This review describes the Listeria monocytogenes genome sequences available today and their comparison with that of Listeria innocua and Listeria welshimeri by highlighting their characteristic features and common traits. The diversity present among them is analysed with emphasis on putative virulence and host-pathogen interaction related functions. Then large-scale studies comparing gene content of Listeria and how these studies contributed to typing applications will be discussed. Finally, evolutionary conclusions and future perspectives in Listeria genomics are presented.
Collapse
Affiliation(s)
- Carmen Buchrieser
- Unité de Génomique des Microorganismes Pathogènes and CNRS URA 2171, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
25
|
Volokhov DV, Duperrier S, Neverov AA, George J, Buchrieser C, Hitchins AD. The presence of the internalin gene in natural atypically hemolytic Listeria innocua strains suggests descent from L. monocytogenes. Appl Environ Microbiol 2007; 73:1928-39. [PMID: 17220266 PMCID: PMC1828802 DOI: 10.1128/aem.01796-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atypical hemolytic Listeria innocua strains PRL/NW 15B95 and J1-023 were previously shown to contain gene clusters analogous to the pathogenicity island (LIPI-1) present in the related foodborne gram-positive facultative intracellular pathogen Listeria monocytogenes, which causes listeriosis. LIPI-1 includes the hemolysin gene, thus explaining the hemolytic activity of the atypical L. innocua strains. No other L. monocytogenes-specific virulence genes were found to be present. In order to investigate whether any other specific L. monocytogenes genes could be identified, a global approach using a Listeria biodiversity DNA array was applied. According to the hybridization results, the isolates were defined as L. innocua strains containing LIPI-1. Surprisingly, evidence for the presence of the L. monocytogenes-specific inlA gene, previously thought to be absent, was obtained. The inlA gene codes for the InlA protein which enables bacterial entry into some nonprofessional phagocytic cells. PCR and sequence analysis of this region revealed that the flanking genes of the inlA gene at the upstream, 5'-end region were similar to genes found in L. monocytogenes serotype 4b isolates, whereas the organization of the downstream, 3'-end region was similar to that typical of L. innocua. Sequencing of the inlA region identified a small stretch reminiscent of the inlB gene of L. monocytogenes. The presence of two clusters of L. monocytogenes-specific genes makes it unlikely that PRL/NW 15B95 and J1-023 are L. innocua strains altered by horizontal transfer. It is more likely that they are distinct relics of the evolution of L. innocua from an ancestral L. monocytogenes, as postulated by others.
Collapse
|