1
|
Shymialevich D, Wójcicki M, Sokołowska B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024; 13:2519. [PMID: 39200446 PMCID: PMC11353811 DOI: 10.3390/foods13162519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The article focuses on the ongoing challenge of eliminating vegetative and spore-forming bacteria from food products that exhibit resistance to the traditional preservation methods. In response to this need, the authors highlight an innovative approach based on the synergistic utilization of high-hydrostatic-pressure (HHP) and lytic bacteriophages. The article reviews the current research on the use of HHP and lytic bacteriophages to combat bacteria in food products. The scope includes a comprehensive review of the existing literature on bacterial cell damage following HHP application, aiming to elucidate the synergistic effects of these technologies. Through this in-depth analysis, the article aims to contribute to a deeper understanding of how these innovative techniques can improve food safety and quality. There is no available research on the use of HHP and bacteriophages in the elimination of spore-forming bacteria; however, an important role of the synergistic effect of HHP and lytic bacteriophages with the appropriate adjustment of the parameters has been demonstrated in the more effective elimination of non-spore-forming bacteria from food products. This suggests that, when using this approach in the case of spore-forming bacteria, there is a high chance of the effective inactivation of this biological threat.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (B.S.)
| | | | | |
Collapse
|
2
|
Shen X, Xie A, Li Z, Jiang C, Wu J, Li M, Yue X. Research Progress for Probiotics Regulating Intestinal Flora to Improve Functional Dyspepsia: A Review. Foods 2024; 13:151. [PMID: 38201179 PMCID: PMC10778471 DOI: 10.3390/foods13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Jiaqi Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Xiqing Yue
- Shenyang Key Laboratory of Animal Product Processing, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Fan L, Zhang Y, Ismail BB, Muhammad AI, Li G, Liu D. Bacillus spore germination: mechanisms, identification, and antibacterial strategies. Crit Rev Food Sci Nutr 2023; 64:11146-11160. [PMID: 37504494 DOI: 10.1080/10408398.2023.2233184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Bacterial spores are metabolically inactive and highly resistant to harsh environmental conditions in nature and during decontamination processes in food and related industries. However, inducing germination using specific germinants in dormant spores can convert them into vegetative cells which are metabolically active and fragile. The potential utility of a "germinate to eradicate" strategy, also known as germination-inactivation, has been validated in foods. Meanwhile, the strategy has sparked much interest in triggering and maximizing spore germination. Although many details of the spore germination process have been identified over the past decades, there remain many uncertainties, including some signal transduction mechanisms involved in germination. In addition, the successful implementation of the germination-inactivation strategy relies on the sensitive detection of germinative biomarkers within minutes of germination initiation and the optimal timing for the subsequent inactivation step. Meanwhile, the emergence of biomarkers has renewed attention to the practical application of the spore germination process. Here, this review presents the current knowledge of the germination mechanisms of Bacillus spore, influencing factors, and germination biomarkers. It also covers a detailed discussion on the development of germination-inactivation as a spore eradication strategy.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Shaanxi, China
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Yanru Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Shaanxi, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Faculty of Agriculture, Bayero University, Kano, Nigeria
| | - Aliyu Idris Muhammad
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Shaanxi, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Lyu F, Zhang T, Gui M, Wang Y, Zhao L, Wu X, Rao L, Liao X. The underlying mechanism of bacterial spore germination: An update review. Compr Rev Food Sci Food Saf 2023; 22:2728-2746. [PMID: 37125461 DOI: 10.1111/1541-4337.13160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023]
Abstract
Bacterial spores are highly resilient and universally present on earth and can irreversibly enter the food chain to cause food spoilage or foodborne illness once revived to resume vegetative growth. Traditionally, extensive thermal processing has been employed to efficiently kill spores; however, the relatively high thermal load adversely affects food quality attributes. In recent years, the germination-inactivation strategy has been developed to mildly kill spores based on the circumstance that germination can decrease spore-resilient properties. However, the failure to induce all spores to geminate, mainly owing to the heterogeneous germination behavior of spores, hampers the success of applying this strategy in the food industry. Undoubtedly, elucidating the detailed germination pathway and underlying mechanism can fill the gap in our understanding of germination heterogeneity, thereby facilitating the development of full-scale germination regimes to mildly kill spores. In this review, we comprehensively discuss the mechanisms of spore germination of Bacillus and Clostridium species, and update the molecular basis of the early germination events, for example, the activation of germination receptors, ion release, Ca-DPA release, and molecular events, combined with the latest research evidence. Moreover, high hydrostatic pressure (HHP), an advanced non-thermal food processing technology, can also trigger spore germination, providing a basis for the application of a germination-inactivation strategy in HHP processing. Here, we also summarize the diverse germination behaviors and mechanisms of spores of Bacillus and Clostridium species under HHP, with the aim of facilitating HHP as a mild processing technology with possible applications in food sterilization. Practical Application: This work provides fundamental basis for developing efficient killing strategies of bacterial spores in food industry.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Tianyu Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Meng Gui
- Fisheries Science Institute Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wahia H, Fakayode OA, Mustapha AT, Zhou C, Dabbour M. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit Rev Food Sci Nutr 2022; 64:4561-4586. [PMID: 36412233 DOI: 10.1080/10408398.2022.2143475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, PR China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
6
|
High-Pressure-Based Strategies for the Inactivation of Bacillus subtilis Endospores in Honey. Molecules 2022; 27:molecules27185918. [PMID: 36144653 PMCID: PMC9503340 DOI: 10.3390/molecules27185918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Honey is a value-added product rich in several types of phenolic compounds, enzymes, and sugars recently explored in biomedical and food applications. Nevertheless, even though it has a low water activity (aW ≈ 0.65) that hinders the development of pathogenic and spoilage microorganisms, it is still prone to contamination by pathogenic microorganisms (vegetative and spores) and may constitute harm to special groups, particularly by immunosuppressed people and pregnant women. Thus, an efficient processing methodology needs to be followed to ensure microbial safety while avoiding 5-hydroxymethylfurfural (HMF) formation and browning reactions, with a consequent loss of biological value. In this paper, both thermal (pressure-assisted thermal processing, PATP) and nonthermal high-pressure processing (HPP), and another pressure-based methodology (hyperbaric storage, HS) were used to ascertain their potential to inactivate Bacillus subtilis endospores in honey and to study the influence of aW on the inactivation on this endospore. The results showed that PATP at 600 MPa/15 min/75 °C of diluted honey (52.9 °Brix) with increased aW (0.85 compared to ≈0.55, the usual honey aW) allowed for inactivating of at least 4.0 log units of B. subtilis spores (to below detection limits), while HS and HPP caused neither the germination nor inactivated spores (i.e., there was neither a loss of endospore resistance after heat shock nor endospore inactivation as a consequence of the storage methodology). PATP of undiluted honey even at harsh processing conditions (600 MPa/15 min/85 °C) did not impact the spore load. The results for diluted honey open the possibility of its decontamination by spores’ inactivation for medical and pharmaceutical applications.
Collapse
|
7
|
The Effect of Temperature-Assisted High Hydrostatic Pressure on the Survival of Alicyclobacillus acidoterrestris Inoculated in Orange Juice throughout Storage at Different Isothermal Conditions. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this work was to investigate the population dynamics of the spores and vegetative cells of A. acidoterrestris in orange juice treated with temperature-assisted HHP and stored in different isothermal conditions. For this reason, the spores of two A. acidoterrestris strains were inoculated in commercial orange juice and subjected to HHP treatment at 600 MPa/60 °C for 5 and 10 min. Inoculated samples were subsequently stored at 4, 12 and 25 °C for 60 days. During storage, the population of A. acidoterrestris was determined before and after heat shock at 80 °C for 10 min in order to estimate the quantity of spores and any remaining vegetative cells on the Bacillus acidoterrestris medium agar. Results showed that spore populations decreased by 3.0–3.5 log cycles directly after HHP treatment. Subsequently, no significant changes were observed throughout storage regardless of temperature and bacterial strain. However, at 25 °C, an increase of 0.5–1.0 log cycles was noticed. For the remaining vegetative cells, the results illustrated that HHP treatment could eliminate them during storage at 4 and 12 °C, whereas at 25 °C inactivation was strain-dependent. Therefore, temperature-assisted HHP treatment could effectively inactivate A. acidoterrestris spores in orange juice and ensure that the inhibitory effect could be maintained throughout storage at low temperatures.
Collapse
|
8
|
Xia Q, Liu Q, Denoya GI, Yang C, Barba FJ, Yu H, Chen X. High Hydrostatic Pressure-Based Combination Strategies for Microbial Inactivation of Food Products: The Cases of Emerging Combination Patterns. Front Nutr 2022; 9:878904. [PMID: 35634420 PMCID: PMC9131044 DOI: 10.3389/fnut.2022.878904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The high demand for fresh-like characteristics of vegetables and fruits (V&F) boosts the industrial implementation of high hydrostatic pressure (HHP), due to its capability to simultaneously maintain original organoleptic characteristics and to achieve preservative effect of the food. However, there remains great challenges for assuring complete microbial inactivation only relying on individual HHP treatments, including pressure-resistant strains and regrowth of injured microbes during the storage process. Traditional HHP-assisted thermal processing may compromise the nutrition and functionalities due to accelerated chemical kinetics under high pressure conditions. This work summarizes the recent advances in HHP-based combination strategies for microbial safety, as exemplified by several emerging non-thermally combined patterns with high inactivation efficiencies. Considerations and requirements about future process design and development of HHP-based combination technologies are also given.
Collapse
Affiliation(s)
- Qiang Xia
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Gabriela I. Denoya
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Buenos Aires, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Caijiao Yang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Valencia, Spain
| | - Huaning Yu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| |
Collapse
|
9
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
10
|
Sun J, Gao Y, Zhu X, Lu Z, Lu Y. Enhanced antimicrobial activity against
Alicyclobacillus acidoterrestris
in apple juice by genome shuffling of
Lactobacillus acidophilus
NX2
‐6. J Food Saf 2022. [DOI: 10.1111/jfs.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Sun
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Yuqi Gao
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Xiaoyu Zhu
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Zhaoxin Lu
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Yingjian Lu
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| |
Collapse
|
11
|
Bagkar P, Gupta AK, Maity C. Effect of high pressure processing (HPP) on spore preparation of probiotic Bacillus coagulans LBSC [DSM 17654]. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2020-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
High pressure processing (HPP) has become a mainstream technology for modern age food processing. HPP conditions are detrimental to inherent microbial flora, including food pathogens. A probiotic intended for supplementation in a high-pressured processed food should therefore be stable to processing and subsequent storage conditions. The present study reports the viability of Bacillus coagulans LBSC [DSM 17654] spores at high hydrostatic pressures (HHP, 450 and 550 MPa) processing. B. coagulans LBSC spores were viable under both pressure condition at pH 2.60, 5.00, 7.00, and 8.25. Similar HPP conditions completely inactivated a reference strain Escherichia coli ATCC 25922. The HPP treated B. coagulans LBSC spore preparation showed no reduction in the viability on room temperature storage for a duration of six months. Results demonstrated the resilience of probiotic B. coagulans LBSC spores under HPP treatment, suggesting its potential incorporation in a range of functional foods and beverages.
Collapse
Affiliation(s)
- Pratik Bagkar
- Advanced Enzyme Technologies Ltd. , 5th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi , Thane (W) 400 604 , Maharashtra , India
| | - Anil Kumar Gupta
- Advanced Enzyme Technologies Ltd. , 5th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi , Thane (W) 400 604 , Maharashtra , India
| | - Chiranjit Maity
- Advanced Enzyme Technologies Ltd. , 5th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi , Thane (W) 400 604 , Maharashtra , India
| |
Collapse
|
12
|
Colás-Medà P, Nicolau-Lapeña I, Viñas I, Neggazi I, Alegre I. Bacterial Spore Inactivation in Orange Juice and Orange Peel by Ultraviolet-C Light. Foods 2021; 10:foods10040855. [PMID: 33920777 PMCID: PMC8103511 DOI: 10.3390/foods10040855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Spore-forming bacteria are a great concern for fruit juice processors as they can resist the thermal pasteurization and the high hydrostatic pressure treatments that fruit juices receive during their processing, thus reducing their microbiological quality and safety. In this context, our objective was to evaluate the efficacy of Ultraviolet-C (UV-C) light at 254 nm on reducing bacterial spores of Alicyclobacillus acidoterrestris, Bacillus coagulans and Bacillus cereus at two stages of orange juice production. To simulate fruit disinfection before processing, the orange peel was artificially inoculated with each of the bacterial spores and submitted to UV-C light (97.8-100.1 W/m2) with treatment times between 3 s and 10 min. The obtained product, the orange juice, was also tested by exposing the artificially inoculated juice to UV-C light (100.9-107.9 W/m2) between 5 and 60 min. A three-minute treatment (18.0 kJ/m2) reduced spore numbers on orange peel around 2 log units, while more than 45 min (278.8 kJ/m2) were needed to achieve the same reduction in orange juice for all evaluated bacterial spores. As raw fruits are the main source of bacterial spores in fruit juices, reducing bacterial spores on fruit peels could help fruit juice processors to enhance the microbiological quality and safety of fruit juices.
Collapse
|
13
|
Lee HJ, Lee MJ, Choi YJ, Park SJ, Lee MA, Min SG, Park SH, Seo HY, Yun YR. Free Amino Acid and Volatile Compound Profiles of Jeotgal Alternatives and Its Application to Kimchi. Foods 2021; 10:foods10020423. [PMID: 33671949 PMCID: PMC7919035 DOI: 10.3390/foods10020423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Jeotgal containing abundant free amino acids plays an important role in the unique savory taste (umami) and flavor in kimchi. However, it is also responsible for the unpleasant fishy smell and high salt content of kimchi. Therefore, the present study aimed to identify alternative jeotgal sources and investigate the fermentation properties of jeotgal alternatives added to kimchi. The tomato hot-water extract (TH2) and dry-aged beef hot-water extract (DBH) were selected as jeotgal alternatives for kimchi preparation based on their glutamic acid contents. Characteristics of kimchi with TH2 alone (JA1) and TH2 and DBH in combination (1:1, JA2) were compared with kimchi prepared using commercially available anchovy fish sauce (CON). The pH of JA1 and JA2 was slightly decreased during fermentation, whereas the salinity was significantly lower than CON (p < 0.05). Notably, the most effective factor of the savory taste of kimchi, glutamic acid contents of JA1 and JA2 were significantly higher than that of CON (p < 0.05). In conclusion, JA1 showed slower fermentation with lower salinity and higher glutamic acid content than CON. Overall, this study showed that JA1 derived from TH2 could improve the taste and quality of kimchi by increasing glutamic acid content and decreasing the unpleasant flavor.
Collapse
Affiliation(s)
- Hye Jin Lee
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
| | - Min Jung Lee
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
| | - Yun-Jeong Choi
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
| | - Sung Jin Park
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
| | - Mi-Ai Lee
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
| | - Sung Gi Min
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
| | - Sung-Hee Park
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
| | - Hye-Young Seo
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Korea;
| | - Ye-Rang Yun
- Industrial Technology Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (H.J.L.); (M.J.L.); (Y.-J.C.); (S.J.P.); (M.-A.L.); (S.G.M.); (S.-H.P.)
- Correspondence: ; Tel.: +82-626-101-849; Fax: +82-626-101-850
| |
Collapse
|
14
|
Hyperbaric Storage of Vacuum-Packaged Fresh Atlantic Salmon (Salmo salar) Loins by Evaluation of Spoilage Microbiota and Inoculated Surrogate-Pathogenic Microorganisms. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09275-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Combined high pressure and heat treatment effectively disintegrates spore membranes and inactivates Alicyclobacillus acidoterrestris spores in acidic fruit juice beverage. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the inactivation kinetics of Alicyclobacillus acidoterrestris spores by temperature-assisted high hydrostatic pressure was assessed by means of the Weibull model. Spores from two A. acidoterrestris strains (a wild-type strain and a reference strain) were inoculated in commercial orange juice and subjected to high pressure levels (500 and 600 MPa) combined with four temperature regimes (25, 45, 60 and 70 °C) for time up to 30 min. Results showed that for a given high-pressure level spore inactivation was higher as temperature progressively increased. Furthermore, the Weibull model consistently produced satisfactory fit to the inactivation data based on the values of the root mean squared error (RMSE < 0.54 log colony-forming units (CFU)/mL) and the coefficient of determination (R2 > 0.90 in most cases). The shape of inactivation curves was concave upward (p < 1) for all temperature/high pressure levels tested, indicating rapid inactivation of the sensitive cells of the bacterium whereas the remaining ones adapted to high hydrostatic pressure (HHP) treatment. The values of the shape (p) and scale (δ) parameters of the Weibull model were dependent on the applied temperature for a given high pressure level and they were further described in a secondary model using first-order fitting curves to provide predictions of the surviving spore population at 55 and 65 °C. Results revealed a systematic over-prediction for the wild-type strain regardless of temperature and high pressure applied, whereas for the reference strain under-prediction was evident after 3 log-cycles reduction of the surviving bacteria spores. Overall, the results obtained indicate that the effectiveness of high hydrostatic pressure against A. acidoterrestris spores is strain-dependent and also underline the need for temperature-assisted HPP for effective spore inactivation during orange juice processing.
Collapse
|
17
|
Aldrete-Tapia JA, Torres JA. Enhancing the Inactivation of Bacterial Spores during Pressure-Assisted Thermal Processing. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09252-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Effect of high pressure processing combined with temperature on the inactivation and germination of Alicyclobacillus acidoterrestris spores: Influence of heat-shock on the counting of survivors. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Combined effects of high hydrostatic pressure treatment and red ginseng concentrate supplementation on the inactivation of foodborne pathogens and the quality of ready-to-use kimchi sauce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Rayman Ergün A, Baysal T. Effects of thyme, basil, and garlic oleoresins on the thermal resistance of
Bacillus coagulans
in tomato sauce. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ahsen Rayman Ergün
- Food Engineering Department, Engineering Faculty Ege University Izmir Turkey
| | - Taner Baysal
- Food Engineering Department, Engineering Faculty Ege University Izmir Turkey
| |
Collapse
|
21
|
Liang D, Zhang L, Wang X, Wang P, Liao X, Wu X, Chen F, Hu X. Building of Pressure-Assisted Ultra-High Temperature System and Its Inactivation of Bacterial Spores. Front Microbiol 2019; 10:1275. [PMID: 31244800 PMCID: PMC6579918 DOI: 10.3389/fmicb.2019.01275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
The pressure-assisted ultra-high temperature (PAUHT) system was built by using soybean oil as pressure-transmitting medium, and the multiple regression equation of soybean oil temperature change (ΔTP ) during pressurization as a function of initial temperature (Ti ) and set pressure (P) was developed: ΔTP = -13.45 + 0.46 Ti + 0.0799 P - 0.0037T i 2 - 2.83 × 10-5 P2. The fitted model indicated that the temperature of the system would achieve ≥121°C at 600 MPa when the initial temperature of soybean oil was ≥84°C. The PAUHT system could effectively inactivate spores of Bacillus subtilis 168 and Clostridium sporogenes PA3679 (less than 1 min). Treatment of 600 MPa and 121°C with no holding time resulted in a 6.75 log reductions of B. subtilis 168 spores, while treatment of 700 MPa and 121°C with pressure holding time of 20 s achieved more than 5 log reductions of C. sporogenes PA3679 spores. By comparing the PAUHT treatment with high pressure or thermal treatment alone, and also studying the effect of compression on spore inactivation during PAUHT treatment, the inactivation mechanism was further discussed and could be concluded as follows: both B. subtilis 168 and C. sporogenes PA3679 spores were triggered to germinate firstly by high pressure, which was enhanced by increased temperature, then the germinated spores were inactivated by heat.
Collapse
Affiliation(s)
- Dong Liang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
| | - Liang Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
22
|
Kaczmarek M, Avery SV, Singleton I. Microbes associated with fresh produce: Sources, types and methods to reduce spoilage and contamination. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:29-82. [PMID: 31128748 DOI: 10.1016/bs.aambs.2019.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Global food security remains one of the most important challenges that needs to be addressed to ensure the increasing demand for food of the fast growing human population is satisfied. Fruits and vegetables comprise an essential component of a healthy balanced diet as they are the major source of both macro- and micronutrients. They are particularly important for communities in developing countries whose nutrition often relies solely on a plant-based diet. Recent advances in agriculture and food processing technologies have facilitated production of fresh, nutritious and safe food for consumers. However, despite the development of sophisticated chemical and physical methods of food and equipment disinfection, fresh-cut produce and fruit juice industry still faces significant economic losses due to microbial spoilage. Furthermore, fresh produce remains an important source of pathogens that have been causing outbreaks of human illness worldwide. This chapter characterizes common spoilage and human pathogenic microorganisms associated with fresh-cut produce and fruit juice products, and discusses the methods and technology that have been developed and utilized over the years to combat them. Substantial attention is given to highlight advantages and disadvantages of using these methods to reduce microbial spoilage and their efficacy to eliminate human pathogenic microbes associated with consumption of fresh-cut produce and fruit juice products.
Collapse
Affiliation(s)
- Maciej Kaczmarek
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh, United Kingdom.
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh, United Kingdom.
| |
Collapse
|
23
|
Pinto CA, Martins AP, Santos MD, Fidalgo LG, Delgadillo I, Saraiva JA. Growth inhibition and inactivation of Alicyclobacillus acidoterrestris endospores in apple juice by hyperbaric storage at ambient temperature. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Pornpukdeewattana S, Jindaprasert A, Massa S. Alicyclobacillusspoilage and control - a review. Crit Rev Food Sci Nutr 2019; 60:108-122. [DOI: 10.1080/10408398.2018.1516190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Aphacha Jindaprasert
- Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Salvatore Massa
- Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
25
|
Enhanced control of Bacillus subtilis endospores development by hyperbaric storage at variable/uncontrolled room temperature compared to refrigeration. Food Microbiol 2018; 74:125-131. [DOI: 10.1016/j.fm.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/18/2018] [Accepted: 03/17/2018] [Indexed: 11/23/2022]
|
26
|
The impact of high pressure and drying processing on internal structure and quality of fruit. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3047-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels. Rev Argent Microbiol 2018; 50:3-11. [DOI: 10.1016/j.ram.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/10/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
|
28
|
Wang L, Tao H, Li Y. Multi‐pulsed high pressure assisted slightly acidic electrolyzed water processing on microbe, physical quality, and free amino acids of mud snail (
Bullacta exarata
). J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Liping Wang
- Department of Food Science and Technology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240 PR China
| | - Hong Tao
- Department of Food Science and Technology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240 PR China
| | - Yunfei Li
- Department of Food Science and Technology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240 PR China
| |
Collapse
|
29
|
Wang L, Xia Q, Li Y. The effects of high pressure processing and slightly acidic electrolysed water on the structure of Bacillus cereus spores. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Kostrzewska-Szlakowska I, Kiersztyn B. Microbial Biomass and Enzymatic Activity of the Surface Microlayer and Subsurface Water in Two Dystrophic Lakes. Pol J Microbiol 2017; 66:75-84. [PMID: 29359687 DOI: 10.5604/17331331.1234995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nutrient and organic matter concentration, microbial biomass and activities were studied at the surface microlayers (SML) and subsurface waters (SSW) in two small forest lakes of different water colour. The SML in polyhumic lake is more enriched with dissolved inorganic nitrogen (0.141 mg l-1) than that of oligohumic lake (0.124 mg l-1), the former also contains higher levels of total nitrogen (2.66 mg l-1). Higher activities of lipase (Vmax 2290 nmol l-1 h-1 in oligo- and 6098 in polyhumic) and glucosidase (Vmax 41 nmol l-1 h-1 in oligo- and 49 in polyhumic) were in the SMLs in both lakes. Phosphatase activity was higher in the oligohumic SML than in SSW (Vmax 632 vs. 339 nmol l-1 h-1) while in polyhumic lake was higher in SSW (Vmax 2258 nmol l-1 h-1 vs. 1908 nmol l-1 h-1). Aminopeptidase activity in the SSW in both lakes was higher than in SMLs (Vmax 2117 in oligo- and 1213 nmol l-1 h-1 in polyhumic). It seems that solar radiation does inhibit neuston microbial community as a whole because secondary production and the share of active bacteria in total bacteria number were higher in SSW. However, in the oligohumic lake the abundance of bacteria in the SML was always higher than in the SSW (4.07 vs. 2.69 × 106 cells ml-1) while in the polyhumic lake was roughly equal (4.48 vs. 4.33 × 106 cells ml-1) in both layers. Results may also suggest that surface communities are not supplemented by immigration from bulk communities. The SML of humic lakes may act as important sinks for allochthonous nutrient resources and may then generate considerable energy pools for microbial food webs.
Collapse
Affiliation(s)
| | - Bartosz Kiersztyn
- Department of Microbial Ecology and Environmental Biotechnology, Institute of Botany, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland
| |
Collapse
|
31
|
Porębska I, Sokołowska B, Skąpska S, Rzoska SJ. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Zhang JB, Gao ZP, Liu XH, Yue TL, Yuan YH. The Effect of RF Treatment Combined with Nisin Against Alicyclobacillus Spores in Kiwi Fruit Juice. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
|
34
|
Rayman Ergün A, Baysal T. The Antimicrobial Effects of Thyme, Garlic and Basil Oleoresins AgainstBacillus coagulansin Tomato Sauce. J Food Biochem 2016. [DOI: 10.1111/jfbc.12296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahsen Rayman Ergün
- Faculty of Engineering, Food Engineering Department; Ege University; 35100 Izmir Turkey
| | - Taner Baysal
- Faculty of Engineering, Food Engineering Department; Ege University; 35100 Izmir Turkey
| |
Collapse
|
35
|
Evelyn, Silva FV. Modeling the inactivation of psychrotrophic Bacillus cereus spores in beef slurry by 600MPa HPP combined with 38–70°C: Comparing with thermal processing and estimating the energy requirements. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Artíguez ML, Martínez de Marañón I. Inactivation of Bacillus subtilis spores by combined pulsed light and thermal treatments. Int J Food Microbiol 2015. [DOI: 10.1016/j.ijfoodmicro.2015.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
High pressure processing of milk: Modeling the inactivation of psychrotrophic Bacillus cereus spores at 38–70°C. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Janowicz M, Lenart A. Selected physical properties of convection dried apples after HHP treatment. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Reineke K, Sevenich R, Hertwig C, Janßen T, Fröhling A, Knorr D, Wieler LH, Schlüter O. Comparative study on the high pressure inactivation behavior of the Shiga toxin-producing Escherichia coli O104:H4 and O157:H7 outbreak strains and a non-pathogenic surrogate. Food Microbiol 2015; 46:184-194. [DOI: 10.1016/j.fm.2014.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/01/2014] [Accepted: 07/26/2014] [Indexed: 12/13/2022]
|
40
|
Infectious causes of cholesteatoma and treatment of infected ossicles prior to reimplantation by hydrostatic high-pressure inactivation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:761259. [PMID: 25705686 PMCID: PMC4330946 DOI: 10.1155/2015/761259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 11/26/2022]
Abstract
Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms.
Collapse
|
41
|
Al-Holy MA, Lin M, Alhaj OA, Abu-Goush MH. Discrimination betweenBacillusandAlicyclobacillusIsolates in Apple Juice by Fourier Transform Infrared Spectroscopy and Multivariate Analysis. J Food Sci 2015; 80:M399-404. [DOI: 10.1111/1750-3841.12768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Murad A. Al-Holy
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences; Hashemite Univ; Zarqa-Jordan 13115, Zarqa Governorate
| | - Mengshi Lin
- Food Science Program, 256 William Stringer Wing; Univ. of Missouri; Columbia MO 65211 U.S.A
| | - Omar A. Alhaj
- Dept. of Food Science and Nutrition, College of Food and Agricultural Sciences; King Saud Univ; P.O. Box 2460 Riyadh 11451 Saudi Arabia
| | - Mahmoud H. Abu-Goush
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences; Hashemite Univ; Zarqa-Jordan 13115, Zarqa Governorate
| |
Collapse
|
42
|
Kinetic study of Bacillus cereus spore inactivation by high pressure high temperature treatment. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Huang XC, Yuan YH, Guo CF, Gekas V, Yue TL. Alicyclobacillusin the Fruit Juice Industry: Spoilage, Detection, and Prevention/Control. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.974266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Aneja KR, Dhiman R, Aggarwal NK, Aneja A. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. Int J Microbiol 2014; 2014:758942. [PMID: 25332721 PMCID: PMC4190135 DOI: 10.1155/2014/758942] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.
Collapse
Affiliation(s)
- Kamal Rai Aneja
- Vaidyanath Research, Training and Diagnostic Centre, Kurukshetra 136118, India
| | - Romika Dhiman
- Department of Microbiology, Kurukshetra University, Kurukshetra 136119, India
| | | | - Ashish Aneja
- University Health Centre, Kurukshetra University, Kurukshetra 136119, India
| |
Collapse
|
45
|
Tianli Y, Jiangbo Z, Yahong Y. Spoilage byAlicyclobacillusBacteria in Juice and Beverage Products: Chemical, Physical, and Combined Control Methods. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12093] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yue Tianli
- College of Food Science and Engineering; Northwest A&F Univ; Yangling PR China
| | - Zhang Jiangbo
- College of Food Science and Engineering; Northwest A&F Univ; Yangling PR China
| | - Yuan Yahong
- College of Food Science and Engineering; Northwest A&F Univ; Yangling PR China
| |
Collapse
|
46
|
Abstract
High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.
Collapse
|
47
|
Ferrario M, Alzamora SM, Guerrero S. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiol 2014; 46:635-642. [PMID: 25475338 DOI: 10.1016/j.fm.2014.06.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the effect of ultrasound (US) (600 W, 20 kHz and 95.2 μm wave amplitude; 10 or 30 min at 20, 30 or 44 ± 1 °C) and pulsed light (PL) (Xenon lamp; 3 pulses/s; 0.1 m distance; 2.4 J/cm(2)-71.6 J/cm(2); initial temperature 2, 30, 44 ± 1 °C) on the inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores and Saccharomyces cerevisiae KE162 inoculated in commercial (pH: 3.5; 12.5 °Brix) and natural squeezed (pH: 3.4; 11.8 °Brix) apple juices. Inactivation depended on treatment time, temperature, microorganism and matrix. Combination of these technologies led up to 3.0 log cycles of spore reduction in commercial apple juice and 2.0 log cycles in natural juice; while for S. cerevisiae, 6.4 and 5.8 log cycles of reduction were achieved in commercial and natural apple juices, respectively. In natural apple juice, the combination of US + 60 s PL at the highest temperature build-up (56 ± 1 °C) was the most effective treatment for both strains. In commercial apple juice, US did not contribute to further inactivation of spores, but significantly reduced yeast population. Certain combinations of US + PL kept on good microbial stability under refrigerated conditions for 15 days.
Collapse
Affiliation(s)
- Mariana Ferrario
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria (1428) C.A.B.A., Argentina; Agencia Nacional de Promoción Científica y Tecnológica de la República Argentina, Argentina
| | - Stella Maris Alzamora
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria (1428) C.A.B.A., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Argentina
| | - Sandra Guerrero
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria (1428) C.A.B.A., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Argentina.
| |
Collapse
|
48
|
Huang HW, Lung HM, Yang BB, Wang CY. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.12.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Modeling the inactivation kinetics of Bacillus coagulans spores in tomato pulp from the combined effect of high pressure and moderate temperature. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Pressure–ohmic–thermal sterilization: A feasible approach for the inactivation of Bacillus amyloliquefaciens and Geobacillus stearothermophilus spores. INNOV FOOD SCI EMERG 2013. [DOI: 10.1016/j.ifset.2013.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|