1
|
Ramos Guerrero FG, Signorini M, Garre A, Sant'Ana AS, Ramos Gorbeña JC, Silva Jaimes MI. Quantitative microbial spoilage risk assessment caused by fungi in sports drinks through multilevel modelling. Food Microbiol 2023; 116:104368. [PMID: 37689415 DOI: 10.1016/j.fm.2023.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
The risk of fungal spoilage of sports drinks produced in the beverage industry was assessed using quantitative microbial spoilage risk assessment (QMSRA). The most relevant pathway was the contamination of the bottles during packaging by mould spores in the air. Mould spores' concentration was estimated by longitudinal sampling for 6 years (936 samples) in different production areas and seasons. This data was analysed using a multilevel model that separates the natural variability in spore concentration (as a function of sampling year, season, and area) and the uncertainty of the sampling method. Then, the expected fungal contamination per bottle was estimated by Monte Carlo simulation, considering their settling velocity and the time and exposure area. The product's shelf life was estimated through the inoculation of bottles with mould spores, following the determination of the probability of visual spoilage as a function of storage time at 20 and 30 °C using logistic regression. The Monte Carlo model estimated low expected spore contamination in the product (1.7 × 10-6 CFU/bottle). Nonetheless, the risk of spoilage is still relevant due to the large production volume and because, as observed experimentally, even a single spore has a high spoilage potential. The applicability of the QMSRA during daily production was made possible through the simplification of the model under the hypothesis that no bottle will be contaminated by more than one spore. This simplification allows the calculation of a two-dimensional performance objective that combines the spore concentration in the air and the exposure time, defining "acceptable combinations" according to an acceptable level of spoilage (ALOS; the proportion of spoiled bottles). The implementation of the model at the operational level was done through the representation of the simplified model as a two-dimensional diagram that defines acceptable and unacceptable areas. The innovative methodology employed here for defining and simplifying QMSRA models can be a blueprint for future studies aiming to quantify the risk of spoilage of other beverages with a similar scope.
Collapse
Affiliation(s)
- Félix G Ramos Guerrero
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru; Centro Latinoamericano de Enseñanza e Investigación de Bacteriología Alimentaria (CLEIBA), Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1, Peru.
| | - Marcelo Signorini
- Departamento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P. Kreder 2805 (3080), Esperanza, Santa Fe, Argentina
| | - Alberto Garre
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juan C Ramos Gorbeña
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru
| | - Marcial I Silva Jaimes
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru; Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Avenida La Molina s/n, Lima 12, Peru
| |
Collapse
|
2
|
Meinert C, Bertoli SL, Rebezov M, Zhakupbekova S, Maizhanova A, Spanova A, Bakhtybekkyzy S, Nurlanova S, Shariati MA, Hoffmann TG, Krebs de Souza C. Food safety and food security through predictive microbiology tools: a short review. POTRAVINARSTVO 2023. [DOI: 10.5219/1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
This article discusses the issues of food safety and food security as a matter of global health. Foodborne illness and deaths caused by pathogens in food continue to be a worldwide problem, with a reported 600 million cases per year, leading to around 420,000 deaths in 2010. Predictive microbiology can play a crucial role in ensuring safe food through mathematical modelling to estimate microbial growth and behaviour. Food security is described as the social and economical means of accessing safe and nutritious food that meets people's dietary preferences and requirements for an active and healthy life. The article also examines various factors that influence food security, including economic, environmental, technological, and geopolitical challenges globally. The concept of food safety is described as a science-based process or action that prevents food from containing substances that could harm human health. Food safety receives limited attention from policymakers and consumers in low- and middle-income countries, where food safety issues are most prevalent. The article also highlights the importance of detecting contaminants and pathogens in food to prevent foodborne illnesses and reduce food waste. Food and Agriculture Organization (FAO), an institution belonging to World Health Organization (WHO) presented calls to action to solve some of the emerging problems in food safety, as it should be a concern of all people to be involved in the pursue of safer food. The guarantee of safe food pertaining to microbiological contamination, as there are different types of active microorganisms in foods, could be obtained using predictive microbiology tools, which study and analyse different microorganisms' behaviour through mathematical models. Studies published by several authors show the application of primary, secondary, or tertiary models of predictive microbiology used for different food products.
Collapse
|
3
|
Alvarenga VO, Gonzales-Barron U, do Prado Silva L, Cadavez V, Sant'Ana AS. Using extended Bigelow meta-regressions for modelling the effects of temperature, pH, °Brix on the inactivation of heat resistant moulds. Int J Food Microbiol 2020; 338:108985. [PMID: 33334619 DOI: 10.1016/j.ijfoodmicro.2020.108985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/12/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
The management of Heat Resistant Moulds (HRMs) is considered a great challenge for the juice fruit industry. Neosartorya, Byssochlamys and Talaromyces are three out of the main genera isolated from fruit juices that show great resistance to heat treatments. Several inactivation parameters can be found in the literature, however all of them were carried out in specific food matrices and using diverse inactivation methods. Thus, this meta-analysis study synthesizes the thermal resistance parameters of the three HRMs by adjusting extended Bigelow-based meta-regression models to data on inactivation experiments conducted in different liquid media. The meta-analytical data, extracted from publications between 1969 and 2017, was composed of decimal reduction time (D), inactivation method, temperature of inactivation, pH, °Brix, age of spores, and type of medium (model, juice, concentrates). Pooled D* values (D at 90 °C, pH 3.5 and 12° Brix) were estimated for B. fulva (1.95 min; 95% CI: 1.21-3.11 min), Talaromyces (4.03 min; 95% CI: 3.43-4.74 min), Neosartorya (0.5.35 min; 95% CI: 4.10-7.08 min), and B. nivea (10.32 min; 95% CI: 5.81-18.4 min). It was found that increasing the soluble solids in concentrates tends to cause a lower decrease in the heat resistance of Neosartorya and Talaromyces than increasing the soluble solids in model liquid or juices (p = 0.001; 0.012). In general, the screw-capped tubes and three neck round inactivation methods render higher D* values (p < 0.05) than the thermal death tubes, the polyethylene bag and the capillary methods. Spores of Talaromyces (overall zpH = 7.56; 95% CI: 5.13-13.5) and Neosartorya (overall zpH = 7.07; 95% CI: 5.04-10.8) appear to be more thermal sensitive to a decrease in medium pH than spores of Byssochlamys (overall zpH = 4.34; 95% CI: 3.20-6.73). The meta-regression models presented in this study can be valuable for estimating pooled inactivation kinetic parameters to be used by the fruit juice industry in the management of thermal processes and in the determination of shelf-life.
Collapse
Affiliation(s)
- Verônica O Alvarenga
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP - Brazil; Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Brazil
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP - Brazil
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP - Brazil.
| |
Collapse
|
4
|
Santos JLPD, Membré JM, Jacxsens L, Samapundo S, Van Impe J, Sant'Ana AS, Devlieghere F. Quantitative microbial spoilage risk assessment (QMSRA) of pasteurized strawberry purees by Aspergillus fischeri (teleomorph Neosartorya fischeri). Int J Food Microbiol 2020; 333:108781. [PMID: 32711130 DOI: 10.1016/j.ijfoodmicro.2020.108781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022]
Abstract
Aspergillus fischeri ascospores are known as potential spoilage microorganisms of pasteurized fruit products due to their high incidence in fruits, the ability to survive pasteurization and to grow in acidic conditions. This study aimed to develop a quantitative microbial spoilage risk assessment (QMSRA) model approach to estimate the spoilage risk of packaged strawberry purees due to A. fischeri under various scenarios regarding product formulation, processing and storage conditions. The development of the risk assessment comprised three steps: (1) initial contamination level of raw material by ascospores (N0), (2) inactivation of ascospores during thermal processing (Np) and (3) determination of the number of ascospores which are able to survive thermal processing and develop visible mycelia (D = 2 mm) during storage (Nf). Data of visible growth (tv, days) comprised distributions previously obtained as function of water activity (aw) (0.860-0.985), oxygen (0-21%), temperature (8-30 °C) and pasteurization (95-105 °C/15 s). The simulations were performed in triplicate with 100,000 iterations using the software R. The outcome "spoilage risk" was defined as the probability of having at least one ascospore (Nf) capable of forming visible colonies in 100 g-pack strawberry puree within the typical use-by dates. Overall, high probabilities of spoilage were estimated for purees pasteurized at milder treatments at 85 °C/15-60 s (67%) and 90 °C/15-60 s (≥40%) stored at ambient temperature (22 °C). The spoilage risk was only effectively reduced (0.02%) by increasing pasteurization conditions to 95 °C for at least 45 s. Moreover, the microbial stability of such purees, i.e., spoilage risk <0.001% (=less than 1 spoilage pack out of 105 produced units) was predicted to occur for purees treated at 100 °C/15 s or stored at chilled conditions (≤8 °C) or at strict anaerobic conditions or produced as concentrates (aw ≤ 0.860). Based on the outcomes obtained, a set of specifications for Heat-Resistant Moulds (HRMs) in raw material and pasteurized purees aimed to be used as an ingredient was suggested. Furthermore, the results can be used to support risk management decisions in identifying and quantifying the impact of possible interventions during formulation, processing and storage conditions of fruit purees to effectively reduce this risk.
Collapse
Affiliation(s)
- Juliana Lane Paixão Dos Santos
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Belgium..
| | | | - Liesbeth Jacxsens
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Simbarashe Samapundo
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control (BioTec+), Department of Chemical Engineering, University of Leuven, Belgium
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Belgium
| |
Collapse
|
5
|
Santos JL, Chaves RD, Sant’Ana AS. Modeling the impact of water activity, pH, and calcium propionate on the germination of single spores of Penicillium paneum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
|
7
|
Garcia MV, da Pia AKR, Freire L, Copetti MV, Sant’Ana AS. Effect of temperature on inactivation kinetics of three strains of Penicillium paneum and P. roqueforti during bread baking. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Santos JLPD, Samapundo S, Biyikli A, Van Impe J, Akkermans S, Höfte M, Abatih EN, Sant'Ana AS, Devlieghere F. Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. Int J Food Microbiol 2018; 281:72-81. [PMID: 29870893 DOI: 10.1016/j.ijfoodmicro.2018.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 11/29/2022]
Abstract
Heat-resistant moulds (HRMs) are well known for their ability to survive pasteurization and spoil high-acid food products, which is of great concern for processors of fruit-based products worldwide. Whilst the majority of the studies on HRMs over the last decades have addressed their inactivation, few data are currently available regarding their contamination levels in fruit and fruit-based products. Thus, this study aimed to quantify and identify heat-resistant fungal ascospores from samples collected throughout the processing of pasteurized high-acid fruit products. In addition, an assessment on the effect of processing on the contamination levels of HRMs in these products was carried out. A total of 332 samples from 111 batches were analyzed from three processing plants (=three processing lines): strawberry puree (n = 88, Belgium), concentrated orange juice (n = 90, Brazil) and apple puree (n = 154, the Netherlands). HRMs were detected in 96.4% (107/111) of the batches and 59.3% (197/332) of the analyzed samples. HRMs were present in 90.9% of the samples from the strawberry puree processing line (1-215 ascospores/100 g), 46.7% of the samples from the orange juice processing line (1-200 ascospores/100 g) and 48.7% of samples from the apple puree processing line (1-84 ascospores/100 g). Despite the high occurrence, the majority (76.8%, 255/332) of the samples were either not contaminated or presented low levels of HRMs (<10 ascospores/100 g). For both strawberry puree and concentrated orange juice, processing had no statistically significant effect on the levels of HRMs (p > 0.05). On the contrary, a significant reduction (p < 0.05) in HRMs levels was observed during the processing of apple puree. Twelve species were identified belonging to four genera - Byssochlamys, Aspergillus with Neosartorya-type ascospores, Talaromyces and Rasamsonia. N. fumigata (23.6%), N. fischeri (19.1%) and B. nivea (5.5%) were the predominant species in pasteurized products. The quantitative data (contamination levels of HRMs) were fitted to exponential distributions and will ultimately be included as input to spoilage risk assessment models which would allow better control of the spoilage of heat treated fruit products caused by heat-resistant moulds.
Collapse
Affiliation(s)
- Juliana Lane Paixão Dos Santos
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - Simbarashe Samapundo
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Ayse Biyikli
- Laboratory of Food Microbiology and Biotechnology, Department of Food Microbiology and Technology, Institute of Science and Technology, Pamukkale University, Denizli, Turkey
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control (BioTec+), Department of Chemical Engineering, Katholieke Universiteit Leuven, Belgium
| | - Simen Akkermans
- Chemical and Biochemical Process Technology and Control (BioTec+), Department of Chemical Engineering, Katholieke Universiteit Leuven, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Ghent University, Belgium
| | - Emmanuel Nji Abatih
- FIRE Unit, Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| |
Collapse
|
9
|
Rico-Munoz E. Heat resistant molds in foods and beverages: recent advances on assessment and prevention. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Evelyn, Silva FV. Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Azeredo DR, Alvarenga V, Sant'Ana AS, Sabaa Srur AU. An overview of microorganisms and factors contributing for the microbial stability of carbonated soft drinks. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Nguyen Van Long N, Joly C, Dantigny P. Active packaging with antifungal activities. Int J Food Microbiol 2016; 220:73-90. [DOI: 10.1016/j.ijfoodmicro.2016.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 01/03/2016] [Indexed: 01/14/2023]
|
13
|
Gialleli AI, Bekatorou A, Kanellaki M, Nigam P, Koutinas AA. Apple juice preservation through microbial adsorption by nano/micro-tubular cellulose. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
de Cássia Martins Salomão B, Muller C, do Amparo HC, de Aragão GMF. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process. Braz J Microbiol 2014; 45:49-58. [PMID: 24948913 PMCID: PMC4059325 DOI: 10.1590/s1517-83822014000100008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.
Collapse
Affiliation(s)
| | - Chalana Muller
- Núcleo de BiotecnologiaUniversidade do Oeste de Santa CatarinaVideiraSCBrazil
| | | | | |
Collapse
|
15
|
da Silva PRS, Tessaro IC, Marczak LDF. Integrating a kinetic microbial model with a heat transfer model to predict Byssochlamys fulva growth in refrigerated papaya pulp. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|