1
|
Pribić M, Mejić L, Despotović S, Špirović-Trifunović B, Bulut S, Pejin J. Is malting an absolute must? Native triticale as a stand-in for barley malt in the brewing process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39422103 DOI: 10.1002/jsfa.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND To remain competitive, brewers must innovate by incorporating novel elements beyond traditional styles. Thus, exploring triticale as a modern substitute for barley malt is promising, especially given its higher amylolytic activity compared to barley. This study aimed to assess the impact of substituting up to 50% of barley malt with unmalted triticale on green beer quality, encompassing multiple stages from wort production to primary fermentation at a laboratory scale. RESULTS Triticale-based worts (ratios 10-50%) had lower extract content than 100% barley malt. However, incorporating 10% of triticale led to only a 1% decrease in extract content compared to the all-malt wort. Shearzyme® 500L, an endo-1,4-β-xylanase with β-glucanase side activity, effectively addressed wort viscosity by breaking down arabinoxylans and β-glucans in triticale cell walls. All triticale-based beers exhibited lower ethanol content compared to reference beer, as is typical when using adjuncts. In green beer, a 50% triticale ratio lowered ethanol content by 16% (without enzyme) and 19% (with enzyme) compared to 100% malt beer. However, green beer with 10% triticale had satisfactory levels of total polyphenol and vicinal diketone content, among other parameters. CONCLUSION Commercial enzyme application significantly enhanced proteolytic activity within the grain. Fermentations of enzyme-treated worts showed higher amino acid levels, further confirming the increased proteolytic activity facilitated by the chosen enzyme. Overall, this study provides a comprehensive analysis of the brewing process using native triticale. Building on this foundation, future studies will focus on optimizing mashing conditions to enhance the fermentation profile of the wort. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Milana Pribić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Luka Mejić
- Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Saša Despotović
- Department of Technology of Preservation and Fermentation, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Bojana Špirović-Trifunović
- Department of Technology of Preservation and Fermentation, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Sandra Bulut
- Department of Food Preservation Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Pejin
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Wu C, Wang C, Guo J, Jike X, Yang H, Xu H, Lei H. Plant-derived antioxidant dipeptides provide lager yeast with osmotic stress tolerance for very high gravity fermentation. Food Microbiol 2024; 117:104396. [PMID: 37919005 DOI: 10.1016/j.fm.2023.104396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Osmotic stress in the yeast limits productivity in industrial beer production under very high gravity brewing. This study focused on assessing the protective impacts of eleven plant-derived antioxidant dipeptides (PADs) on the osmotic stress tolerance of lager yeast. The results showed that PADs provided yeast with stress tolerance under osmotic stress. PADs supplementation enhanced cell membrane integrity and reduced oxidative damage. PADs upregulated the expression of SOD2, PEX11 and CTT1 genes under osmotic stress. Moreover, the volatile compounds contents and antioxidant activities of beers were improved by PADs, suggesting favorable quality characteristics. Especially, Phe-Cys and Leu-His could increase the DPPH radical scavenging activity of beer by 41.92% and 18.78% respectively, compared with control. Therefore, PADs are industrially scalable enhancers to improve the ability of yeast to resist osmotic stress and beer quality during very high gravity brewing.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Chengxin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Jiayu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Jiang L, Song J, Qi M, Cao Y, Li Y, Xu M, Li L, Zhang D, Wang C, Li H. Carbon and nitrogen sources consumption by ale and lager yeast strains: a comparative study during fermentation. Appl Microbiol Biotechnol 2023; 107:6937-6947. [PMID: 37704770 DOI: 10.1007/s00253-023-12778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
The rapid and efficient consumption of carbon and nitrogen sources by brewer's yeast is critical for the fermentation process in the brewing industry. The comparison of the growth characterizations of typical ale and lager yeast, as well as their consumption preference to carbon and nitrogen sources were investigated in this study. Results showed that the ale strain grew faster and had a more extended stationary phase than the lager strain. However, the lager strain was more tolerant to the stressful environment in the later stage of fermentation. Meanwhile, the ale and lager yeast strains possessed varying preferences for metabolizing the specific fermentable sugar or free amino acid involved in the wort medium. The lager strain had a strong capacity to synthesize the extracellular invertase required for hydrolyzing sucrose as well as a strong capability to metabolize glucose and fructose. Furthermore, the lager strain had an advantage in consuming Lys, Arg, Val, and Phe, whereas the ale strain had a higher assimilation rate in consuming Tyr. These findings provide valuable insights into selecting the appropriate brewer's yeast strain based on the wort components for the industrial fermentation process. KEY POINTS: • The lager strain is more tolerant to the stressful environment. • The lager strain has the great capability to synthesize the extracellular invertase. • The assimilation efficiency of free amino acid varies between ale and lager.
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yuechao Cao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yueming Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Mei Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China.
| |
Collapse
|
4
|
Lin CL, Petersen MA, Gottlieb A. Increasing Higher Alcohols and Acetates in Low-Alcohol Beer by Proteases. Molecules 2023; 28:molecules28114419. [PMID: 37298894 DOI: 10.3390/molecules28114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The market of non-alcoholic and low-alcohol beer has grown continuously thanks to the advocacy for healthy and responsible drinking. Non-alcoholic and low-alcohol products usually possess less higher alcohols and acetates and more aldehyde off-flavors due to the manufacturing processes. The employment of non-conventional yeasts partially mitigates this problem. In this study, we used proteases to optimize the wort amino acid profile for better aroma production during yeast fermentation. The design of experiments was applied to increase the leucine molar fraction, aiming to boost 3-methylbutan-1-ol and 3-methylbutyl acetate (banana-like aromas). This led to an increase from 7% to 11% leucine in wort after protease treatment. The aroma output in the subsequent fermentation, however, was yeast-dependent. An 87% increase of 3-methylbutan-1-ol and a 64% increase of 3-methylbutyl acetate were observed when Saccharomycodes ludwigii was used. When Pichia kluyveri was employed, higher alcohols and esters from valine and isoleucine were increased: 58% more of 2-methylpropyl acetate, 67% more of 2-methylbutan-1-ol, and 24% more of 2-methylbutyl acetate were observed. Conversely, 3-methylbutan-1-ol decreased by 58% and 3-methylbutyl acetate largely remained the same. Apart from these, the amounts of aldehyde intermediates were increased to a varying extent. The impact of such increases in aromas and off-flavors on the perception of low-alcohol beer remains to be evaluated by sensory analysis in future studies.
Collapse
Affiliation(s)
- Claire Lin Lin
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Andrea Gottlieb
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Jiang L, Song J, Qi M, Suo W, Deng Y, Liu Y, Li L, Zhang D, Wang C, Li H. Modification mechanism of protein in rice adjuncts upon extrusion and its effects on nitrogen conversion during mashing. Food Chem 2023; 407:135150. [PMID: 36493491 DOI: 10.1016/j.foodchem.2022.135150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The traditional production of wort with adjunct-introduced was achieved by double mashing procedure, which hindered the utilization of proteins in adjunct and led to a deficiency of nitrogen in wort. In this study, the modification mechanism of the extrusion pretreatment on the structure characterization of rice flour protein was investigated. The decoction mashing procedure was performed to enhance the nitrogen conversion of the extruded rice adjunct. Decreased solubility along with disrupted secondary and tertiary structures of rice protein were observed after extrusion. As a result, the total nitrogen, free amino nitrogen, and free amino acids content of wort with extruded rice adjunct-introduced were improved by 23.28 %, 34.67 %, and 7.33 %, respectively, which could be verified by the electrophoretic patterns of the wort protein. The application of extrusion as a pretreatment of adjuncts can promote the protein availability of adjuncts in the decoction mashing stage.
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yao Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
6
|
Rani H, Bhardwaj RD, Kaur S. Understanding the influence of genotype and temperature on proteolytic activity in distinct barley genotypes. J Food Sci 2023; 88:1718-1730. [PMID: 36855307 DOI: 10.1111/1750-3841.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
This study aimed at investigating the effects of genotype and temperatures on the proteolytic activity in green malt of 48 barley genotypes, including 19 mutants, 15 hulled, 4 hulless, and 10 wild using enzyme assays based on casein, as substrate. During malting, insoluble barley protein must be hydrolyzed into soluble peptides and free amino acids to supply the brewing yeast with sufficient nutrients to grow rapidly and metabolize glucose and other sugars into alcohol through fermentation. However, the relatively hot temperatures employed during kilning usually denature the proteolytic enzymes due to their thermolabile nature. Even though the hydrolytic activity of most of the proteases is destroyed during the kilning process, the malt includes a small fraction of thermostable proteases that can further degrade protein in the subsequent mashing process. Considering the higher temperature range employed in industrial kilning and mashing, three temperatures (37, 50, and 70°C) were selected to identify the genotypes possessing high activity at the higher range of temperatures as well as thermostable variant of the enzyme. The proteolytic activity in all the genotypes declined after 50°C depicting its optimum temperature. Overall proteolytic activity was observed to be positively correlated with the amino acids and negatively correlated with protein content. Three mutant (BL2086, BL2091, and BL2079) and one wild (WS 237) genotypes possessing proteolytic activity in a higher range at all the studied temperatures have the potential to be exploited in the breeding programs for incorporating trait of thermostable proteolytic activity into low malting efficiency cultivars. PRACTICAL APPLICATION: The optimal hydrolytic activities of carbohydrases and proteases during mashing are essential for producing high-quality wort from malted barley to ensure that hydrolyzed molecules are available to brewers' yeast to support fermentative metabolism. In this study, several barley cultivars were grown under identical environmental conditions but assayed at different temperatures. As result, four genotypes had been obtained that possessed optimal proteolytic activities at a higher temperature range and can be of great interest to breeders and maltsters for altering wort amino acid profiles and better exposure of starch to mashing enzymes, thereby increasing the fermentable sugar yield from the malt.
Collapse
Affiliation(s)
- Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Simarjit Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
7
|
Yang N, Wu C, Yang H, Guo Z, Jian H, Jiang T, Lei H. Bioactive compounds, antioxidant activities and flavor volatiles of lager beer produced by supplementing six jujube cultivars as adjuncts. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Pre-treatment of coconut kernels by proteases to modulate the flavour of coconut oil. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Lin CL, Petersen MA, Mauch A, Gottlieb A. Towards lager beer aroma improvement via selective amino acid release by proteases during mashing. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Claire L. Lin
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
- Department of Food Science University of Copenhagen Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Mikael A. Petersen
- Department of Food Science University of Copenhagen Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Alexander Mauch
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
| | - Andrea Gottlieb
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
| |
Collapse
|
10
|
Baigts-Allende DK, Pérez-Alva A, Ramírez-Rodrigues MA, Palacios A, Ramírez-Rodrigues MM. A comparative study of polyphenolic and amino acid profiles of commercial fruit beers. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Xu X, Niu C, Liu C, Wang J, Zheng F, Li Q. Screening lager yeast with higher ethyl-acetate production by adaptive laboratory evolution in high concentration of acetic acid. World J Microbiol Biotechnol 2021; 37:125. [PMID: 34173085 DOI: 10.1007/s11274-021-03082-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Ethyl-acetate is important for the flavor and aroma of the alcoholic beverages, therefore, there have been extensive efforts toward increasing its production by engineering yeast strains. In this study, we reported a new approach to breed non-genetic modified producing yeast strain with higher ethyl-acetate production for beer brewing. First, we demonstrated the positive effect of higher acetic acid concentration on inducing the expression of acetyl-CoA synthetase (ACS). Then, we applied adaptive laboratory evolution method to evolve strain with higher expression level of ACS. As a result, we obtained several evolved strains with increased ACS expression level as well as ethyl-acetate production. In 3 L scale fermentation, the optimal strain EA60 synthesized more ethyl-acetate than M14 at the same time point. At the end of fermentation, the ethyl-acetate production in EA60 was 21.4% higher than M14, while the other flavor components except for acetic acid were changed in a moderate degree, indicating this strain had a bright prospect in industrial application. Moreover, this study also indicated that ACS1 played a more important role in increasing the acetic acid tolerance of yeast, while ACS2 contributed to the synthesis of cytosol acetyl-CoA, thereby facilitating the production of ethyl-acetate during fermentation.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
12
|
Yang G, Wang R, Gao J, Niu D, Li J, Wen Q, Zeng X. The effect of moderate pulsed electric fields on autolysis of
Saccharomyces cerevisiae
and the amino acid content in autolysates. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Geng Yang
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Rui Wang
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Jing‐Rong Gao
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Debao Niu
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Jian Li
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Qing‐Hui Wen
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Xin‐An Zeng
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| |
Collapse
|
13
|
Puligundla P, Smogrovicova D, Mok C, Obulam VSR. Recent developments in high gravity beer-brewing. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
[Synthesis and regulation of flavor compounds derived from brewing yeast: fusel alcohols]. Rev Argent Microbiol 2019; 51:386-397. [PMID: 30712956 DOI: 10.1016/j.ram.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
Among the main beer components, fusel alcohols are important because of their influence on the flavor of the final product, and therefore on its quality. During the production process, these compounds are generated by yeasts through the metabolism of amino acids. The yeasts, fermentation conditions and wort composition affect fusel alcohols profiles and their concentrations. In this review, we provide detailed information about the enzymes involved in fusel alcohols formation and their regulation. Moreover, we describe how the type of yeast used, the fermentation temperature and the composition of carbohydrates and nitrogen source in wort, among other fermentation parameters, affect the biosynthesis of these alcohols. Knowing how fusel alcohol levels vary during beer production provides a relevant tool for brewers to achieve the desired characteristics in the final product and at the same time highlights the aspects still unknown to science.
Collapse
|
15
|
Volatile Compound Profiling in Czech and Spanish Lager Beers in Relation to Used Production Technology. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01583-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the brewing process. In pilot fermentations, the time of cropping (primary fermentation, lagering) of the spent yeast and the original gravity (12 ˚P, 16 ˚P, 20 ˚P) of the fermentation medium was varied, and four alternative non-Saccharomyces yeast strains were compared with two commercial Saccharomyces yeast strains. In addition, spent yeast was contaminated with the beer spoiler Lactobacillus brevis. The general nutrient composition (total protein, fat, ash) was investigated as well as the proteinogenic amino acid spectrum, the various folate vitamers (5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, H4folate, PteGlu) and the biological activity (reduction, antioxidative potential) of a mechanically (ultrasonic sonotrode) and an autolytically produced yeast extract. All the investigated ingredients from the yeast extract were influenced by the composition of the spent yeast from the brewing process. The biodiversity of the spent yeast from the brewing process therefore directly affects the content of physiologically valuable ingredients of a yeast extract and should be taken into consideration in industrial manufacturing processes.
Collapse
|
17
|
Yang H, Zong X, Xu Y, Zeng Y, Zhao H. Wheat gluten hydrolysates and their fractions improve multiple stress tolerance and ethanol fermentation performances of yeast during very high-gravity fermentation. INDUSTRIAL CROPS AND PRODUCTS 2019; 128:282-289. [DOI: 10.1016/j.indcrop.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
18
|
Yeast extract production using spent yeast from beer manufacture: influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03237-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Xu Y, Sun M, Zong X, Yang H, Zhao H. Potential yeast growth and fermentation promoting activity of wheat gluten hydrolysates and soy protein hydrolysates during high-gravity fermentation. INDUSTRIAL CROPS AND PRODUCTS 2019; 127:179-184. [DOI: 10.1016/j.indcrop.2018.10.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
20
|
Yang H, Zong X, Xu Y, Zeng Y, Zhao H. Improvement of Multiple-Stress Tolerance and Ethanol Production in Yeast during Very-High-Gravity Fermentation by Supplementation of Wheat-Gluten Hydrolysates and Their Ultrafiltration Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10233-10241. [PMID: 30203970 DOI: 10.1021/acs.jafc.8b04196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of wheat-gluten hydrolysates (WGH) and their ultrafiltration fractions on multiple-stress tolerance and ethanol production in yeast during very-high-gravity (VHG) fermentation were examined. The results showed that WGH and WHG-ultrafiltration-fraction supplementations could significantly enhance the growth and viability of yeast and further improve the tolerance of yeast to osmotic stress and ethanol stress. The addition of MW < 1 kDa fractions led to 51.08 and 21.70% enhancements in cell-membrane integrity, 30.74 and 10.43% decreases in intracellular ROS accumulation, and 34.18 and 26.16% increases in mitochondrial membrane potential (ΔΨm) in yeast under osmotic stress and ethanol stress, respectively. Moreover, WGH and WHG-ultrafiltration-fraction supplementations also improved the growth and ethanol production of yeast during VHG fermentation, and supplementation with the <1 kDa fraction resulted in a maximum biomass of 16.47 g/L dry cell and an ethanol content of 18.50% (v/v) after VHG fermentation.
Collapse
Affiliation(s)
- Huirong Yang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Xuyan Zong
- School of Biotechnology , Sichuan University of Science and Engineering , Zigong 643000 , PR China
| | - Yingchao Xu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Yingjie Zeng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Haifeng Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| |
Collapse
|
21
|
Fanari M, Forteschi M, Sanna M, Zinellu M, Porcu MC, Pretti L. Comparison of enzymatic and precipitation treatments for gluten-free craft beers production. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Jacob FF, Hutzler M, Methner FJ. Comparison of various industrially applicable disruption methods to produce yeast extract using spent yeast from top-fermenting beer production: influence on amino acid and protein content. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3143-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Amino Acid Supplementations Enhance the Stress Resistance and Fermentation Performance of Lager Yeast During High Gravity Fermentation. Appl Biochem Biotechnol 2018; 187:540-555. [DOI: 10.1007/s12010-018-2840-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022]
|
24
|
Loviso CL, Libkind D. [Synthesis and regulation of flavor compounds derived from brewing yeast: Esters]. Rev Argent Microbiol 2018; 50:436-446. [PMID: 29627148 DOI: 10.1016/j.ram.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023] Open
Abstract
During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product.
Collapse
Affiliation(s)
- Claudia L Loviso
- Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Argentina
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Bariloche, Argentina.
| |
Collapse
|
25
|
Lund MN, Petersen MA, Andersen ML, Lunde C. Effect of Protease Treatment during Mashing on Protein-Derived Thiol Content and Flavor Stability of Beer during Storage. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2015-0602-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marianne N. Lund
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsvœrd, Denmark
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
26
|
Yang H, Zong X, Cui C, Mu L, Zhao H. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Biotechnol Appl Biochem 2018; 65:630-638. [PMID: 29271090 DOI: 10.1002/bab.1634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Huirong Yang
- School of Food Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
| | - Xuyan Zong
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province; Sichuan University of Science and Engineering; Zigong People's Republic of China
| | - Chun Cui
- School of Food Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
| | - Lixia Mu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods; Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing; Guangzhou People's Republic of China
| | - Haifeng Zhao
- School of Food Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
| |
Collapse
|
27
|
Corrêa de Carvalho R, Rocha dos Santos Mathias T, Duarte Pereira Netto A, Ferreira de Carvalho Marques F. Direct determination of amino acids in brewery worts produced by different processes by capillary zone electrophoresis. Electrophoresis 2018; 39:1613-1620. [DOI: 10.1002/elps.201700327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Renata Corrêa de Carvalho
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense; Niterói RJ Brazil
- Laboratório de Química Analítica Fundamental e Aplicada, Departamento de Química Analítica; Niterói RJ Brazil
| | - Thiago Rocha dos Santos Mathias
- Ciência e Tecnologia do Rio de Janeiro, Laboratórios de Tecnologia das Fermentações e Físico-química de Alimentos, Rio de Janeiro; Instituto Federal de Educação; RJ Brazil
| | - Annibal Duarte Pereira Netto
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense; Niterói RJ Brazil
- Laboratório de Química Analítica Fundamental e Aplicada, Departamento de Química Analítica; Niterói RJ Brazil
| | - Flávia Ferreira de Carvalho Marques
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense; Niterói RJ Brazil
- Laboratório de Química Analítica Fundamental e Aplicada, Departamento de Química Analítica; Niterói RJ Brazil
| |
Collapse
|
28
|
Zhou Y, Yang H, Zong X, Cui C, Mu L, Zhao H. Effects of wheat gluten hydrolysates fractionated by different methods on the growth and fermentation performances of brewer's yeast under high gravity fermentation. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yongjing Zhou
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Huirong Yang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xuyan Zong
- Liquor Making Biological Technology and Application of key laboratory of Sichuan Province; Sichuan University of Science and Engineering; Zigong 643000 China
| | - Chun Cui
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lixia Mu
- Sericultural& Agri-Food Research Institute; Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods; Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing; Guangzhou 510610 China
| | - Haifeng Zhao
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
29
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
30
|
Theron LW, Bely M, Divol B. Characterisation of the enzymatic properties of MpAPr1, an aspartic protease secreted by the wine yeast Metschnikowia pulcherrima. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3584-3593. [PMID: 28098337 DOI: 10.1002/jsfa.8217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/01/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND MpAPr1, encoding an acid protease from the wine yeast Metschnikowia pulcherrima IWBT Y1123, was previously isolated and shown to display potential activity against casein and grape proteins. However, its characterisation remained partial. RESULTS MpAPr1 was cloned into the pGAPZαA vector and transformed into Komagataella pastoris X33 for heterologous expression. After verification of activity, the enzyme properties were characterised. Protease activity within the concentrated supernatant was retained over a pH range of 3.0 to 5.0 and between 10 °C and 50 °C. Optimal conditions for protease activity were found at 40 °C and pH 4.5. Activity was mostly unaffected by the presence of metal ions with the exception of Cu2+ and Ni2+ . Furthermore, proteolytic activity was retained in the presence of sugar and ethanol. pH and temperature conditions for MpAPr1 expression in K. pastoris were optimised. Purification was achieved by means of cation exchange chromatography and kinetic parameters (Km and Vmax ) were determined. MpAPr1 activity against grape proteins was confirmed, but the extent of the degradation was dependent on the nature of these proteins and the environmental conditions. CONCLUSION Overall, the results suggest that MpAPr1 could be applied in food biotechnology processes such as winemaking. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Louwrens Wiid Theron
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, South Africa
- Université de Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, Villenave d'Ornon, France
| | - Marina Bely
- Université de Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, Villenave d'Ornon, France
| | - Benoit Divol
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, South Africa
| |
Collapse
|
31
|
Fermentation performance of lager yeast in high gravity beer fermentations with different sugar supplementations. J Biosci Bioeng 2016; 122:583-588. [PMID: 27329414 DOI: 10.1016/j.jbiosc.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 02/02/2023]
|
32
|
Bertrand E, Vandenberghe LPS, Soccol CR, Sigoillot JC, Faulds C. First Generation Bioethanol. GREEN FUELS TECHNOLOGY 2016. [DOI: 10.1007/978-3-319-30205-8_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Pires EJ, Teixeira JA, Brányik T, Brandão T, Vicente AA. Continuous beer fermentation - diacetyl as a villain. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eduardo J. Pires
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - José A. Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Tomás Brányik
- Department of Biotechnology; Institute of Chemical Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Tiago Brandão
- UNICER − Bebidas de Portugal SGPS; SA, Leça do Balio, 4466-955 S. Mamede de Infesta Portugal
| | - António A. Vicente
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
34
|
Zhang X, Rao Z, Li J, Zhou J, Yang T, Xu M, Bao T, Zhao X. Improving the acidic stability of Staphylococcus aureus α-acetolactate decarboxylase in Bacillus subtilis by changing basic residues to acidic residues. Amino Acids 2014; 47:707-17. [PMID: 25543264 DOI: 10.1007/s00726-014-1898-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The α-acetolactate decarboxylase (ALDC) can reduce diacetyl fleetly to promote mature beer. A safe strain Bacillus subtilis WB600 for high-yield production of ALDC was constructed with the ALDC gene saald from Staphylococcus aureus L3-15. SDS-PAGE analysis revealed that S. aureus α-acetolactate decarboxylase (SaALDC) was successfully expressed in recombinant B. siutilis strain. The enzyme SaALDC was purified using Ni-affinity chromatography and showed a maximum activity at 45 °C and pH 6.0. The values of K m and V max were 17.7 μM and 2.06 mM min(-1), respectively. Due to the unstable property of SaALDC at low pH conditions that needed in brewing process, site-directed mutagenesis was proposed for improving the acidic stability of SaALDC. Homology comparative modeling analysis showed that the mutation (K52D) gave rise to the negative-electrostatic potential on the surface of protein while the numbers of hydrogen bonds between the mutation site (N43D) and the around residues increased. Taken together the effect of mutation N43D-K52D, recombinant SaALDCN43D-K52D showed dramatically improved acidic stability with prolonged half-life of 3.5 h (compared to the WT of 1.5 h) at pH 4.0. In a 5-L fermenter, the recombinant B. subtilis strain that could over-express SaALDCN43D-K52D exhibited a high yield of 135.8 U mL(-1) of SaALDC activity, about 320 times higher comparing to 0.42 U mL(-1) of S. aureus L3-15. This work proposed a strategy for improving the acidic stability of SaALDC in the B. subtilis host.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pires EJ, Teixeira JA, Brányik T, Côrte-Real M, Brandão T, Vicente AA. High gravity primary continuous beer fermentation using flocculent yeast biomass. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eduardo J. Pires
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - José A. Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Tomás Brányik
- Department of Biotechnology; Institute of Chemical Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology; Department of Biology, University of Minho
| | - Tiago Brandão
- UNICER − Bebidas de Portugal SGPS, SA; Leça do Balio 4466-955 S Mamede de Infesta Portugal
| | - António A. Vicente
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
36
|
Lund MN, Lametsch R, Sørensen MB. Increased protein-thiol solubilization in sweet wort by addition of proteases during mashing. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marianne N. Lund
- Novozymes A/S; Krogshøjvej 36 DK-2880 Bagsvaerd Denmark
- Department of Food Science; University of Copenhagen; Rolighedsvej 30 DK-1958 Frederiksberg C Denmark
| | - René Lametsch
- Department of Food Science; University of Copenhagen; Rolighedsvej 30 DK-1958 Frederiksberg C Denmark
| | | |
Collapse
|
37
|
He Y, Dong J, Yin H, Zhao Y, Chen R, Wan X, Chen P, Hou X, Liu J, Chen L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer - a review. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.145] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Yuxiang Zhao
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Rong Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Xiujuan Wan
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Peng Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Xiaoping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Jia Liu
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Lu Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| |
Collapse
|
38
|
Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol 2014; 19:162-70. [DOI: 10.1016/j.cbpa.2014.02.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
|
39
|
Pires EJ, Teixeira JA, Brányik T, Vicente AA. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 2014; 98:1937-49. [PMID: 24384752 DOI: 10.1007/s00253-013-5470-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.
Collapse
Affiliation(s)
- Eduardo J Pires
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal,
| | | | | | | |
Collapse
|
40
|
Krogerus K, Gibson BR. 125thAnniversary Review: Diacetyl and its control during brewery fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Brian R. Gibson
- VTT Technical Research Centre of Finland; Tietotie 2, PO Box 1000; FI-02044; VTT, Espoo; Finland
| |
Collapse
|
41
|
Lei H, Li H, Mo F, Zheng L, Zhao H, Zhao M. Effects of Lys and His supplementations on the regulation of nitrogen metabolism in lager yeast. Appl Microbiol Biotechnol 2013; 97:8913-21. [PMID: 23917636 DOI: 10.1007/s00253-013-5137-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/13/2013] [Accepted: 07/17/2013] [Indexed: 12/01/2022]
Abstract
Significant positive correlations between wort fermentability and the assimilation of Lys and His under normal-gravity and high-gravity conditions indicated that Lys and His were the key amino acids for lager yeast during beer brewing. In order to obtain insight into the roles of Lys and His in nitrogen regulation, the influences of Lys, His and their mixture supplementations on the fermentation performance and nitrogen metabolism in lager yeast during high-gravity fermentation were further investigated in the present study. Results showed that Lys and His supplementations improved yeast growth, wort fermentability, ethanol yield and the formation of flavor volatiles. Lys supplementation up-regulated Ssy1p-Ptr3p-Ssy5p (SPS)-regulated genes (LYP1, HIP1, BAP2 and AGP1) dramatically compared to nitrogen catabolite repression (NCR)-sensitive genes (GAP1 and MEP2), whereas His supplementation activated SPS-regulated genes slightly in exponential phase, and repressed NCR-sensitive genes significantly throughout the fermentation. Lys and His supplementations increased the consumption of Glu and Phe, and decreased the consumption of Ser, Trp and Arg. Moreover, Lys and His supplementations exhibited similar effects on the fermentation performance, and were more effective than their mixture supplementation when the same dose was kept. These results demonstrate that both Lys and His are important amino acids for yeast nitrogen metabolism and fermentation performance.
Collapse
Affiliation(s)
- Hongjie Lei
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China
| | | | | | | | | | | |
Collapse
|
42
|
Proteases supplementation to high gravity worts enhances fermentation performance of brewer's yeast. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Influence of valine and other amino acids on total diacetyl and 2,3-pentanedione levels during fermentation of brewer's wort. Appl Microbiol Biotechnol 2013; 97:6919-30. [PMID: 23677441 PMCID: PMC3708283 DOI: 10.1007/s00253-013-4955-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022]
Abstract
Undesirable butter-tasting vicinal diketones are produced as by-products of valine and isoleucine biosynthesis during wort fermentation. One promising method of decreasing diacetyl production is through control of wort valine content since valine is involved in feedback inhibition of enzymes controlling the formation of diacetyl precursors. Here, the influence of valine supplementation, wort amino acid profile and free amino nitrogen content on diacetyl formation during wort fermentation with the lager yeast Saccharomyces pastorianus was investigated. Valine supplementation (100 to 300 mg L−1) resulted in decreased maximum diacetyl concentrations (up to 37 % lower) and diacetyl concentrations at the end of fermentation (up to 33 % lower) in all trials. Composition of the amino acid spectrum of the wort also had an impact on diacetyl and 2,3-pentanedione production during fermentation. No direct correlation between the wort amino acid concentrations and diacetyl production was found, but rather a negative correlation between the uptake rate of valine (and also other branched-chain amino acids) and diacetyl production. Fermentation performance and yeast growth were unaffected by supplementations. Amino acid addition had a minor effect on higher alcohol and ester composition, suggesting that high levels of supplementation could affect the flavour profile of the beer. Modifying amino acid profile of wort, especially with respect to valine and the other branched-chain amino acids, may be an effective way of decreasing the amount of diacetyl formed during fermentation.
Collapse
|