1
|
Niu D, Feng N, Xi S, Xu J, Su Y. Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics. Mol Genet Genomics 2024; 299:24. [PMID: 38438804 DOI: 10.1007/s00438-024-02101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/16/2023] [Indexed: 03/06/2024]
Abstract
The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.
Collapse
Affiliation(s)
- Dekai Niu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Siteng Xi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Jianjian Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China.
| |
Collapse
|
2
|
Yadav V, Fuentes JL, Krishnan A, Singh N, Vohora D. Guidance for the use and interpretation of assays for monitoring anti-genotoxicity. Life Sci 2024; 337:122341. [PMID: 38101613 DOI: 10.1016/j.lfs.2023.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Since DNA damage can occur spontaneously or be produced by the environmental genotoxins in living cells, it is important to investigate compounds that can reverse or protect DNA damage. An appropriate methodology is essential for the responsive identification of protection offered against DNA damage. This review includes information on the current state of knowledge on prokaryotic cell-based assays (SOS chromotest, umu test, vitotox assay) and cytogenetic techniques (micronucleus assay, chromosome aberration test and sister chromatid exchange assay) with an emphasis on the possibility to explore genoprotective compounds. Throughout the last decade, studies have extrapolated the scientific methodologies utilized for genotoxicity to assess genoprotective compounds. Therefore, shortcomings of genotoxicity studies are also mirrored in antigenotoxicity studies. While regulatory authorities around the world (OECD, US-EPA and ICH) continue to update diverse genotoxic assay strategies, there are still no clear guidelines/approaches for efficient experimental design to screen genoprotective compounds. As a consequence, non-synergetic and inconsistent implementation of the test method by the researchers to execute such simulations has been adopted, which inevitably results in unreliable findings. The review has made the first attempt to collect various facets of experimentally verified approaches for evaluating genoprotective compounds, as well as to acknowledge potential significance and constraints, and further focus on the assessment of end points which are required to validate such action. Henceforth, the review makes an incredible commitment by permitting readers to equate several components of their test arrangement with the provided simplified information, allowing the selection of convenient technique for the predefined compound from a central repository.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jorge L Fuentes
- School of Biology, Science Faculty, Industrial University of Santander, Bucaramanga 680002, Santander, Colombia
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Álvarez M, Andrade MJ, Cebrián E, Roncero E, Delgado J. Perspectives on the Probiotic Potential of Indigenous Moulds and Yeasts in Dry-Fermented Sausages. Microorganisms 2023; 11:1746. [PMID: 37512918 PMCID: PMC10385761 DOI: 10.3390/microorganisms11071746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
The role of indigenous fungi in the appropriate development of sensory properties and the safety of dry-fermented sausages has been widely established. Nonetheless, their applications as probiotic agents have not been elucidated in such products yet, despite their promising functional features. Thus, it should be interesting to evaluate the probiotic potential of native Debaryomyces hansenii isolates from dry-fermented sausages and their application in the meat industry, because it is the most frequently isolated yeast species from these foodstuffs and its probiotic effects for animals as well as its possible probiotic activity for human beings have been demonstrated. Within the functional ability of foodborne yeasts, anti-inflammatory, antioxidant, antimicrobial, antigenotoxic, and immunomodulatory properties have been reported. Similarly, the use of dry-fermented sausages as vehicles for probiotic moulds remains a challenge because the survival and development of moulds in the gastrointestinal tract are still unknown. Nevertheless, some moulds have been isolated from faeces possibly from their spores as a form of resistance. Additionally, their beneficial effects on animals and humans, such as the decrease in lipid content and the anti-inflammatory activity, have been reported, although they seem to be more related to their postbiotic capacity due to the generated bioactive compounds with profunctional attributes than to their role as probiotics. Therefore, further studies providing knowledge useful for generating dry-fermented sausages with improved functionality are fully necessary.
Collapse
Affiliation(s)
- Micaela Álvarez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - María J Andrade
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Eva Cebrián
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Elia Roncero
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| |
Collapse
|
4
|
Ansari F, Alian Samakkhah S, Bahadori A, Jafari SM, Ziaee M, Khodayari MT, Pourjafar H. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr 2021; 63:457-485. [PMID: 34254862 DOI: 10.1080/10408398.2021.1949577] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Saccharomyces cerevisiae var. boulardii (S. boulardii) has been isolated from lychee (Litchi chinensis), mangosteen fruit, kombucha, and dairy products like kefir. Dairy products containing S. boulardii have been revealed to possess potential probiotic activities owing to their ability to produce organic acids, essential enzymes, vitamins, and other important metabolites such as vanillic acid, phenyl ethyl alcohol, and erythromycin. S. boulardii has a wide spectrum of anti-carcinogenic, antibacterial antiviral, and antioxidant activity, and is known to reduce serum cholesterol levels. However, this yeast has mainly been prescribed for prophylaxis treatment of gastrointestinal infectious diseases, and stimulating the immune system in a number of commercially available products. The present comprehensive review article reviews the properties of S. boulardii related to their use in fermented dairy foods as a probiotic microorganism or starter culture. Technical aspects regarding the integration of this yeast into the dairy foods matrix its health advantages, therapeutic functions, microencapsulation, and viability in harsh conditions, and safety aspects are highlighted.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.,Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Seyedeh Maedeh Jafari
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Hadi Pourjafar
- Alborz University of Medical Sciences, Dietary Supplements and Probiotic Research Center, Karaj, Iran.,Department of Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
5
|
Potential Probiotic Strains of Saccharomyces and Non- Saccharomyces: Functional and Biotechnological Characteristics. J Fungi (Basel) 2021; 7:jof7030177. [PMID: 33801543 PMCID: PMC7999857 DOI: 10.3390/jof7030177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Due to the evident demand for probiotic microorganisms, a growing number of scientific studies have involved the preliminary selection of new strains, but deeper studies for knowing specific functional and biotechnological properties are needed. In the present work, twenty yeasts (Saccharomyces and non-Saccharomyces) with potential probiotic characteristics, selected in previous works, were evaluated. The following assays were realized: adhesion to Caco-2/TC7 cells, prebiotic metabolisms, assimilation of cholesterol, enzymatic and antioxidant activity, and antifungal resistance. In addition, the effect of ultrasonic treatment was evaluated for attenuating the cultures before their possible incorporation into a food or supplement. In all of the cases, the unique commercial probiotic yeast (S. boulardii CNM I-745) was used as positive control. Results show different capabilities depending on the property studied. In general, no Saccharomyces yeasts were better in the adhesion to Caco cells, prebiotic metabolism, and presented higher variability of enzymatic activities. The ones related to cholesterol assimilation and antioxidant capability did not show a marked trend, and with respect to the attenuation process, the Saccharomyces yeasts were more resistant. For selecting the potential probiotic yeasts with better balance among all characteristics, a principal component analysis (PCA) was carried out. The most promising yeasts for use as health-promoting probiotics are Hanseniaspora osmophila 1056 and 1094, Lachancea thermotolerans 1039, and S. cerevisiae 3 and 146.
Collapse
|
6
|
Agarbati A, Marini E, Galli E, Canonico L, Ciani M, Comitini F. Characterization of wild yeasts isolated from artisan dairies in the Marche region, Italy, for selection of promising functional starters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Ragavan ML, Das N. In Vitro Studies on Therapeutic Potential of Probiotic Yeasts Isolated from Various Sources. Curr Microbiol 2020; 77:2821-2830. [PMID: 32591923 DOI: 10.1007/s00284-020-02100-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
The present study investigates the therapeutic properties of probiotic yeasts viz. Yarrowia lipolytica VIT-MN01, Kluyveromyces lactis VIT-MN02, Lipomyces starkeyi VIT-MN03, Saccharomycopsis fibuligera VIT-MN04 and Brettanomyces custersianus VIT-MN05. The antimutagenic activity of probiotic yeasts against the mutagens viz. Benzo[a]pyrene (B[a]P), and Sodium azide (SA) was tested. S. fibuligera VIT-MN04 showed highest antimutagenicity (75%). Binding ability on the mutagen acridine orange (AO) was tested and L. starkeyi VIT-MN03 was able to bind AO effectively (88%). The probiotic yeasts were treated with the genotoxins viz. 4-Nitroquinoline 1-Oxide (NQO) and Methylnitronitrosoguanidine (MNNG). The prominent changes in UV shift confirmed the reduction in genotoxic activity of S. fibuligera VIT-MN04 and L. starkeyi VIT-MN03, respectively. Significant viability of probiotic yeasts was noted after being exposed to mutagens and genotoxins. The adhesion capacity and anticancer activity were also assessed using Caco-2 and IEC-6 cell lines. Adhesion ability was found to be more in IEC-6 cells and remarkable antiproliferative activity was noted in Caco-2 cells compared to normal cells. Further, antagonistic activity of probiotic yeasts was investigated against S. typhimurium which was found to be more in S. fibuligera VIT-MN04 and L. starkeyi VIT-MN03. The inhibition of α-glucosidase and α-amylase activity confirmed the antidiabetic activity of probiotic yeasts. Antioxidant activity was also tested using standard assays. Therefore, based on the results, it can be concluded that probiotic yeasts can serve as potential therapeutic agents for the prevention and treatment of colon cancer, type 2 diabetes and gastrointestinal infections.
Collapse
Affiliation(s)
- Mangala Lakshmi Ragavan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nilanjana Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
8
|
Veisseire P, Bonnet M, Saraoui T, Poupet C, Camarès O, Gachinat M, Callon C, Febvre G, Chassard C, Bornes S. Investigation into In Vitro and In Vivo Caenorhabditis elegans Models to Select Cheese Yeasts as Probiotic Candidates for their Preventive Effects against Salmonella Typhimurium. Microorganisms 2020; 8:microorganisms8060922. [PMID: 32570901 PMCID: PMC7356738 DOI: 10.3390/microorganisms8060922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
The design of multiscale strategies integrating in vitro and in vivo models is necessary for the selection of new probiotics. In this regard, we developed a screening assay based on the investigation of the potential of yeasts from cheese as probiotics against the pathogen Salmonella Typhimurium UPsm1 (ST). Two yeasts isolated from raw-milk cheese (Saccharomyces cerevisiae 16, Sc16; Debaryomyces hansenii 25, Dh25), as well as S. cerevisiae subspecies boulardii (CNCM I-1079, Sb1079), were tested against ST by applying in vitro and in vivo tests. Adherence measurements to Caco-2 and HT29-MTX intestinal cells indicated that the two tested cheese yeasts presented a better adhesion than the probiotic Sb1079 as the control strain. Further, the Dh25 was the cheese yeast most likely to survive in the gastrointestinal tract. What is more, the modulation of the TransEpithelial Electrical Resistance (TEER) of differentiated Caco-2 cell monolayers showed the ability of Dh25 to delay the deleterious effects of ST. The influence of microorganisms on the in vivo model Caenorhabditis elegans was evaluated by measuring the longevity of the worm. This in vivo approach revealed that this yeast increased the worm’s lifespan and protected it against ST infection, confirming that this in vivo model can be useful for screening probiotic cheese yeasts.
Collapse
Affiliation(s)
- Philippe Veisseire
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
- Correspondence: ; Tel.: +33-(0)4-43-79-11-28
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| | - Taous Saraoui
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| | - Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| | - Olivier Camarès
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| | - Marylise Gachinat
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| | - Cécile Callon
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| | - Guy Febvre
- Université Clermont Auvergne, Laboratoire Météorologie Physique, CNRS, F-15000 Aurillac, France;
| | - Christophe Chassard
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, F-15000 Aurillac, France; (M.B.); (T.S.); (C.P.); (O.C.); (M.G.); (C.C.); (C.C.); (S.B.)
| |
Collapse
|
9
|
Garcia-Gonzalez N, Prete R, Perugini M, Merola C, Battista N, Corsetti A. Probiotic antigenotoxic activity as a DNA bioprotective tool: a minireview with focus on endocrine disruptors. FEMS Microbiol Lett 2020; 367:fnaa041. [PMID: 32124914 PMCID: PMC7082702 DOI: 10.1093/femsle/fnaa041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Nowadays, the interest in the role of dietary components able to influence the composition and the activity of the intestinal microbiota and, consequently, to modulate the risk of genotoxicity and colon cancer is increasing in the scientific community. Within this topic, the microbial ability to have a protective role at gastrointestinal level by counteracting the biological activity of genotoxic compounds, and thus preventing the DNA damage, is deemed important in reducing gut pathologies and is considered a new tool for probiotics and functional foods. A variety of genotoxic compounds can be found in the gut and, besides food-related mutagens and other DNA-reacting compounds, there is a group of pollutants commonly used in food packaging and/or in thousands of everyday products called endocrine disruptors (EDs). EDs are exogenous substances that alter the functions of the endocrine system through estrogenic and anti-estrogenic activity, which interfere with normal hormonal function in human and wildlife. Thus, this paper summarizes the main applications of probiotics, mainly lactobacilli, as a bio-protective tool to counteract genotoxic and mutagenic agents, by biologically inhibiting the related DNA damage in the gut and highlights the emerging perspectives to enlarge and further investigate the microbial bio-protective role at intestinal level.
Collapse
Affiliation(s)
- Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
10
|
Pimentel E, Cruces MP. Antimutagenic action of the live yeast can be transmitted to the offspring of Drosophila melanogaster. A genetic study using the wing spot assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:28-33. [PMID: 29172069 DOI: 10.1016/j.etap.2017.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluates whether the protective effect of live yeast (LY) against direct and indirect mutagenic agents, persists in the offspring from individuals fed with LY. The wing-spot test in Drosophila was used; four different mates were performed: a) neither females nor males were fed with LY-enriched food (NLYxNLY); b) only females were fed (LYxNLY); c) males were fed (NLYxLY) or d) both progenitors were fed (LYxLY). Results confirm that LY strongly stimulates fecundity in females but not in males and provides strength to the egg for survive. A greater reduction in mutation rate was observed when females were feed, in the following relationship: LYxNLY>LYxLY>NLYxLY. No protection was found against action in any of the promutagens tested. Results suggest that LY has a very powerful antimutagenic action, predominantly against the action of ionizing radiation and Chromium trioxide that can be transmitted mainly through the female.
Collapse
Affiliation(s)
- Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, La Marquesa, Ocoyoacac CP. 52750, Mexico.
| | - Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, La Marquesa, Ocoyoacac CP. 52750, Mexico
| |
Collapse
|
11
|
Prete R, Tofalo R, Federici E, Ciarrocchi A, Cenci G, Corsetti A. Food-Associated Lactobacillus plantarum and Yeasts Inhibit the Genotoxic Effect of 4-Nitroquinoline-1-Oxide. Front Microbiol 2017; 8:2349. [PMID: 29234315 PMCID: PMC5712336 DOI: 10.3389/fmicb.2017.02349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria and yeasts, representing the prevailing microbiota associated with different foods generally consumed without any cooking, were identified and characterized in vitro for some functional properties, such as acid-bile tolerance and antigenotoxic activity. In particular, 22 Lactobacillus plantarum strains and 14 yeasts were studied. The gastro-intestinal tract tolerance of all the strains was determined by exposing washed cell suspensions at 37°C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and to a simulated small intestinal juice (pH 8.0), containing pancreatin (1 mg mL-1) and bile extract (0.5%), thus monitoring changes in total viable count. In general, following a strain-dependent behavior, all the tested strains persisted alive after combined acid-bile challenge. Moreover, many strains showed high in vitro inhibitory activity against a model genotoxin, 4-nitroquinoline-1-oxide (4-NQO), as determined by the short-term method, SOS-Chromotest. Interestingly, the supernatants from bacteria- or yeasts-genotoxin co-incubations exhibited a suppression on SOS-induction produced by 4-NQO on the tester strain Escherichia coli PQ37 (sfiA::lacZ) exceeding, in general, the value of 75%. The results highlight that food associated microorganisms may reach the gut in viable form and prevent genotoxin DNA damage in situ. Our experiments can contribute to elucidate the functional role of food-associated microorganisms general recognized as safe ingested with foods as a part of the diet.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ermanno Federici
- Laboratory of Microbiology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aurora Ciarrocchi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanni Cenci
- Laboratory of Microbiology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
12
|
Federici E, Prete R, Lazzi C, Pellegrini N, Moretti M, Corsetti A, Cenci G. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets. Front Microbiol 2017; 8:300. [PMID: 28293225 PMCID: PMC5328950 DOI: 10.3389/fmicb.2017.00300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/14/2017] [Indexed: 12/16/2022] Open
Abstract
This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides–Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut.
Collapse
Affiliation(s)
- Ermanno Federici
- Laboratory of Microbiology, Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Roberta Prete
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Camilla Lazzi
- Department of Food Science, University of Parma Parma, Italy
| | | | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia Perugia, Italy
| | - Aldo Corsetti
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Giovanni Cenci
- Laboratory of Microbiology, Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| |
Collapse
|
13
|
In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J Microbiol Biotechnol 2016; 32:141. [DOI: 10.1007/s11274-016-2109-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
|
14
|
Lanzone V, Tofalo R, Fasoli G, Perpetuini G, Suzzi G, Sergi M, Corrado F, Compagnone D. Food borne bacterial models for detection of benzo[a]pyrene-DNA adducts formation using RAPD-PCR. Microb Biotechnol 2016; 9:400-7. [PMID: 26991971 PMCID: PMC4835576 DOI: 10.1111/1751-7915.12355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 02/03/2023] Open
Abstract
Random amplified polymorphic DNA (RAPD) PCR is a feasible method to evaluate genotoxin-induced DNA damage and mutations. In this study, Lactobacillus plantarum ATCC 14917T, Enterococcus faecium DSMZ 20477T, Escherichia coli PQ37 and Saccharomyces cerevisiae S441 were screened for DNA genetic alterations by DNA fingerprinting using M13 and LA1 primers after treatment with three compounds forming covalent adducts with DNA [benzo[a]pyrenediol epoxide (BPDE), methyl methanesulfonate and 1,2,3,4-diepoxybutane (DEB)]. M13 RAPD fingerprinting revealed that the total number of bands decreased in all treated DNA compared to control samples and generally the lost bands were characterized by high molecular weight. Some extra bands were detected for L. plantarum and E. faecium, while in E. coli and S. cerevisiae DNAs BPDE and DEB treatments did not result in new extra bands. Besides qualitatively analysis, cluster analysis based on Unweighted Pair-Group Method with Average algorithm was performed to compare DNA fingerprints before and after treatments. This analysis confirmed the absence of significant differences between negative controls and treated DNA in S. cerevisiae and E. coli however the disappearance of some bands can be detected. The data indicate that this approach can be used for DNA damage detection and mutations induced by genotoxic compounds and highlighted the possible use of L. plantarum and E. faecium M13 based fingerprinting as reference for hazard identification in risk assessment.
Collapse
Affiliation(s)
- Valentina Lanzone
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant'Angelo (TE), 64023, Italy
| | - Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant'Angelo (TE), 64023, Italy
| | - Giuseppe Fasoli
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant'Angelo (TE), 64023, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant'Angelo (TE), 64023, Italy
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant'Angelo (TE), 64023, Italy
| | - Manuel Sergi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant'Angelo (TE), 64023, Italy
| | - Federica Corrado
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, Napoli, 80055, Italy
| | - Dario Compagnone
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant'Angelo (TE), 64023, Italy
| |
Collapse
|
15
|
Gil-Rodríguez AM, Carrascosa AV, Requena T. Yeasts in foods and beverages: In vitro characterisation of probiotic traits. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.07.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Ogunremi OR, Sanni AI, Agrawal R. Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J Appl Microbiol 2015; 119:797-808. [PMID: 26095794 DOI: 10.1111/jam.12875] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 04/27/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022]
Abstract
AIMS To determine the starter culture and multifunctional potentials of yeast strains from some cereal-based Nigerian traditional fermented food products. METHODS AND RESULTS Yeast isolates were screened for enzyme production and identified by sequencing the D1/D2 region of 26S rDNA. Pichia kluyveri LKC17, Issatchenkia orientalis OSL11, Pichia kudriavzevii OG32, Pichia kudriavzevii ROM11 and Candida tropicalis BOM21 exhibited the highest protease, lipase and phytase activity. They were selected and further evaluated for gastrointestinal survival and adherence ability. Although strain-specific, they retained viability at 37°C and showed survival at pH 2·0., I. orientalis OSL11 showed the highest survival at 2% bile salts concentration and P. kudriavzevii ROM11 showed the least survival. The yeast strains showed strong autoaggregation ability (81·24-91·85%) and hydrophobicity to n-hexadecane (33·61-42·30%). The highest co-aggregation ability was detected for P. kudriavzevii OG32 and Escherichia coli (71·57%). All the yeast strains removed cholesterol in the range of 49·03-74·05% over 48 h and scavenged for free radicals in methanol reaction system. CONCLUSIONS In this study, we isolated new yeast strains with multifunctional potentials that can be used as functional starter cultures to produce cereal-based probiotic products. SIGNIFICANCE AND IMPACT OF THE STUDY The development of probiotic yeast strains as starter culture to improve the quality attributes and confer functional value on cereal-based traditional fermented foods is beneficial.
Collapse
Affiliation(s)
- O R Ogunremi
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria.,Food Microbiology Department, Central Food Technological Research Institute, Mysore, India
| | - A I Sanni
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - R Agrawal
- Food Microbiology Department, Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
17
|
Živković M, Čadež N, Uroić K, Miljković M, Tolinački M, Doušova P, Kos B, Šušković J, Raspor P, Topisirović L, Golić N. Evaluation of probiotic potential of yeasts isolated from traditional cheeses manufactured in Serbia and Croatia. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:12-8. [PMID: 26401378 PMCID: PMC4566759 DOI: 10.5455/jice.20141128051842] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/28/2014] [Indexed: 12/30/2022]
Abstract
AIM The aim of this study was to investigate the in vitro probiotic potential of dairy yeast isolates from artisanal cheeses manufactured in Serbia and Croatia. MATERIALS AND METHODS Twelve yeast strains isolated from artisanal fresh soft and white brined cheeses manufactured in Serbia and Croatia were used in the study. Survival in chemically-simulated gastrointestinal conditions, adherence to epithelial intestinal cells and proliferation of gut-associated lymphoid tissue (GALT) cells were evaluated. RESULTS The results revealed that two strains of Kluyvereomyces lactis ZIM 2408 and ZIM 2453 grew above one log unit (Δ log CFU/ml) in the complex colonic medium during 24 h of cultivation, while Torulaspora delbrueckii ZIM 2460 was the most resistant isolate in chemically-simulated conditions of gastric juice and upper intestinal tract. It was demonstrated that the strains K. lactis ZIM 2408 and ZIM2441 and Saccharomyces cerevisiae ZIM 2415 were highly adhesive to Caco-2 cells, while strains K. lactis ZIM 2408 and Debaryomyces hansenii ZIM 2415 exhibit the highest adhesion percentage to HT29-MTX cells. All strains significantly (P < 0.0001) decreased the proliferation of GALT cells, suggesting the possible strain-specific immunomodulatory potential of the isolates. CONCLUSION The dairy yeast isolates exhibit strain-specific probiotic properties, particularly the strain K. lactis ZIM 2408, which appears to be the best probiotic candidate in terms of all three criteria. Taking into account their immunomodulatory potential, the yeast isolates could be further tested for specific probiotic applications and eventually included in functional food formulated for patients suffering from diseases associated with an increased inflammatory status.
Collapse
Affiliation(s)
- Milica Živković
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe, Belgrade, Serbia
| | - Neža Čadež
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, Ljubljana, Slovenia
| | - Ksenija Uroić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierrotieva, Zagreb, Croatia
| | - Marija Miljković
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe, Belgrade, Serbia
| | - Petra Doušova
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe, Belgrade, Serbia ; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, Ljubljana, Slovenia ; Faculty of Chemistry, Brno University of Technology, Czech Republic
| | - Blaženka Kos
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierrotieva, Zagreb, Croatia
| | - Jagoda Šušković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierrotieva, Zagreb, Croatia
| | - Peter Raspor
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, Ljubljana, Slovenia ; Faculty of Health Sciences, The Institute for food, nutrition and health, Polje 42, SI - 6310 Izola, Slovenia
| | - Ljubiša Topisirović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe, Belgrade, Serbia
| |
Collapse
|
18
|
Tofalo R, Perpetuini G, Fasoli G, Schirone M, Corsetti A, Suzzi G. Biodiversity study of wine yeasts belonging to the “terroir” of Montepulciano d'Abruzzo “Colline Teramane” revealed Saccharomyces cerevisiae strains exhibiting atypical and unique 5.8S-ITS restriction patterns. Food Microbiol 2014; 39:7-12. [DOI: 10.1016/j.fm.2013.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
|
19
|
Padilla B, Manzanares P, Belloch C. Yeast species and genetic heterogeneity within Debaryomyces hansenii along the ripening process of traditional ewes' and goats' cheeses. Food Microbiol 2014; 38:160-6. [DOI: 10.1016/j.fm.2013.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/27/2013] [Accepted: 09/08/2013] [Indexed: 11/29/2022]
|
20
|
Piotrowska M, Roszak J, Stańczyk M, Palus J, Dziubałtowska E, Stępnik M. Effects of lactic acid bacteria and Saccharomyces cerevisiae on growth of Aspergillus westerdijkiae and ochratoxin A production and toxicity. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to examine three strains of the yeast Saccharomyces cerevisiae and three strains of lactic acid bacteria belonging to the genus Lactobacillus for their antifungal activity against the ochratoxin A producer Aspergillus westerdijkiae, as well as for their effect on OTA genotoxicity and cytotoxicity. When inoculated simultaneously, fungal growth was completely inhibited by S. cerevisiae. In the case of lactic acid bacteria, growth inhibition also occurred but to a less extent. A significant decrease in toxin production in co-culture with the yeast strains and LAB was observed. The supernatant of 24-h-old cultures of yeast strains in medium with OTA did not influence significantly the viability of porcine kidney epithelial LLC-PK1 cell line, whereas the supernatant from the LAB increased the viability compared to the control. Regarding genotoxicity, a decreased fragmentation of DNA was observed in the presence of the supernatant from wine and brewing yeasts, and Lactobacillus brevis strains. Based on the results obtained, it might be concluded that S. cerevisiae yeasts and lactic acid bacteria could be used to minimise the negative effect of OTA on humans and animals.
Collapse
Affiliation(s)
- M. Piotrowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - J. Roszak
- Nofer Institute of Occupational Medicine, sw. Teresy 8, 91-348 Lodz, Poland
| | - M. Stańczyk
- Nofer Institute of Occupational Medicine, sw. Teresy 8, 91-348 Lodz, Poland
| | - J. Palus
- Nofer Institute of Occupational Medicine, sw. Teresy 8, 91-348 Lodz, Poland
| | - E. Dziubałtowska
- Nofer Institute of Occupational Medicine, sw. Teresy 8, 91-348 Lodz, Poland
| | - M. Stępnik
- Nofer Institute of Occupational Medicine, sw. Teresy 8, 91-348 Lodz, Poland
| |
Collapse
|
21
|
Walia S, Keshani, Sood S, Kanwar S. Exhibition of DNA-bioprotective activity by microflora of traditional fermented foods of North-Western Himalayas. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Golić N, Cadež N, Terzić-Vidojević A, Suranská H, Beganović J, Lozo J, Kos B, Sušković J, Raspor P, Topisirović L. Evaluation of lactic acid bacteria and yeast diversity in traditional white pickled and fresh soft cheeses from the mountain regions of Serbia and lowland regions of Croatia. Int J Food Microbiol 2013; 166:294-300. [PMID: 23973841 DOI: 10.1016/j.ijfoodmicro.2013.05.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/21/2013] [Accepted: 05/31/2013] [Indexed: 12/30/2022]
Abstract
The goal of this study was the characterisation of indigenous lactic acid bacteria (LAB) and yeasts isolated from nine white pickled (BG) and nine fresh soft (ZG) artisanal cheeses collected in Serbia and Croatia. While LAB were present in all of the cheeses collected, yeasts were found in all BG cheeses but only in three ZG cheese samples. High LAB and yeast species diversity was determined (average H'(L)=0.4 and H'(Y)=0.8, respectively). The predominant LAB species in white pickled (BG) cheeses were Lactococcus lactis, Lactobacillus plantarum, and Leuconostoc mesenteroides, while in fresh soft (ZG) cheeses the most dominant LAB species were L. lactis, Enterococcus faecalis, and Leuconostoc pseudomesenteroides. Among the 20 yeast species found, Debaryomyces hansenii, Candida zeylanoides, and Torulaspora delbrueckii were found to be predominant in BG cheeses, while Yarrowia lipolytica was predominant in ZG cheeses. The characterisation of metabolic and technological potentials revealed that 53.4% of LAB isolates produced antimicrobial compounds, 44.3% of LAB strains showed proteolytic activity, while most of the yeast species possessed either lipolytic or proteolytic activity. In conclusion, the results obtained in this study showed that the composition of LAB and yeast populations in white pickled and fresh soft cheeses is region specific. The knowledge gained in this study could eventually be used to select region specific LAB and yeast strains for the production of white pickled and fresh soft artisanal cheeses with geographically specific origins under controlled conditions.
Collapse
Affiliation(s)
- Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pedersen LL, Owusu-Kwarteng J, Thorsen L, Jespersen L. Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. Int J Food Microbiol 2012; 159:144-51. [PMID: 23072700 DOI: 10.1016/j.ijfoodmicro.2012.08.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/10/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
Abstract
Fura is a spontaneously fermented pearl millet product consumed in West Africa. The yeast species involved in the fermentation were identified by pheno- and genotypic methods to be Candida krusei, Kluyveromyces marxianus, Candida tropicalis, Candida rugosa, Candida fabianii, Candida norvegensis and Trichosporon asahii. C. krusei and K. marxianus were found to be the dominant species. Survival in pH 2.5 or in the presence of bile salts (0.3% (w/v) oxgall) and growth at 37°C were independently determined as indicators of the survival potential of the isolates during passage through the human gastrointestinal tract. Selected yeast species isolates were assessed for their probiotic potential. All of the examined yeast isolates survived and grew at human gastrointestinal conditions in pH 2.5, 0.3% (w/v) oxgall at 37°C. The effect on the transepithelial electrical resistance (TEER) across polarized monolayers of intestinal epithelial cells of human (Caco-2) and porcine (IPEC-J2) origin, were determined. The Caco-2 cells and IPEC-J2 cells displayed clearly different relative TEER results. The strains of C. krusei, K. marxianus, C. rugosa and T. asahii were able to increase the relative TEER of Caco-2 monolayers after 48h. In comparison, the relative TEER of IPEC-J2 monolayers decreased when exposed to the same yeasts, even though T. asahii did not differ significantly from Saccharomyces cerevisiae var. boulardii which is used as a human probiotic. C. tropicalis resulted in the largest relative TEER decrease for both the human and the porcine cell model assays. Hyphal growth was observed for C. albicans and C. tropicalis after 48h of incubation with polarized Caco-2 monolayers, whereas this was not the case for the remaining yeast species. In the present study new yeast strains with potential probiotic properties have been isolated to be used potentially as starter cultures for fura production.
Collapse
Affiliation(s)
- Line Lindegaard Pedersen
- Department of Food Science, Food Microbiology, Faculty of Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|