1
|
Ma D, Deng L, Huang L, Peng A, Bi W, Li R. Genome Mining of Novel Targets and Construction of Ladder-shaped melting temperature isothermal amplification Assays for the Identification of Cronobacter sakazakii and Cronobacter malonaticus. Foodborne Pathog Dis 2024; 21:586-592. [PMID: 38963769 DOI: 10.1089/fpd.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Cronobacter species are potential pathogens that can contaminate powdered infant formula. C. sakazakii and C. malonaticus are the most common species of Cronobacter associated with infections. This study mined new molecular targets for the detection of C. sakazakii and C. malonaticus by using comparative genome approaches. Specific target genes mngB and ompR were obtained and used to detect C. sakazakii and C. malonaticus, respectively. A novel detection method, termed ladder-shape melting temperature isothermal amplification (LMTIA), was developed and evaluated. The detection limit for pure C. sakazakii DNA was 1 pg per reaction and 1 fg per reaction for C. malonaticus. The C. sakazakii, C. malonaticus, and the reference stains were all correctly identified. The amplicons can be successfully visualized and identified by naked eyes when hydroxy naphthol blue dye (HNB dye) was used in the reaction. Therefore, the LMTIA assays developed in this study showed potential application for microorganism identification and detection.
Collapse
Affiliation(s)
- Da Ma
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ling Deng
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Liangpi Huang
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Aoxiang Peng
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wanglai Bi
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Rui Li
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Cechin CDF, Carvalho GG, Kabuki DY. Occurrence, genetic characterization, and antibiotic susceptibility of Cronobacter spp. isolated from low water activity functional foods in Brazil. Food Microbiol 2024; 122:104570. [PMID: 38839229 DOI: 10.1016/j.fm.2024.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Cronobacter spp. are bacterial pathogens isolated from a wide variety of foods. This study aims at evaluating the occurrence of Cronobacter spp. in low water activity functional food samples, detect the presence of virulence genes, and determine the antibiotic susceptibility of strains. From 105 samples, 38 (36.2%) were contaminated with Cronobacter spp. The species identified by polymerase chain reaction (PCR) and sequencing analyses (rpoB and fusA genes, respectively) were C. sakazakii (60.3%), C. dublinensis (25.4%), C. turincensis (9.5%), and C. malonaticus (4.8%). Nineteen fusA alleles were identified, including four new alleles. The virulence genes were identified by PCR and all isolates were positive for ompX and sodA genes, 60.3% to cpa gene, and 58.7% to hly gene. Using the disk diffusion method, antibiotic susceptibility to twelve antibiotics was assessed twice, separated by a 19-month period. In the first test, the isolates showed diverse antibiotic susceptibility profiles, with nineteen isolates (30.2%) being multi-drug resistant (resistant to three or more antibiotic classes), in the second, the isolates were susceptible to all antibiotics. Cronobacter spp. in functional foods demonstrates the need for continued investigation of this pathogen in foods, and further research is needed to clarify the loss of resistance of Cronobacter strains.
Collapse
Affiliation(s)
- Carine da Fonseca Cechin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil.
| | - Gabriela Guimarães Carvalho
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil; Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Mousavi ZE, Hunt K, Koolman L, Butler F, Fanning S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms 2023; 11:1379. [PMID: 37374881 DOI: 10.3390/microorganisms11061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The powdered formula market is large and growing, with sales and manufacturing increasing by 120% between 2012 and 2021. With this growing market, there must come an increasing emphasis on maintaining a high standard of hygiene to ensure a safe product. In particular, Cronobacter species pose a risk to public health through their potential to cause severe illness in susceptible infants who consume contaminated powdered infant formula (PIF). Assessment of this risk is dependent on determining prevalence in PIF-producing factories, which can be challenging to measure with the heterogeneity observed in the design of built process facilities. There is also a potential risk of bacterial growth occurring during rehydration, given the observed persistence of Cronobacter in desiccated conditions. In addition, novel detection methods are emerging to effectively track and monitor Cronobacter species across the food chain. This review will explore the different vehicles that lead to Cronobacter species' environmental persistence in the food production environment, as well as their pathogenicity, detection methods and the regulatory framework surrounding PIF manufacturing that ensures a safe product for the global consumer.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh Mousavi
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Department of Food Science and Engineering, Faculties of Agriculture and Natural Resources, University of Tehran, Karaj 6719418314, Iran
| | - Kevin Hunt
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Leonard Koolman
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Francis Butler
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
4
|
Jaradat ZW, Al-Mousa WA, Elbetieha AM, Ababneh QO, Al-Nabulsi AA, Jang H, Gangiredla J, Patel IR, Gopinath GR, Tall BD. Virulence, antimicrobial susceptibility, and phylogenetic analysis of Cronobacter sakazakii isolates of food origins from Jordan. J Appl Microbiol 2022; 133:2528-2546. [PMID: 35858752 DOI: 10.1111/jam.15723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
AIMS to characterize a collection of Cronobacter sakazakii isolates collected from various origins in Jordan. METHODS AND RESULTS the isolates were characterized using 16S rRNA sequencing, DNA microarray, multi-locus sequence typing (MLST), O-serotyping, virulence gene identification, and antibiotic susceptibility testing. The identities and phylogenetic relatedness revealed that C. sakazakii sequence type 4 (ST4) and Csak O:1 serotype was the most prevalent STs and serovars among these C. sakazakii strains. PCR screening of putative virulence genes showed that the siderophore-interacting protein gene (sip) and iron acquisition gene clusters (eitCBAD and iucABCD/iutA) were the most detected genes with noticeable variability in the type 6 secretion system (T6SS) and filamentous hemagglutinin/adhesion (FHA) gene loci. The antibiotic resistance profiles revealed that the majority of the isolates were susceptible to all antibiotics used despite harboring a class C β-lactamase resistance gene. CONCLUSIONS the results described in this report provide additional insights about the considerable genotypic and phenotypic heterogeneity within C. sakazakii. SIGNIFICANCE AND IMPACT OF THE STUDY the information reported in this study might be of great value in understanding the origins of C. sakazakii isolates, in addition to their diversity and variability, which might be helpful in preventing future outbreaks of this pathogen.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Waseem A Al-Mousa
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Ahmed M Elbetieha
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Qutaiba O Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P. O Box 3030, 22110, Irbid, Jordan
| | - Hyein Jang
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Jayanthi Gangiredla
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Isha R Patel
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Gopal R Gopinath
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Ben D Tall
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| |
Collapse
|
5
|
Jang H, Eshwar A, Lehner A, Gangiredla J, Patel IR, Beaubrun JJG, Chase HR, Negrete F, Finkelstein S, Weinstein LM, Ko K, Addy N, Ewing L, Woo J, Lee Y, Seo K, Jaradat Z, Srikumar S, Fanning S, Stephan R, Tall BD, Gopinath GR. Characterization of Cronobacter sakazakii Strains Originating from Plant-Origin Foods Using Comparative Genomic Analyses and Zebrafish Infectivity Studies. Microorganisms 2022; 10:microorganisms10071396. [PMID: 35889115 PMCID: PMC9319161 DOI: 10.3390/microorganisms10071396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C β-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen.
Collapse
Affiliation(s)
- Hyein Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Athmanya Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Isha R. Patel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Junia Jean-Gilles Beaubrun
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Hannah R. Chase
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Samantha Finkelstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Leah M. Weinstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Katie Ko
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Nicole Addy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Laura Ewing
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Jungha Woo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Youyoung Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Kunho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Ziad Jaradat
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Shabarinath Srikumar
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin & WHO Collaborating Centre for Cronobacter, Belfield, D04 N2E5 Dublin, Ireland; (S.S.); (S.F.)
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin & WHO Collaborating Centre for Cronobacter, Belfield, D04 N2E5 Dublin, Ireland; (S.S.); (S.F.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
- Correspondence: (B.D.T.); (G.R.G.)
| | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
- Correspondence: (B.D.T.); (G.R.G.)
| |
Collapse
|
6
|
Wang L, Wu P, Su Y, Wei Y, Guo X, Yang L, Wang M, Liu B. Detection of Genus and Three Important Species of Cronobacter Using Novel Genus- and Species-Specific Genes Identified by Large-Scale Comparative Genomic Analysis. Front Microbiol 2022; 13:885543. [PMID: 35722305 PMCID: PMC9201440 DOI: 10.3389/fmicb.2022.885543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Cronobacter includes seven species; however, the strains of Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter turicensis were highly correlated with clinical infections. Rapid and reliable identification of these three species of Cronobacter is important in monitoring and controlling diseases caused by these bacteria. Here, we identified four pairs of novel marker genes for the Cronobacter genus, C. sakazakii, C. malonaticus, and C. turicensis based on large-scale comparative genomic analysis from 799 Cronobacter and 136,146 non-Cronobacter genomes, including 10 Franconibacter and eight Siccibacter, which are close relatives of Cronobacter. Duplex and multiplex PCR methods were established based on these newly identified marker genes. The reliability of duplex and multiplex PCR methods was validated with 74 Cronobacter and 90 non-Cronobacter strains. Strains of C. sakazakii, C. malonaticus, and C. turicensis could be detected accurately at both the genus and species level. Moreover, the newly developed methods enable us to detect 2.5 × 103 CFU/ml in pure culture. These data indicate that the accurate and sensitive established methods for Cronobacter can serve as valuable tools for the identification of these strains recovered from food, environmental, and clinical samples.
Collapse
Affiliation(s)
- Lu Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Medical College, China Three Gorges University, Yichang, China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yingying Su
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
8
|
Gan X, Li M, Yan S, Wang X, Wang W, Li F. Genomic Landscape and Phenotypic Assessment of Cronobacter sakazakii Isolated From Raw Material, Environment, and Production Facilities in Powdered Infant Formula Factories in China. Front Microbiol 2021; 12:686189. [PMID: 34354686 PMCID: PMC8329244 DOI: 10.3389/fmicb.2021.686189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Cronobacter is a foodborne pathogen associated with severe infections and high mortality in neonates. The bacterium may also cause gastroenteritis, septicemia, and urinary tract and wound infectious in adults. A total of 15 Cronobacter isolates collected from 617 raw materials and environment samples from Powdered Infant Formula manufacturing factories during 2016 in Shaanxi, China, were analyzed for antimicrobial susceptibilities, species identification, biofilm formation, and whole-genome sequencing. The results showed that all 15 isolates were Cronobacter sakazakii, while the antimicrobial susceptibility test showed that all 15 C. sakazakii were pan susceptible. Most isolates were able to produce a weak biofilm, and two isolates from soil samples produced a strong biofilm formation. All isolates were classified into seven STs including ST4, ST40, ST64, ST93, ST148, ST256, and ST494, with ST64 (4/15, 26.7%) being dominant, and most were clinically related. The isolates harbored at least 11 virulence genes and two plasmids, with one isolate being positive for all virulence genes. Phylogenetic and ANI analysis showed strong clustering by sequence types and isolates from different sources or regions with a similar genomic background. The fact that isolates were obtained from raw materials and environment samples of PIF facilities shared a close phylogeny with one another suggests that cross-contamination events may have occurred between the processing room and external environments, which may give rise to a recurring risk of a continuous contamination during production.
Collapse
Affiliation(s)
- Xin Gan
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Menghan Li
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shaofei Yan
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaofei Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, National Health Commission, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
9
|
Berthold-Pluta A, Garbowska M, Stefańska I, Stasiak-Różańska L, Aleksandrzak-Piekarczyk T, Pluta A. Microbiological Quality of Nuts, Dried and Candied Fruits, Including the Prevalence of Cronobacter spp. Pathogens 2021; 10:900. [PMID: 34358048 PMCID: PMC8308658 DOI: 10.3390/pathogens10070900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Cronobacter genus bacteria are food-borne pathogens. Foods contaminated with Cronobacter spp. may pose a risk to infants or immunocompromised adults. The aim of this study was to determine the microbiological quality of nuts, seeds and dried fruits with special emphasis on the occurrence of Cronobacter spp. Analyses were carried out on 64 samples of commercial nuts (20 samples), dried fruits (24), candied fruits (8), seeds (4), and mixes of seeds, dried fruits and nuts (8). The samples were tested for the total plate count of bacteria (TPC), counts of yeasts and molds, and the occurrence of Cronobacter spp. Cronobacter isolates were identified and differentiated by PCR-RFLP (Polymerase Chain Reaction - Restriction Fragments Length Polymorphism) and RAPD-PCR (Random Amplified Polymorphic DNA by PCR) analysis. TPC, and yeasts and molds were not detected in 0.1 g of 23.4%, 89.1%, and 32.8% of the analyzed samples. In the remaining samples, TPC were in the range of 1.2-5.3 log CFU g-1. The presence/absence of Cronobacter species was detected in 12 (18.8%) samples of: nuts (10 samples), and mixes (2 samples). The 12 strains of Cronobacter spp. included: C. sakazakii (3 strains), C. malonaticus (5), and C. turicensis (4). The results of this study contribute to the determination of the presence and species identification of Cronobacter spp. in products of plant origin intended for direct consumption.
Collapse
Affiliation(s)
- Anna Berthold-Pluta
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | - Monika Garbowska
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Lidia Stasiak-Różańska
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | | | - Antoni Pluta
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| |
Collapse
|
10
|
Arslan S, Ertürk HG. Occurrence, Virulence and Antimicrobial Susceptibility Profiles of Cronobacter spp. from Ready-to-Eat Foods. Curr Microbiol 2021; 78:3403-3416. [PMID: 34241669 DOI: 10.1007/s00284-021-02585-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Cronobacter spp. can cause foodborne diseases in infants, but Cronobacter infections in healthy adults and vulnerable people have also been reported. These bacteria have ubiquitous nature and can contaminate various foods. Therefore, we assessed the presence of Cronobacter spp. in popularly consumed ready-to-eat (RTE) food products. In the present study, 51 (15%) of the 340 RTE food samples were contaminated with Cronobacter spp The highest contamination rates were found in spices (46.7%), meat-free cig koftes (44.4%), desserts (23.3%), cereals (23.1%), doners (12.2%), and ice cream (11.1%). Phenotypic and molecular methods, including 16S rRNA, gluA, rpoB, cgcA genes, and fusA allele sequencing were tested to identify Cronobacter species. Of the 51 contaminated samples, 54 isolates were identified as C. sakazakii (n = 43), C. malonaticus (n = 7), C. muytjensii (n = 3) and C. turicensis (n = 1) using fusA analysis. These isolates were assigned to 15 different fusA alleles, two of which (191 and 192) were new alleles. Putative virulence factors such as the ompA and zpx gene, biofilms, and siderophores were detected in most of the Cronobacter isolates (> 85%). Cronobacter isolates were resistant to cephalothin (85.2%), cefoxitin (33.3%), cefotaxime (14.8%), ampicillin (11.1%), cefepime (5.6%), aztreonam (5.6%), and piperacillin (1.9%). The multidrug resistance (against three or more classes of antimicrobial agents) was 7.4%. The results indicated presence of Cronobacter spp. in RTE foods, which may be a risk to human health. It is important to adopt rigorous hygiene and sanitization practices to ensure the microbiological safety of these foods consuming without any processing.
Collapse
Affiliation(s)
- Seza Arslan
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, Gölköy, 14030, Bolu, Turkey.
| | - Hafize Gizem Ertürk
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, Gölköy, 14030, Bolu, Turkey
| |
Collapse
|
11
|
Shang Y, Ye Q, Wu Q, Pang R, Zhou B, Wang C, Xiang X, Li F, Wang J, Zhang Y, Wang J, Sun X, Zhang J. PCR and multiplex PCR assays for the detection of Cronobacter species using specific targets obtained by a bioinformatics approach. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Sulaiman IM, Tang K, Segars K, Miranda N, Sulaiman N, Simpson S. Application of MALDI-TOF mass spectrometry, and DNA sequencing-based SLST and MLST analysis for the identification of Cronobacter spp. isolated from environmental surveillance samples. Arch Microbiol 2021; 203:4813-4820. [PMID: 34196749 DOI: 10.1007/s00203-021-02465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/10/2021] [Accepted: 06/26/2021] [Indexed: 11/27/2022]
Abstract
Cronobacter spp. are emerging infectious foodborne bacteria that can cause acute meningitis and necrotizing enterocolitis in neonates and immunocompromised individuals. Although, little is known about its reservoirs or transmission routes, it has been linked to powdered infant formula worldwide. Three Cronobacter spp. (C. sakazakii, C. malonaticus, and C. turicensis) have been described as more virulent, and isolated frequently from infant meningitis cases. The estimated mortality rates are as high as 80% in infants. Thus, surveillance and typing of Cronobacter spp. isolated from food and environmental samples is essential to prevent contamination and spread of this pathogen. In this study, we have characterized 83 Cronobacter isolates recovered from various environmental samples by conventional microbiologic protocols. Species identification was accomplished by VITEK 2 system and real-time PCR analysis. Subsequently, these isolates were analyzed using VITEK MS system. Single locus sequence typing (SLST) was achieved by characterizing the regions of 16S rRNA and rpoB genes. Multilocus sequence typing (MLST) was performed by sequence characterization of seven housekeeping genes (atpD, fusA, glnS, gltB, gyrB, infB, and pps) using ABI 3500XL Genetic Analyzer. VITEK MS system identified, the majority of isolates as Cronobacter sakazakii with a high confidence value (99.9%). MLST analysis ascertained 12 distinct clonal complexes (CC1, CC4, CC8, CC13, CC17, CC21, CC31, CC40, CC52, CC64, CC73, and CC83) for the recovered C. sakazakii isolates. The results suggest that the MALDI-TOF MS is a reliable diagnostic tool for rapid species identification whereas 7-loci MLST is a powerful technique to discriminate and differentiate Cronobacter spp. isolates.
Collapse
Affiliation(s)
- Irshad M Sulaiman
- Microbiological Sciences Branch, Southeast Food and Feed Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60, Eighth Street NE, Atlanta, GA, 30309, USA.
| | - Kevin Tang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, 1600 Clifton Road, NE, Atlanta, GA, 30329, USA
| | - Katharine Segars
- Microbiological Sciences Branch, Southeast Food and Feed Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60, Eighth Street NE, Atlanta, GA, 30309, USA
| | - Nancy Miranda
- Microbiological Sciences Branch, Southeast Food and Feed Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60, Eighth Street NE, Atlanta, GA, 30309, USA
| | - Nikhat Sulaiman
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, 1600 Clifton Road, NE, Atlanta, GA, 30329, USA
| | - Steven Simpson
- Microbiological Sciences Branch, Southeast Food and Feed Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60, Eighth Street NE, Atlanta, GA, 30309, USA
| |
Collapse
|
13
|
Parra-Flores J, Holý O, Riffo F, Lepuschitz S, Maury-Sintjago E, Rodríguez-Fernández A, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W, Forsythe S. Profiling the Virulence and Antibiotic Resistance Genes of Cronobacter sakazakii Strains Isolated From Powdered and Dairy Formulas by Whole-Genome Sequencing. Front Microbiol 2021; 12:694922. [PMID: 34276629 PMCID: PMC8278472 DOI: 10.3389/fmicb.2021.694922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an enteropathogen that causes neonatal meningitis, septicemia, and necrotizing enterocolitis in preterm infants and newborns with a mortality rate of 15 to 80%. Powdered and dairy formulas (P-DF) have been implicated as major transmission vehicles and subsequently the presence of this pathogen in P-DF led to product recalls in Chile in 2017. The objective of this study was to use whole genome sequencing (WGS) and laboratory studies to characterize Cronobacter strains from the contaminated products. Seven strains were identified as C. sakazakii, and the remaining strain was Franconibacter helveticus. All C. sakazakii strains adhered to a neuroblastoma cell line, and 31 virulence genes were predicted by WGS. The antibiograms varied between strains. and included mcr-9.1 and bla CSA genes, conferring resistance to colistin and cephalothin, respectively. The C. sakazakii strains encoded I-E and I-F CRISPR-Cas systems, and carried IncFII(pECLA), Col440I, and Col(pHHAD28) plasmids. In summary, WGS enabled the identification of C. sakazakii strains and revealed multiple antibiotic resistance and virulence genes. These findings support the decision to recall the contaminated powdered and dairy formulas from the Chilean market in 2017.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Department of Public Health, Palacký University Olomouc, Olomouc, Czechia
| | | | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | |
Collapse
|
14
|
Villeneuve W, Bérubé A, Chamberland J, Pouliot Y, Labrie S, Doyen A. Contribution of biofouling to permeation flux decline and membrane resistance changes during whey ultrafiltration. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Fu S, Qin X, Wang Z, Yang X, Chen S, Yang T, Jin H, Man C, Jiang Y. Screening of specific nucleic acid targets for Cronobacter sakazakii and visual detection by loop-mediated isothermal amplification and lateral flow dipstick method in powdered infant formula. J Dairy Sci 2021; 104:5152-5165. [PMID: 33663822 DOI: 10.3168/jds.2020-19427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022]
Abstract
Due to the lack of specific genes for rapid detection methods of Cronobacter sakazakii in food samples, whole genome sequence analysis was performed in this investigation using the basic local alignment search tool. Forty-two DNA fragments unique to C. sakazakii were mined, then primers were designed and screened by PCR and loop-mediated isothermal amplification (LAMP). Two primer sets, CS1 and CS31, were found as specific and stable primers, with their corresponding nucleic acid targets the CSK29544_00235 gene and CSK29544_03484 gene, respectively. Furthermore, compared with 3 genes reported previously, these 2 genes were verified as more specific to C. sakazakii among Cronobacter species, by sequence similarity alignment using Cronobacter MLST databases (http://pubmlst.org/cronobacter). The specificity of the LAMP reaction approached 100% by using 48 bacterial strains, which included 22 C. sakazakii strains. Subsequently, LAMP was combined with visual lateral flow dipstick (LFD) based on the above 2 nucleic acid targets, and was demonstrated as a rapid, efficient method with high specificity. Finally, the detection sensitivity of this assay system for pure cultures and artificially contaminated milk was measured as 4.5 × 100 cfu/mL and 5.7 × 101 cfu/g, respectively. Total time to detection for this assay was within 2 h. Thus, the establishment of this LAMP-LFD method shows great significance and potential for rapid detection of C. sakazakii in powdered infant formula.
Collapse
Affiliation(s)
- Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenghui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Sihan Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haonan Jin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Jang H, Chase HR, Gangiredla J, Grim CJ, Patel IR, Kothary MH, Jackson SA, Mammel MK, Carter L, Negrete F, Finkelstein S, Weinstein L, Yan Q, Iversen C, Pagotto F, Stephan R, Lehner A, Eshwar AK, Fanning S, Farber J, Gopinath GR, Tall BD, Pava-Ripoll M. Analysis of the Molecular Diversity Among Cronobacter Species Isolated From Filth Flies Using Targeted PCR, Pan Genomic DNA Microarray, and Whole Genome Sequencing Analyses. Front Microbiol 2020; 11:561204. [PMID: 33101235 PMCID: PMC7545074 DOI: 10.3389/fmicb.2020.561204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Cronobacter species are opportunistic pathogens capable of causing life-threatening infections in humans, with serious complications arising in neonates, infants, immuno-compromised individuals, and elderly adults. The genus is comprised of seven species: Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite a multiplicity of genomic data for the genus, little is known about likely transmission vectors. Using DNA microarray analysis, in parallel with whole genome sequencing, and targeted PCR analyses, the total gene content of two C. malonaticus, three C. turicensis, and 14 C. sakazaki isolated from various filth flies was assessed. Phylogenetic relatedness among these and other strains obtained during surveillance and outbreak investigations were comparatively assessed. Specifically, microarray analysis (MA) demonstrated its utility to cluster strains according to species-specific and sequence type (ST) phylogenetic relatedness, and that the fly strains clustered among strains obtained from clinical, food and environmental sources from United States, Europe, and Southeast Asia. This combinatorial approach was useful in data mining for virulence factor genes, and phage genes and gene clusters. In addition, results of plasmidotyping were in agreement with the species identity for each strain as determined by species-specific PCR assays, MA, and whole genome sequencing. Microarray and BLAST analyses of Cronobacter fly sequence datasets were corroborative and showed that the presence and absence of virulence factors followed species and ST evolutionary lines even though such genes were orthologous. Additionally, zebrafish infectivity studies showed that these pathotypes were as virulent to zebrafish embryos as other clinical strains. In summary, these findings support a striking phylogeny amongst fly, clinical, and surveillance strains isolated during 2010–2015, suggesting that flies are capable vectors for transmission of virulent Cronobacter spp.; they continue to circulate among United States and European populations, environments, and that this “pattern of circulation” has continued over decades.
Collapse
Affiliation(s)
- Hyein Jang
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Hannah R Chase
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Christopher J Grim
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Isha R Patel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Mahendra H Kothary
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Scott A Jackson
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K Mammel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Laurenda Carter
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Flavia Negrete
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Samantha Finkelstein
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Leah Weinstein
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - QiongQiong Yan
- WHO Collaborating Centre for Cronobacter, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Carol Iversen
- WHO Collaborating Centre for Cronobacter, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Franco Pagotto
- Food Directorate, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zürich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zürich, Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, University of Zürich, Zurich, Switzerland
| | - Seamus Fanning
- WHO Collaborating Centre for Cronobacter, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Jeffery Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Gopal R Gopinath
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Ben D Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Monica Pava-Ripoll
- Center of Food Safety and Applied Nutrition, U. S. Food & Drug Administration, College Park, MD, United States
| |
Collapse
|
17
|
Carvalho GG, Calarga AP, Teodoro JR, Queiroz MM, Astudillo-Trujillo CA, Levy CE, Brocchi M, Kabuki DY. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods. Food Res Int 2020; 137:109643. [PMID: 33233222 DOI: 10.1016/j.foodres.2020.109643] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023]
Abstract
Cronobacter spp. are opportunistic pathogens that cause serious infections, especially in infants, elderly, and immunocompromised people. Dehydrated infant foods are the main vehicle associated with infections caused by these bacteria. Thus, this study aims to investigate the occurrence of Cronobacter spp. in 152 commercial samples of dehydrated infant formulas (77 samples) and dehydrated infant cereals (75 samples), as well as characterize the isolates. Polymerase Chain Reaction (PCR) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) methods for isolate identification were used, and their results compared. Furthermore, the susceptibility to 11 antibiotics was tested, and DNA sequencing of one isolate with multi-drug resistance was analyzed. No contamination in the infant formula samples was found, whereas 17.33% (13/75) of the infant cereal samples presented contamination with Cronobacter sakazakii. The identification results by PCR and MALDI-TOF/MS were divergent for some isolates. The antimicrobial resistance results showed a high incidence of resistance to cefazolin (94.4%) besides resistance to amoxicillin (9.45%), cefpodoxime (5.55%), streptomycin (1.35%), and trimethoprim/sulfamethoxazole (1.35%). Whole genome sequencing of one multi-drug resistant isolate showed six genes associated with antimicrobial resistance and an 82% possibility of being a human pathogen based on the presence of virulence factors. The presence of Cronobacter spp. in infant foods represents a risk for the infant's health. Moreover, the presence of a pathogenic multi-drug resistant isolate in infant's food reinforces the necessity of improving food safety policies to protect young children.
Collapse
Affiliation(s)
- Gabriela Guimarães Carvalho
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Aline Parolin Calarga
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Josie Roberta Teodoro
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Murilo Mariz Queiroz
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Carlos Emilio Levy
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
18
|
Antibacterial Activity of Biocellulose with Oregano Essential Oil against Cronobacter Strains. Polymers (Basel) 2020; 12:polym12081647. [PMID: 32722062 PMCID: PMC7464138 DOI: 10.3390/polym12081647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Biocellulose, named "the biomaterial of the future", is a natural and ecologically friendly polymer, produced by selected acetic acid bacteria strains. Biocellulose impregnated with antimicrobial agents can be used as a novel, safe, and biodegradable food packaging material, helping extend the shelf life of some products and may also have the chance to replace typical plastic packaging, which is a big environmental problem these days. This study aimed to evaluate if cellulose impregned with natural oregano essential oil could show antibacterial activity against Cronobacter strains, which can occur in food, causing diseases and food poisoning. Bacterial cellulose was obtained from two acetic bacteria strains, Gluconacetobacter hansenii ATCC 23769 and Komagataeibacter sp. GH1. Antibacterial activity was studied by the disc-diffusion method against chosen Cronobacter strains, isolated from the plant matrix. Oregano essential oil has been shown to penetrate into the structure of bacterial cellulose, and after applying cellulose to the solid medium, it showed the ability to migrate. Biopolymer from the strain K. sp. GH1 was able to better absorb and retain essential oregano oil (OEO) compared to bacterial cellulose (BC) produced by the G. hansenii ATCC 23769. Bacterial cellulose with oregano essential oil from strain Komagataeibacter GH1 showed generally greater inhibitory properties for the growth of tested strains than its equivalent obtained from G. hansenii. This was probably due to the arrangement of the polymer fibers and its final thickness. The largest zone of inhibition of strain growth was observed in relation to C. condimenti s37 (32.75 mm ± 2.8). At the same time, the control sample using filter paper showed an inhibition zone of 36.0 mm ± 0.7. A similar inhibition zone (28.33 mm ± 2.6) was observed for the C. malonaticus lv31 strain, while the zone in the control sample was 27.1 mm ± 0.7. Based on this study, it was concluded that bacterial cellulose impregnated with oregano essential oil has strong and moderate antimicrobial activity against all presented strains of the genus Cronobacter isolated from plant matrix. Obtained results give a strong impulse to use this biopolymer as ecological food packaging in the near future.
Collapse
|
19
|
Akineden Ö, Wittwer T, Geister K, Plötz M, Usleber E. Nucleic acid lateral flow immunoassay (NALFIA) with integrated DNA probe degradation for the rapid detection of Cronobacter sakazakii and Cronobacter malonaticus in powdered infant formula. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Parra-Flores J, Maury-Sintjago E, Rodriguez-Fernández A, Acuña S, Cerda F, Aguirre J, Holy O. Microbiological Quality of Powdered Infant Formula in Latin America. J Food Prot 2020; 83:534-541. [PMID: 32078682 DOI: 10.4315/0362-028x.jfp-19-399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
ABSTRACT Cronobacter is a bacterial genus that includes seven species, and the species Cronobacter sakazakii is most related to meningitis and septicemia in infants associated with powdered infant formula (PIF). The objectives of this study were to evaluate the presence of C. sakazakii and to determine the microbiological quality of PIF for infant consumption. To do this, a total of 128 PIF samples were analyzed in four brands and countries (Chile, Mexico, Holland, and Brazil), considering three types of PIF: premature (PIF1), infant (PIF2), and follow-up (PIF3). Aerobic plate counts (APC) and Enterobacteriaceae (ENT) were assessed in accordance with Chilean official standards. The outer membrane protein A (ompA) gene was amplified to detect Cronobacter spp. and the fusA gene was amplified to identify C. sakazakii by using the PubMLST Web site and BLAST (NCBI). The antibiotic resistance profile was performed according to the Clinical and Laboratory Standards Institute standards. The pathogen was quantified by the most probable number (MPN). The results showed that APC median values for PIF1, PIF2, and PIF3 were 3.2, 4.9, and 4.8 log CFU g-1, respectively. The APC were higher in PIF2 (P < 0.01) from Holland (P < 0.01) in the commercial brand 4 (P < 0.01). The ENT median values in PIF1, PIF2, and PIF3 were 1.8, 1.5, and 1.7 log CFU g-1, respectively. Five strains of C. sakazakii and one strain of Cronobacter malonaticus were identified as having values between 0.023 and 2.3 MPN/g. All strains (100%) harbored the ompA, plasminogen activator (cpa), and hemolysin (hly) virulence genes. To conclude, C. sakazakii was found in four PIF samples from four Chilean products and one from Mexico, which is distributed throughout America. C. sakazakii strains exhibit virulence factors and resistance to ampicillin, thus posing a risk when PIFs are consumed by infants. HIGHLIGHTS
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Eduard Maury-Sintjago
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Alejandra Rodriguez-Fernández
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Fabiola Cerda
- Department of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, 3800708, Chillán, Chile
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Avenida Santa Rosa 11315, 8820000, Santiago, Chile
| | - Ondrej Holy
- Department of Public Health, Faculty of Medicine and Dentistry, Palacký University Olomouc, 77515, Olomouc, Czech Republic
| |
Collapse
|
21
|
Jang H, Gopinath GR, Eshwar A, Srikumar S, Nguyen S, Gangiredla J, Patel IR, Finkelstein SB, Negrete F, Woo J, Lee Y, Fanning S, Stephan R, Tall BD, Lehner A. The Secretion of Toxins and Other Exoproteins of Cronobacter: Role in Virulence, Adaption, and Persistence. Microorganisms 2020; 8:E229. [PMID: 32046365 PMCID: PMC7074816 DOI: 10.3390/microorganisms8020229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/29/2022] Open
Abstract
: Cronobacter species are considered an opportunistic group of foodborne pathogenic bacteria capable of causing both intestinal and systemic human disease. This review describes common virulence themes shared among the seven Cronobacter species and describes multiple exoproteins secreted by Cronobacter, many of which are bacterial toxins that may play a role in human disease. The review will particularly concentrate on the virulence factors secreted by C. sakazakii, C. malonaticus, and C. turicensis, which are the primary human pathogens of interest. It has been discovered that various species-specific virulence factors adversely affect a wide range of eukaryotic cell processes including protein synthesis, cell division, and ion secretion. Many of these factors are toxins which have been shown to also modulate the host immune response. These factors are encoded on a variety of mobile genetic elements such as plasmids and transposons; this genomic plasticity implies ongoing re-assortment of virulence factor genes which has complicated our efforts to categorize Cronobacter into sharply defined genomic pathotypes.
Collapse
Affiliation(s)
- Hyein Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Athmanya Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Scott Nguyen
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Isha R. Patel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Samantha B. Finkelstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - JungHa Woo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - YouYoung Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| |
Collapse
|
22
|
Finkelstein S, Negrete F, Jang H, Gangiredla J, Mammel M, Patel IR, Chase HR, Woo J, Lee Y, Wang CZ, Weinstein L, Tall BD, Gopinath GR. Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species where C. sakazakii Homologs Follow Sequence Type Lineages. Microorganisms 2019; 7:E554. [PMID: 31726673 PMCID: PMC6920972 DOI: 10.3390/microorganisms7110554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin-antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella. This project's goal was to understand the phylogenetic relatedness among TA genes present in Cronobacter. Preliminary studies showed that two typical toxin genes, fic and hipA followed species evolutionary lines. A local database of 22 TA homologs was created for Cronobacter sakazakii and a Python version 3 shell script was generated to extract TA FASTA sequences present in 234 C. sakazakii genomes previously sequenced as part of Center for Food Safety and Applied Nutrition's (CFSAN) GenomeTrakr project. BLAST analysis showed that not every C. sakazakii strain possessed all twenty-two TA loci. Interestingly, some strains contained either a toxin or an antitoxin component, but not both. Five common toxin genes: ESA_00258 (parDE toxin-antitoxin family), ESA_00804 (relBE family), ESA_01887 (relBE family), ESA_03838 (relBE family), and ESA_04273 (YhfG-Fic family) were selected for PCR analysis and the primers were designed to detect these genes. PCR analysis showed that 55 of 63 strains possessed three of these genes Sequence analysis identified homologs of the target genes and some of the strains were PCR-negative for one or more of the genes, pointing to potential nucleotide polymorphisms in those loci or that these toxin genes were absent. Phylogenetic studies using a Cronobacter pan genomic microarray showed that for the most part TAs follow species evolutionary lines except for a few toxin genes possessed by some C. malonaticus and C. universalis strains; this demonstrates that some TA orthologues share a common phylogeny. Within the C. sakazakii strains, the prevalence and distribution of these TA homologs by C. sakazakii strain BAA-894 (a powdered infant formula isolate) followed sequence-type evolutionary lineages. Understanding the phylogeny of TAs among the Cronobacter species is essential to design future studies to realize the physiological mechanisms and roles for TAs in stress adaptation and persistence of Cronobacter within food matrices and food processing environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ben D. Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 MuirKirk Rd, Laurel, MD 20708, USA; (S.F.); (F.N.); (H.J.); (J.G.); (M.M.); (I.R.P.); (H.R.C.); (J.W.); (Y.L.); (C.Z.W.); (L.W.); (G.R.G.)
| | | |
Collapse
|
23
|
Aly MA, Domig KJ, Kneifel W, Reimhult E. Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Front Microbiol 2019; 10:1464. [PMID: 31333604 PMCID: PMC6615433 DOI: 10.3389/fmicb.2019.01464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cronobacter sakazakii is an emerging foodborne pathogen, which is linked to life-threatening infections causing septicemia, meningitis, and necrotizing enterocolitis. These infections have been epidemiologically connected to ingestion of contaminated reconstituted powder infant formula. Even at low water activity C. sakazakii can survive for a long time; it is capable of protective biofilm formation and occasionally shows high virulence and pathogenicity even following stressful environmental conditions. Hence it is a challenging task for the food industry to control contamination of food ingredients and products through the entire production chain, since an increasing number of severe food-related outbreaks of C. sakazakii infections has been observed. The seemingly great capability of C. sakazakii to survive even strict countermeasures combined with its prevalence in many food ingredients requires a greater in depth understanding of its virulence factors to master the food safety issues related to this organism. In this context, we present the whole genome sequence (WGS) of two different C. sakazakii isolated from skimmed milk powder (C7) and ready-to-eat salad mix (C8), respectively. These are compared to other, already sequenced, C. sakazakii genomes. Sequencing of the fusA allele revealed that both isolates were C. sakazakii. We investigated the molecular characteristics of both isolates relevant for genes associated with pathogenesis and virulence factors, resistance to stressful environmental conditions (e.g., osmotic and heat), survival in desiccation as well as conducted a comparative genomic analysis. By using multi-locus sequence typing (MLST), the genetic type of both isolates is assessed and the number of unique genes is determined. DNA of C. sakazakii C8 is shown to hold a novel and unique sequence type; the number of unique genes identified in the genomic sequence of C. sakazakii C7 and C8 were 109 and 188, respectively. Some of the determined unique genes such as the rhs and VgrG genes are linked to the Type VI Secretion System cluster, which is associated with pathogenicity and virulence factors. Moreover, seven genes encoding for multi-drug resistance were found in both isolates. The finding of a number of genes linked to producing capsules and biofilm are likely related to the observed resistance to desiccation.
Collapse
Affiliation(s)
- Mohamed A Aly
- Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Wolfgang Kneifel
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Erik Reimhult
- Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
24
|
Chen Q, Jun L, Qiu Y, Zhao L. Short communication: Bioinformatics-based mining of novel gene targets for identification of Cronobacter turicensis using PCR. J Dairy Sci 2019; 102:6023-6026. [DOI: 10.3168/jds.2018-15929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 01/13/2023]
|
25
|
Zhang Y, Yang Q, Li C, Yuan Y, Zhang W. Sensitive and visual detection of Cronobacter spp. in powdered infant formula by saltatory rolling circle amplification method. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
|
27
|
Aly MA, Reimhult E, Kneifel W, Domig KJ. Characterization of Biofilm Formation by Cronobacter spp. Isolates of Different Food Origin under Model Conditions. J Food Prot 2019; 82:65-77. [PMID: 30702944 DOI: 10.4315/0362-028x.jfp-18-036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cronobacter spp. are opportunistic human pathogens that cause serious diseases in neonates and immunocompromised people. Owing to their biofilm formation on various surfaces, both their detection and their removal from production plants constitute a major challenge. In this study, food samples were randomly collected in Austria and examined for the presence of Cronobacter spp. Presumptive isolates were identified by a polyphasic approach. Five percent of the samples were positive for C. sakazakii and 2.4% for C. dublinensis. Individual growth of the isolates was characterized based on lag time, growth rate, and generation time. During an incubation period of 6 to 72 h, biofilm formation of 11 selected isolates was quantified under model conditions by a crystal violet staining assay with 96-well plates with different carbon sources (lactose, glucose, maltose, sucrose, and sodium acetate) and NaCl levels and under variable temperature and pH conditions. Biofilm formation was more pronounced at lactose concentrations between 0.25 and 3% compared with 5% lactose, which lead to thinner layers. C. sakazakii isolate C7, isolated from infant milk powder, was the strongest biofilm producer at 10 mM Mg2+ and 5 mM Mn2+, 0.5% sodium acetate, at pH levels between 7 and 9 at 37°C for 24 h. C. sakazakii strain C6 isolated from a plant air filter was identified as a moderate biofilm former and C. sakazakii strain DSM 4485, a clinical isolate, as a weak biofilm former. Based on PCR detection, genes bcsA, bcsB, and bcsG encoding for cellulose could be identified as markers for biofilm formation. Isolates carrying bcsA and bcsB showed significantly stronger biofilm formation than isolates without these genes ( P < 0.05), in strong correlation with the results obtained in the crystal violet assay. Further investigations using confocal laser scanning microscopy revealed that extracellular polymeric substances and glycocalyx secretions were the dominating components of the biofilms and that the viable fraction of bacteria in the biofilm decreased over time.
Collapse
Affiliation(s)
- Mohamed A Aly
- 1 Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.,2 Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.,3 Department of Nanobiotechnology, Institute for Biologically Inspired Materials, BOKU - University of Natural Resources and Life Sciences, A-1190 Vienna, Austria (ORCID: http://orcid.org/0000-0003-1090-4284 [K.J.D.])
| | - Erik Reimhult
- 3 Department of Nanobiotechnology, Institute for Biologically Inspired Materials, BOKU - University of Natural Resources and Life Sciences, A-1190 Vienna, Austria (ORCID: http://orcid.org/0000-0003-1090-4284 [K.J.D.])
| | - Wolfgang Kneifel
- 1 Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Konrad J Domig
- 1 Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| |
Collapse
|
28
|
Silva JN, Vasconcellos L, Forsythe SJ, de Filippis I, Luiz Lima Brandão M. Molecular and phenotypical characterization ofCronobacterspecies isolated with high occurrence from oats and linseeds. FEMS Microbiol Lett 2018; 366:5266300. [DOI: 10.1093/femsle/fny289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Júlia Nunes Silva
- Laboratory of Food and Sanitizes, INCQS/Fiocruz, Av. Brasil, 4365. Manguinhos, Rio de Janeiro-RJ, Brazil, CEP:21040-900
| | - Luiza Vasconcellos
- Laboratory of Food and Sanitizes, INCQS/Fiocruz, Av. Brasil, 4365. Manguinhos, Rio de Janeiro-RJ, Brazil, CEP:21040-900
| | | | - Ivano de Filippis
- Laboratory of Reference Microorganisms, INCQS/Fiocruz, Av. Brasil, 4365. Manguinhos, Rio de Janeiro-RJ, Brazil, CEP:21040-900
| | - Marcelo Luiz Lima Brandão
- Laboratory of Food and Sanitizes, INCQS/Fiocruz, Av. Brasil, 4365. Manguinhos, Rio de Janeiro-RJ, Brazil, CEP:21040-900
| |
Collapse
|
29
|
Mashoufi A, Ghazvini K, Hashemi M, Mobarhan MG, Vakili V, Afshari A. A novel primer targetedgyrBgene for the identification ofCronobacter sakazakiiin powdered infant formulas (PIF) and baby foods in Iran. J Food Saf 2018. [DOI: 10.1111/jfs.12609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Afsaneh Mashoufi
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Kiarash Ghazvini
- Department of Microbiology, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Hashemi
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Majid Ghayour Mobarhan
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Vida Vakili
- Department of Social Medicine, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
30
|
Tomas D, Fan M, Zhu S, Klijn A. Use of biochemical miniaturized galleries, rRNA based lateral flow assay and Real Time PCR for Cronobacter spp. confirmation. Food Microbiol 2018; 76:189-195. [DOI: 10.1016/j.fm.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
31
|
Parra-Flores J, Cerda-Leal F, Contreras A, Valenzuela-Riffo N, Rodríguez A, Aguirre J. Cronobacter sakazakii and Microbiological Parameters in Dairy Formulas Associated With a Food Alert in Chile. Front Microbiol 2018; 9:1708. [PMID: 30108565 PMCID: PMC6079297 DOI: 10.3389/fmicb.2018.01708] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to evaluate the presence of Cronobacter sakazakii and microbiological parameters in dairy products associated with a food alert. Ninety dairy product samples were analyzed, including seven commercial brands and two product types (liquid and powdered) from four countries. Aerobic plate count (APC) and Enterobacteriaceae count were performed according to Chilean standards. Cronobacter spp. and C. sakazakii were identified by polymerase chain reaction real time amplification of rpoB and cgcA genes and the genotype by multilocus sequence typing. Eighty-eight percent of dairy products showed APC higher than the detection limit. Fifty percent of liquid commercial brand samples contained APC: 2.6, 2.3, 1.1, and 2.9 CFU/mL in brands A, C, E, and G, respectively. Results for powdered commercial brands were 3.0, 3.6, and 5.7 CFU/g in brands B, D, and F, respectively. Maximum count (5.7 CFU/g) occurred in brand F dairy product manufactured in Chile. Enterobacteriaceae were found in 55% of the samples, 64% in liquid and 51% in powdered commercial brands. In 50% of brands B, D, and E, samples contained 2.9, 2.8, and 2.7 log CFU/g, respectively. Only liquid commercial brands from the United States had Enterobacteriaceae values between 0.1 and 4.5 CFU/mL. Seventeen suspicious strains were isolated and nine were identified as Enterobacter spp. Only eight suspicious strains from four powdered commercial brands (Chile and Singapore) were confirmed as C. sakazakii by rpoB and cgcA gene amplification and fusA sequencing. C. sakazakii prevalence in the analyzed samples was 8.8%. There were 11% of powdered milk brands that contained APC between 4.0 and 4.7 log CFU/g and 55% of the samples contained Enterobacteriaceae. C. sakazakii was found in dairy products manufactured in Chile and Singapore. On the basis of this information, the Chilean Ministry of Health (RSA) decreed a national and international food alert and recalled all the product batches that resulted positive in the present study from supermarkets and pharmacies.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Molecular Microbiology Laboratory, Faculty of Health and Food Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Fabiola Cerda-Leal
- Molecular Microbiology Laboratory, Faculty of Health and Food Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Alejandra Contreras
- Molecular Microbiology Laboratory, Faculty of Health and Food Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Nicole Valenzuela-Riffo
- Molecular Microbiology Laboratory, Faculty of Health and Food Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Alejandra Rodríguez
- Molecular Microbiology Laboratory, Faculty of Health and Food Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Song X, Teng H, Chen L, Kim M. Cronobacter Species in Powdered Infant Formula and Their Detection Methods. Korean J Food Sci Anim Resour 2018; 38:376-390. [PMID: 29805286 PMCID: PMC5960834 DOI: 10.5851/kosfa.2018.38.2.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Cronobacter species have been associated with disease outbreaks and sporadic infections, particularly in premature and immunocompromised infants. Cronobacter species can cause foodborne infections such as neonatal meningitis, septicaemia and necrotising enterocolitis. Accordingly, there is an urgent need to control and monitor the Cronobacter species in food, especially in powdered infant formula (PIF) and other baby foods. Therefore, in this review, the isolation and prevalence of Cronobacter species in infant food including PIF and the recent advance of detection methods are discussed for the better understanding on the current research status of Cronobacter species.
Collapse
Affiliation(s)
- Xinjie Song
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Korea
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
33
|
Zhang J, Zhu X, Xu R, Gao Q, Wang D, Zhang Y. Isolation and identification of histamine-producing Enterobacteriaceae from Qu fermentation starter for Chinese rice wine brewing. Int J Food Microbiol 2018; 281:1-9. [PMID: 29800825 DOI: 10.1016/j.ijfoodmicro.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/21/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
Histamine (HIS) producers in fermented wines are generally believed to be lactic acid bacteria (LAB), and other microorganisms have received little or no attention. In this work, HIS-producing bacteria were isolated from Qu fermentation starter for Chinese rice wine brewing by decarboxylase medium, and their identity was confirmed by RP-HPLC and PCR. Surprisingly, the histidine decarboxylase gene (hdc) was present in only 2 out of 26 isolates. All 26 isolates were genotyped using the randomly amplified polymorphic DNA (RAPD)-PCR assay, which revealed the presence of 21 biotypes. Single type isolates were identified via 16S rRNA sequence analysis, in some cases coupled with partial sequencing of the rpoB or dnaJ gene. All isolates belonged to the Enterobacteriaceae, and included Enterobacter asburiae, Enterobacter cloacae, Enterobacter hormaechei, Citrobacter amalonaticus and Cronobacter sakazakii. All these strains were capable of producing >3.5 mg/L of HIS in TS medium without ethanol, but did not grow in TS medium with 8% ethanol. Small-scale Chinese rice wine fermentation revealed that HIS contents exhibited the same trend as the LAB and ethanol no matter what kinds of Qu were used. However, in the early stages of fermentation (from day 2 to day 4), the HIS contents had a stronger correlation with Enterobacteriaceae (0.943) than with LAB (0.369) when the Qu fermented samples are analyzed as a whole. Moreover, the lowest HIS content was measured in Xiao Qu (Q) fermented sample at the end of fermentation, which suggests that the formation of HIS in the early stages of fermentation has a decisive effect on HIS content in the final product. Our results demonstrate that Enterobacteriaceae from Qu are an important cause for HIS formation in Chinese rice wine. Consequently, selecting Qu with a low content of Enterobacteriaceae contaminants and inhibiting the growth of Enterobacteriaceae in the early stages of fermentation are useful approaches for preventing excessive amounts of HIS formation in Chinese rice wine brewing.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojuan Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruitao Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Depei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
34
|
Lehner A, Tall BD, Fanning S, Srikumar S. Cronobacter spp.—Opportunistic Foodborne Pathogens: an Update on Evolution, Osmotic Adaptation and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0089-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Gopinath GR, Chase HR, Gangiredla J, Eshwar A, Jang H, Patel I, Negrete F, Finkelstein S, Park E, Chung T, Yoo Y, Woo J, Lee Y, Park J, Choi H, Jeong S, Jun S, Kim M, Lee C, Jeong H, Fanning S, Stephan R, Iversen C, Reich F, Klein G, Lehner A, Tall BD. Genomic characterization of malonate positive Cronobacter sakazakii serotype O:2, sequence type 64 strains, isolated from clinical, food, and environment samples. Gut Pathog 2018; 10:11. [PMID: 29556252 PMCID: PMC5845375 DOI: 10.1186/s13099-018-0238-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Malonate utilization, an important differential trait, well recognized as being possessed by six of the seven Cronobacter species is thought to be largely absent in Cronobacter sakazakii (Csak). The current study provides experimental evidence that confirms the presence of a malonate utilization operon in 24 strains of sequence type (ST) 64, obtained from Europe, Middle East, China, and USA; it offers explanations regarding the genomic diversity and phylogenetic relatedness among these strains, and that of other C. sakazakii strains. Results In this study, the presence of a malonate utilization operon in these strains was initially identified by DNA microarray analysis (MA) out of a pool of 347 strains obtained from various surveillance studies involving clinical, spices, milk powder sources and powdered infant formula production facilities in Ireland and Germany, and dried dairy powder manufacturing facilities in the USA. All ST64 C. sakazakii strains tested could utilize malonate. Zebrafish embryo infection studies showed that C. sakazakii ST64 strains are as virulent as other Cronobacter species. Parallel whole genome sequencing (WGS) and MA showed that the strains phylogenetically grouped as a separate clade among the Csak species cluster. Additionally, these strains possessed the Csak O:2 serotype. The nine-gene, ~ 7.7 kbp malonate utilization operon was located in these strains between two conserved flanking genes, gyrB and katG. Plasmidotyping results showed that these strains possessed the virulence plasmid pESA3, but in contrast to the USA ST64 Csak strains, ST64 Csak strains isolated from sources in Europe and the Middle East, did not possess the type six secretion system effector vgrG gene. Conclusions Until this investigation, the presence of malonate-positive Csak strains, which are associated with foods and clinical cases, was under appreciated. If this trait was used solely to identify Cronobacter strains, many strains would likely be misidentified. Parallel WGS and MA were useful in characterizing the total genome content of these Csak O:2, ST64, malonate-positive strains and further provides an understanding of their phylogenetic relatedness among other virulent C. sakazakii strains. Electronic supplementary material The online version of this article (10.1186/s13099-018-0238-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gopal R Gopinath
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Hannah R Chase
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Jayanthi Gangiredla
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Athmanya Eshwar
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Hyein Jang
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Isha Patel
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Flavia Negrete
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Samantha Finkelstein
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Eunbi Park
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - TaeJung Chung
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - YeonJoo Yoo
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - JungHa Woo
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - YouYoung Lee
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Jihyeon Park
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Hyerim Choi
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Seungeun Jeong
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Soyoung Jun
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Mijeong Kim
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Chaeyoon Lee
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - HyeJin Jeong
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Séamus Fanning
- 3UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin & WHO Collaborating Centre for Cronobacter, Belfield, Dublin 4, Ireland
| | - Roger Stephan
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Carol Iversen
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland.,3UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin & WHO Collaborating Centre for Cronobacter, Belfield, Dublin 4, Ireland
| | - Felix Reich
- 4Institute for Food Quality and Safety, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Günter Klein
- 4Institute for Food Quality and Safety, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Angelika Lehner
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Ben D Tall
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| |
Collapse
|
36
|
Hu L. Prevalence of curli genes among Cronobacter species and their roles in biofilm formation and cell-cell aggregation. Int J Food Microbiol 2018; 265:65-73. [DOI: 10.1016/j.ijfoodmicro.2017.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/25/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022]
|
37
|
Abstract
Being able to track bacterial pathogens is essential for epidemiological purposes as well as monitoring in-house production facilities. Common bacterial pathogens, such as Salmonella serovars, are already been well defined, and their detection methods are very advanced. However, this will not be the case for emergent bacterial pathogens, as was the case for Cronobacter. The clinical significance of the organism is due to its association with rare sporadic infections in adults, and severe life-threatening outbreaks of necrotizing enterocolitis and meningitis in newborn babies. The main recognized route of infection being through the consumption of contaminated reconstituted powdered infant formula. Key to the advances in being able to track this organism during formula production and outbreaks in neonatal intensive care units has been the use of DNA sequence-based methods, and most recently those which profile whole-genome sequences. This chapter considers how the latest DNA sequence-based methods in genotyping Cronobacter serve as a model for analyzing emergent bacterial pathogens in the future. The methods considered will initially highlight the limitations of phenotyping, then advance from the DNA probe-based methods for serotyping through to DNA sequence-based methods, especially multilocus sequence typing which is supported by an open access database. Finally the development of typing methods based on whole-genomes sequences, CRISPR-cas array profiling and SNP analysis, will be covered. The overall perspective is that emergent pathogens need to be investigated with the most advanced methods in order for robust and reliable control measures to be adopted.
Collapse
|
38
|
Gupta TB, Mowat E, Brightwell G, Flint SH. Biofilm formation and genetic characterization of New Zealand Cronobacter
isolates. J Food Saf 2017. [DOI: 10.1111/jfs.12430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tanushree B. Gupta
- Hopkirk Research Institute; Food and Bio-Based Products, AgResearch Limited; Palmerston North New Zealand
| | - Eilidh Mowat
- Plant Physiology Team, Hill Laboratories; Hamilton New Zealand
| | - Gale Brightwell
- Hopkirk Research Institute; Food and Bio-Based Products, AgResearch Limited; Palmerston North New Zealand
| | - Steve H. Flint
- Massey Institute of Food Science and Technology, Massey University; Palmerston North New Zealand
| |
Collapse
|
39
|
Abstract
There has been considerable concern related to Cronobacter spp. in foods, especially due to their highlighted association with neonatal infections through the ingestion of reconstituted powdered infant formula (PIF). This concern resulted in improved microbiological criteria recommendations by the Codex Alimentarius Commission and revised WHO advice on the preparation of infant feeds. In recent years, the diversity of the genus has been well described, and various detection and typing methods have been developed. This review considers our current knowledge of the genus and how DNA-sequence-based methods have contributed considerably to research into improved detection methods and more reliable identification procedures, genotyping schemes, and genomic analysis. The broader occurrence of Cronobacter in food ingredients, finished products, and food manufacturing environments is covered. This review also highlights the significance of clonal lineages in microbial source tracking and the use of CRISPR-cas array profiling.
Collapse
Affiliation(s)
- Stephen J Forsythe
- foodmicrobe.com, Adams Hill, Keyworth, Nottinghamshire, NG12 5GY, United Kingdom;
| |
Collapse
|
40
|
Fei P, Jiang Y, Jiang Y, Yuan X, Yang T, Chen J, Wang Z, Kang H, Forsythe SJ. Prevalence, Molecular Characterization, and Antibiotic Susceptibility of Cronobacter sakazakii Isolates from Powdered Infant Formula Collected from Chinese Retail Markets. Front Microbiol 2017; 8:2026. [PMID: 29089940 PMCID: PMC5651101 DOI: 10.3389/fmicb.2017.02026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that causes severe infections in neonates and infants through contaminated powdered infant formula (PIF). Therefore, the aim of this study was a large-scale study on determine the prevalence, molecular characterization and antibiotic susceptibility of C. sakazakii isolates from PIF purchased from Chinese retail markets. Two thousand and twenty PIF samples were collected from different institutions. Fifty-six C. sakazakii strains were isolated, and identified using fusA sequencing analysis, giving a contamination rate of 2.8%. Multilocus sequence typing (MLST) was more discriminatory than other genotyping methods. The C. sakazakii isolates were divided into 14 sequence types (STs) by MLST, compared with only seven clusters by ompA and rpoB sequence analysis, and four C. sakazakii serotypes by PCR-based O-antigen serotyping. C. sakazakii ST4 (19/56, 33.9%), ST1 (12/56, 21.4%), and ST64 (11/56, 16.1%) were the dominant sequence types isolated. C. sakazakii serotype O2 (34/56, 60.7%) was the primary serotype, along with ompA6 and rpoB1 as the main allele profiles, respectively. Antibiotic susceptibility testing indicated that all C. sakazakii isolates were susceptible to ampicillin-sulbactam, cefotaxime, ciprofloxacin, meropenem, tetracycline, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole. The majority of C. sakazakii strains were susceptible to chloramphenicol and gentamicin (87.5 and 92.9%, respectively). In contrast, 55.4% C. sakazakii strains were resistant to cephalothin. In conclusion, this large-scale study revealed the prevalence and characteristics of C. sakazakii from PIF in Chinese retail markets, demonstrating a potential risk for neonates and infants, and provide a guided to effective control the contamination of C. sakazakii in production process.
Collapse
Affiliation(s)
- Peng Fei
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yichao Jiang
- Changbai Mountains Food and Drug Inspection Testing Center, Baishan, China
| | - Yan Jiang
- Department of Market Supervision and Management, MuLing Food Inspection Testing Center, Mudanjiang, China
| | - Xiujuan Yuan
- Anda Department of Animal Husbandry and Veterinary, Anda, China
| | - Tongxiang Yang
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Ziyuan Wang
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Huaibin Kang
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | | |
Collapse
|
41
|
Scharinger EJ, Dietrich R, Wittwer T, Märtlbauer E, Schauer K. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2. Front Microbiol 2017; 8:1826. [PMID: 28979257 PMCID: PMC5611382 DOI: 10.3389/fmicb.2017.01826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 01/28/2023] Open
Abstract
The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 107 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2.
Collapse
Affiliation(s)
- Eva J. Scharinger
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | - Richard Dietrich
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | | | - Erwin Märtlbauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| |
Collapse
|
42
|
Zhang L, Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Wang P, Duan D, Xu W. Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor. Anal Chem 2017; 89:10194-10200. [PMID: 28881135 DOI: 10.1021/acs.analchem.7b01266] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent outbreaks of life-threatening neonatal infections linked to Enterobacter sakazakii (ES) heightened the need to develop rapid and ultrasensitive detection strategies, especially those capable of determining the viable cells. This study introduced a continual cascade nanozyme biosensor for the detection of viable ES based on propidium monoazide (PMA), loop-mediated isothermal amplification (LAMP), and Nanozyme strip. The ompA gene of ES was determined using FITC-modified and BIO-modified primers in the LAMP process. LAMP combined with PMA treatment was applied for distinguishing the viable from the dead state of ES. Then, using Fe3O4 magnetic nanoparticles as a nanozyme probe, a magnetic nanoparticle (MNP)-based immunochromatographic strip (Nanozyme strip) was further employed for amplifying signal to allow visual detection and quantification by a strip reader. The LAMP products were sandwiched between the anti-FITC and the anti-BIO, and the accumulation of the Fe3O4 magnetic nanoparticles enabled the visual detection of ES. The detection limit of the nanozyme biosensor was improved by 10 CFU/mL compared with previously reported techniques, and the whole manipulation process was much faster (within 1 h) and simpler (without specialist facilities). Hence, the developed continual cascade nanozyme biosensor has provided a rapid, ultrasensitive, and simple tool for on-site detection of viable ES.
Collapse
Affiliation(s)
- Li Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Yuting Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Nan Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Yuancong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture , Beijing, 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Peixia Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Demin Duan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture , Beijing, 100083, China
| |
Collapse
|
43
|
Ye Y, Zhang X, Zhang M, Ling N, Zeng H, Gao J, Jiao R, Wu Q, Zhang J. Potential factors involved in virulence of Cronobacter sakazakii isolates by comparative transcriptome analysis. J Dairy Sci 2017; 100:8826-8837. [PMID: 28888603 DOI: 10.3168/jds.2017-12801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Cronobacter species are important foodborne pathogens causing severe infections in neonates through consumption of contaminated powdered infant formula. However, the virulence-associated factors in Cronobacter are largely unknown. In this study, the transcriptome analysis between highly virulent Cronobacter sakazakii G362 and attenuated L3101 strains was used to reveal the potential factors involved in virulence. The total transcripts were grouped into 20 clusters of orthologous group categories and summarized in 3 gene ontology categories (biological process, cellular component, and molecular function). In addition, the differentially expressed genes (DEG) between these isolates were analyzed using Volcano plots and gene ontology enrichment. The predominant DEG were flagella-associated genes such as flhD, motA, flgM, flgB, and fliC. Furthermore, the expression abundance of outer membrane protein or lipoprotein genes (ompW, slyB, blc, tolC, and lolA), potential virulence-related factors (hlyIII and hha), and regulation factors (sdiA, cheY, Bss, fliZ) was also significantly different between G362 and L3101. Interestingly, 3 hypothetical protein genes (ESA_01022, ESA_01609, and ESA_00609) were found to be expressed only in G362. Our findings provide valuable transcriptomic information about potential virulence factor genes, which will be needed in future molecular biology studies designed to understand the pathogenic mechanism of Cronobacter.
Collapse
Affiliation(s)
- Yingwang Ye
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China; State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China.
| | - Xiyan Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Maofeng Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jina Gao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Rui Jiao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| |
Collapse
|
44
|
Akineden Ö, Heinrich V, Gross M, Usleber E. Reassessment of Cronobacter spp. originally isolated as Enterobacter sakazakii from infant food. Food Microbiol 2017; 65:44-50. [DOI: 10.1016/j.fm.2017.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/17/2017] [Accepted: 01/31/2017] [Indexed: 11/15/2022]
|
45
|
Chase HR, Gopinath GR, Eshwar AK, Stoller A, Fricker-Feer C, Gangiredla J, Patel IR, Cinar HN, Jeong H, Lee C, Negrete F, Finkelstein S, Stephan R, Tall BD, Lehner A. Comparative Genomic Characterization of the Highly Persistent and Potentially Virulent Cronobacter sakazakii ST83, CC65 Strain H322 and Other ST83 Strains. Front Microbiol 2017; 8:1136. [PMID: 28694793 PMCID: PMC5483470 DOI: 10.3389/fmicb.2017.01136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Cronobacter (C.) sakazakii is an opportunistic pathogen and has been associated with serious infections with high mortality rates predominantly in pre-term, low-birth weight and/or immune compromised neonates and infants. Infections have been epidemiologically linked to consumption of intrinsically and extrinsically contaminated lots of reconstituted powdered infant formula (PIF), thus contamination of such products is a challenging task for the PIF producing industry. We present the draft genome of C. sakazakii H322, a highly persistent sequence type (ST) 83, clonal complex (CC) 65, serotype O:7 strain obtained from a batch of non-released contaminated PIF product. The presence of this strain in the production environment was traced back more than 4 years. Whole genome sequencing (WGS) of this strain together with four more ST83 strains (PIF production environment-associated) confirmed a high degree of sequence homology among four of the five strains. Phylogenetic analysis using microarray (MA) and WGS data showed that the ST83 strains were highly phylogenetically related and MA showed that between 5 and 38 genes differed from one another in these strains. All strains possessed the pESA3-like virulence plasmid and one strain possessed a pESA2-like plasmid. In addition, a pCS1-like plasmid was also found. In order to assess the potential in vivo pathogenicity of the ST83 strains, each strain was subjected to infection studies using the recently developed zebrafish embryo model. Our results showed a high (90-100%) zebrafish mortality rate for all of these strains, suggesting a high risk for infections and illness in neonates potentially exposed to PIF contaminated with ST83 C. sakazakii strains. In summary, virulent ST83, CC65, serotype CsakO:7 strains, though rarely found intrinsically in PIF, can persist within a PIF manufacturing facility for years and potentially pose significant quality assurance challenges to the PIF manufacturing industry.
Collapse
Affiliation(s)
- Hannah R Chase
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Gopal R Gopinath
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, University of ZurichZurich, Switzerland
| | - Andrea Stoller
- Institute for Food Safety and Hygiene, University of ZurichZurich, Switzerland
| | - Claudia Fricker-Feer
- Quality Assurance and Food Safety Department, Hochdorf Swiss Nutrition LtdHochdorf, Switzerland
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Isha R Patel
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Hediye N Cinar
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - HyeJin Jeong
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - ChaeYoon Lee
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Samantha Finkelstein
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of ZurichZurich, Switzerland
| | - Ben D Tall
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of ZurichZurich, Switzerland
| |
Collapse
|
46
|
Novel Method for Reliable Identification of Siccibacter and Franconibacter Strains: from "Pseudo-Cronobacter" to New Enterobacteriaceae Genera. Appl Environ Microbiol 2017; 83:AEM.00234-17. [PMID: 28455327 DOI: 10.1128/aem.00234-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/12/2017] [Indexed: 11/20/2022] Open
Abstract
In the last decade, strains of the genera Franconibacter and Siccibacter have been misclassified as first Enterobacter and later Cronobacter Because Cronobacter is a serious foodborne pathogen that affects premature neonates and elderly individuals, such misidentification may not only falsify epidemiological statistics but also lead to tests of powdered infant formula or other foods giving false results. Currently, the main ways of identifying Franconibacter and Siccibacter strains are by biochemical testing or by sequencing of the fusA gene as part of Cronobacter multilocus sequence typing (MLST), but in relation to these strains the former is generally highly difficult and unreliable while the latter remains expensive. To address this, we developed a fast, simple, and most importantly, reliable method for Franconibacter and Siccibacter identification based on intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Our method integrates the following steps: data preprocessing using mMass software; principal-component analysis (PCA) for the selection of mass spectrum fingerprints of Franconibacter and Siccibacter strains; optimization of the Biotyper database settings for the creation of main spectrum projections (MSPs). This methodology enabled us to create an in-house MALDI MS database that extends the current MALDI Biotyper database by including Franconibacter and Siccibacter strains. Finally, we verified our approach using seven previously unclassified strains, all of which were correctly identified, thereby validating our method.IMPORTANCE We show that the majority of methods currently used for the identification of Franconibacter and Siccibacter bacteria are not able to properly distinguish these strains from those of Cronobacter While sequencing of the fusA gene as part of Cronobacter MLST remains the most reliable such method, it is highly expensive and time-consuming. Here, we demonstrate a cost-effective and reliable alternative that correctly distinguishes between Franconibacter, Siccibacter, and Cronobacter bacteria and identifies Franconibacter and Siccibacter at the species level. Using intact-cell MALDI-TOF MS, we extend the current MALDI Biotyper database with 11 Franconibacter and Siccibacter MSPs. In addition, the use of our approach is likely to lead to a more reliable identification scheme for Franconibacter and Siccibacter strains and, consequently, a more trustworthy epidemiological picture of their involvement in disease.
Collapse
|
47
|
Hu S, Yu Y, Wu X, Xia X, Xiao X, Wu H. Simultaneous detection and identification of pathogenic Cronobacter
species by high-resolution melting analysis in powdered infant formulas. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuangfang Hu
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Yigang Yu
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Xinwei Wu
- Department of Microbiology; Guangzhou Center for Disease Control and Prevention; Qide Road No. 2 Guangzhou Guangdong 510440 China
| | - Xingzhou Xia
- College of Food Science and Technology; Guangdong Ocean University; Zhanjiang Guangdong 524088 China
| | - Xinglong Xiao
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Hui Wu
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|
48
|
Molecular Surveillance of Cronobacter spp. Isolated from a Wide Variety of Foods from 44 Different Countries by Sequence Typing of 16S rRNA, rpoB and O-Antigen Genes. Foods 2017; 6:foods6050036. [PMID: 28492472 PMCID: PMC5447912 DOI: 10.3390/foods6050036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Cronobacter spp. are emerging infectious bacteria that can cause acute meningitis and necrotizing enterocolitis in neonatal and immunocompromised individuals. Although this opportunistic human-pathogenic microorganism has been isolated from a wide variety of food and environmental samples, it has been primarily linked to foodborne outbreaks associated with powdered infant formula. The U.S. Food and Drug Administration use the presence of these microbes as one of the criteria to assess food adulteration and to implement regulatory actions. In this study, we have examined 195 aliquots of enrichments from the nine major categories of foods (including baby and medical food, dairy products, dried food, frozen food, pet food, produce, ready-to-eat snacks, seafood, and spices) from 44 countries using conventional microbiological and molecular techniques. The typical colonies of Cronobacter were then identified by VITEK2 and real-time PCR. Subsequently, sequence typing was performed on the 51 recovered Cronobacter isolates at the 16S rRNA, rpoB and seven O-antigen loci for species identification in order to accomplish an effective surveillance program for the control and prevention of foodborne illnesses.
Collapse
|
49
|
Brandão MLL, Umeda NS, Jackson E, Forsythe SJ, de Filippis I. Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter spp. from Brazilian retail foods. Food Microbiol 2017; 63:129-138. [DOI: 10.1016/j.fm.2016.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
50
|
Profiling of Virulence Determinants in Cronobacter sakazakii Isolates from Different Plant and Environmental Commodities. Curr Microbiol 2017; 74:560-565. [DOI: 10.1007/s00284-017-1219-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
|