1
|
Stringari A, Polo A, Rizzello CG, Arora K, Racinelli F, Ampollini M, Gobbetti M, Di Cagno R. Successful combination of lactic acid bacteria and yeast fermentation and enzymatic treatment to re-cycle industrial bread by-products for bread making. N Biotechnol 2024; 84:S1871-6784(24)00556-9. [PMID: 39551233 DOI: 10.1016/j.nbt.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Bread industry generates significant amounts of by-products which are discarded every day with relevant economic and environmental repercussions, despite they still contain high concentrations of potentially exploitable nutrients. Aiming to develop new sustainable solutions, this study explored the synergistic application of enzymatic treatment and sourdough fermentation to re-cycle industrial bread by-products for new sourdough bread making. Lactiplantibacillus plantarum SD69.B2 and Saccharomyces cerevisiae SD69.E3 were used as starters, while α-amylase, amyloglucosidase and protease were assessed for their ability to hydrolyze starch and proteins, providing more available carbon and nitrogen sources for the microorganisms. The bread waste-based sourdoughs made by combining protease and L. plantarum SD69.B2 alone or in combination with S. cerevisiae SD69.E3 were selected based on acidification and growth kinetics, and their biochemical, amino acid, and peptide profiles were also characterized demonstrating promising properties. Therefore, they were used, at different percentages, for bread making. Although a slightly acidic pH and a low leavening power, due to the denatured proteins and gelatinized starch in the bread by-products, the texture and sensory analyses of new breads revealed better textural attributes, smell, acidic taste, and overall acceptability compared to the control. The possible reasons behind such features were discussed. The overall results demonstrated that the approach proposed in this study was effective to valorize bread by-products, and it represents a starting point to develop strategies responding to the current perspective of circular economy in food industry.
Collapse
Affiliation(s)
- Alessandro Stringari
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy.
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | | | - Kashika Arora
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy.
| | | | | | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| |
Collapse
|
2
|
Voučko B, Čukelj Mustač N, Nanjara L, Drakula S, Grgić T, Ćurić D, Novotni D. Fermentation Performance of Carob Flour, Proso Millet Flour and Bran for Gluten-Free Flat-Bread. Foods 2024; 13:3458. [PMID: 39517242 PMCID: PMC11545008 DOI: 10.3390/foods13213458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Sourdough fermentation is rarely used for gluten-free flatbread (GFFB), a product that is challenging to produce, especially when using high-fiber ingredients that bring nutritional benefits but lead to physical deterioration. The aim of this study was therefore to evaluate the fermentation performance of carob flour (CSPF), proso millet flour (PMF), and proso millet bran (PMB) individually and in combination with Limosilactobacillus fermentum and Kluyveromyces marxianus (LF + KM) and to compare the performance of LF + KM with a commercial starter (LIVENDO® LV1). A mixture design (n = 13) was used to evaluate the fermentation performance of LF + KM (total titratable acidity (TTA); lactobacilli and yeast growth; acetic and lactic acid, fructose, glucose, and saccharose content) at 35 °C for 16 h. The comparison of LF + KM with LV1 fermentation was based on the acidity rate, fermentation quotient, TTA, and finally by determining the physical properties (texture, shape, color) of a rice-corn GFFB in which 10% of flour was supplemented with the sourdoughs. PMB promoted the growth of lactobacilli and the production of organic acids, especially in combination of CSPF and PMF. The optimum flour ratio was 2.4:1:1.2 (PMB:PMF:CSPF). LF + KM shortened the sourdough fermentation time by 2.5 times compared to LV1. The use of LF + KM sourdough reduced the hardness (32%) and chewiness (28%) of the GFFB, while the volume (35%) was increased compared to LV1 sourdough. This study shows the potential of using local alternative flours in sourdough fermentation for the production of GFFB.
Collapse
Affiliation(s)
- Bojana Voučko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nikolina Čukelj Mustač
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ljiljana Nanjara
- Department of Food Technology, University of Applied Sciences “Marko Marulić”, Kralja Petra Krešimira IV 30, 22300 Knin, Croatia
| | - Saša Drakula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tomislava Grgić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Duška Ćurić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Dubravka Novotni
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Tonini S, Tlais AZA, Filannino P, Di Cagno R, Gobbetti M. Apple Blossom Agricultural Residues as a Sustainable Source of Bioactive Peptides through Microbial Fermentation Bioprocessing. Antioxidants (Basel) 2024; 13:837. [PMID: 39061905 PMCID: PMC11273824 DOI: 10.3390/antiox13070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored the impact of starter-assisted fermentation on apple blossoms to enhance their potential as a source of antioxidant and antifungal molecules. Fructobacillus fructosus PL22 and Wickerhamomyces anomalus GY1 were chosen as starters owing to their origin and promising ability to modify plant secondary metabolites. An initial assessment through microbiological and physicochemical analyses showed superior outcomes for starter-assisted fermentation compared to the spontaneous process. Enzymatic hydrolysis of proteins, primarily controlled by starters, orchestrated the generation of new low-molecular-weight peptides. W. anomalus GY1 also induced modifications in the phenolic profile, generating a diverse array of bioactive metabolites. These metabolic changes, particularly the release of potentially bioactive peptides, were associated with significant antioxidant activity and marked antifungal efficacy against three common mold species. Our results shed light on the potential of microbial starters to valorize agricultural wastes and convert them into a valuable resource for industry.
Collapse
Affiliation(s)
- Stefano Tonini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| |
Collapse
|
4
|
Tonini S, Tlais AZA, Galli BD, Helal A, Tagliazucchi D, Filannino P, Zannini E, Gobbetti M, Di Cagno R. Lentils protein isolate as a fermenting substrate for the production of bioactive peptides by lactic acid bacteria and neglected yeast species. Microb Biotechnol 2024; 17:e14387. [PMID: 38263855 PMCID: PMC10832563 DOI: 10.1111/1751-7915.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
In the current trend where plant-based foods are preferred over animal-based foods, pulses represent an alternative source of protein but also of bioactive peptides (BPs). We investigated the pattern of protein hydrolysis during fermentation of red lentils protein isolate (RLPI) with various lactic acid bacteria and yeast strains. Hanseniaspora uvarum SY1 and Fructilactobacillus sanfranciscensis E10 were the most proteolytic microorganisms. H. uvarum SY1 led to the highest antiradical, angiotensin-converting enzyme-inhibitory and antifungal activities, as found in low molecular weight water soluble extracts (LMW-WSE). The 2039 peptide sequences identified by LMW-WSE were screened using BIOPEP UWM database, and 36 sequences matched with known BPs. Fermentation of RLPI by lactic acid bacteria and yeasts generated 12 peptides undetected in raw RLPI. Besides, H. uvarum SY1 led to the highest abundance (peak areas) of BPs, in particular with antioxidant and ACE-inhibitory activities. The amino acid sequences LVR and LVL, identified in the fermented RLPI, represent novel findings, as they were detected for the first time in substrates subjected to microbial fermentation. KVI, another BP highly characteristic of RLPI-SY1, was previously observed only in dried bonito. 44 novel potential BPs, worthy of further characterization, were correlated with antifungal activity.
Collapse
Affiliation(s)
- Stefano Tonini
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bolzano‐BozenBolzanoItaly
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bolzano‐BozenBolzanoItaly
| | - Bruno Domingues Galli
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bolzano‐BozenBolzanoItaly
| | - Ahmed Helal
- Department of Food and Dairy Sciences and TechnologyDamanhur UniversityDamanhourEgypt
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| | - Davide Tagliazucchi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| | - Pasquale Filannino
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBariItaly
| | - Emanuele Zannini
- Department of Environmental BiologyUniversity of Rome SapienzaRomaItaly
- School of Food and Nutritional ScienceUniversity College CorkCorkIreland
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bolzano‐BozenBolzanoItaly
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bolzano‐BozenBolzanoItaly
| |
Collapse
|
5
|
González-Alonso V, Pradal I, Wardhana YR, Cnockaert M, Wieme AD, Vandamme P, De Vuyst L. Microbial ecology and metabolite dynamics of backslopped triticale sourdough productions and the impact of scale. Int J Food Microbiol 2023; 408:110445. [PMID: 39491387 DOI: 10.1016/j.ijfoodmicro.2023.110445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
Triticale (X Triticosecale Wittmack) is a hybrid of wheat (Triticum aestivum L.) and rye (Secale cereale L.), combining the positive attributes of both cereals. However, it has not been exploited for sourdough production yet. Further, the effect of scale on sourdough production has not been investigated systematically up to now. The aims of the present study were to assess the microbial ecology and metabolomic output of eleven spontaneously fermented, backslopped sourdough productions made with triticale flour on a scale of 100, 200, 500, and 1000 g. The acidification profile [pH and total titratable acidity (TTA)], microbial diversity (culture-dependent and culture-independent), metabolite dynamics, and appropriate correlations were determined. After ten fermentation steps, different species of Lactobacillaceae were prevalent in the mature sourdoughs, in particular Latilactobacillus curvatus, Limosilactobacillus fermentum, and Pediococcus pentosaceus. The microbial diversity could be traced back to the grains and was also present in the milling fractions (flour, bran, and shorts). Furthermore, thanks to the use of Illumina-based high-throughput sequencing and an amplicon sequence variant (ASV) approach, the presence of undesirable bacterial groups (bacilli, clostridia, and enterobacteria) during the initial steps of the backslopping cycle was revealed, as well as a finetuned taxonomic diversity of the LAB genera involved. Small sourdough productions (100 and 200 g) selected for a lower species diversity and reached a stable consortium faster than large ones (500 and 1000 g). Although a comparable final pH of 3.6-4.0 was obtained, the TTA of small sourdoughs was lower than that of large ones. Regarding the metabolic output, the simultaneous production of mannitol and erythritol, beyond ethanol and glycerol, could be linked to sourdoughs in which Liml. fermentum was the sole LAB species present. Further, the use of the arginine deiminase pathway by P. pentosaceus and Liml. fermentum was obvious. An appropriate extraction method followed by liquid injection gas chromatography coupled to triple quadrupole tandem mass spectrometry allowed the quantification of interesting volatile organic compounds, such as ethyl lactate. These findings support the inclusion of triticale as a viable alternative to wheat or rye for the production of sourdoughs that can be integrated into bread-making production schemes.
Collapse
Affiliation(s)
- Víctor González-Alonso
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Yohanes Raditya Wardhana
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
6
|
Viola E, Buzzanca C, Tinebra I, Settanni L, Farina V, Gaglio R, Di Stefano V. A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods 2023; 12:3743. [PMID: 37893636 PMCID: PMC10606098 DOI: 10.3390/foods12203743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, a main goal of research has been to exploit waste from agribusiness industries as new sources of bioactive components, with a view to establishing a circular economy. Non-compliant avocado fruits, as well as avocado seeds and peels, are examples of promising raw materials due to their high nutritional yield and antioxidant profiles. This study aimed to recycle avocado food waste and by-products through dehydration to produce functional bread. For this purpose, dehydrated avocado was reduced to powder form, and bread was prepared with different percentages of the powder (5% and 10%) and compared with a control bread prepared with only semolina. The avocado pulp and by-products did not alter organoleptically after dehydration, and the milling did not affect the products' color and retained the avocado aroma. The firmness of the breads enriched with avocado powder increased due to the additional fat from the avocado, and alveolation decreased. The total phenolic content of the fortified breads was in the range of 2.408-2.656 mg GAE/g, and the antiradical activity was in the range of 35.75-38.235 mmol TEAC/100 g (p < 0.0001), depending on the percentage of fortification.
Collapse
Affiliation(s)
- Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| | - Ilenia Tinebra
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vittorio Farina
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
- Centre for Sustainability and Ecological Transition, University of Palermo, Piazza Marina, 90133 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| |
Collapse
|
7
|
Effect of thermal processing and fermentation with Chinese traditional starters on characteristics and allergenicity of wheat matrix. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Tlais AZA, Rantsiou K, Filannino P, Cocolin LS, Cavoski I, Gobbetti M, Di Cagno R. Ecological linkages between biotechnologically relevant autochthonous microorganisms and phenolic compounds in sugar apple fruit (Annona squamosa L.). Int J Food Microbiol 2023; 387:110057. [PMID: 36563533 DOI: 10.1016/j.ijfoodmicro.2022.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Our study investigated the potential of Annona squamosa (L.) fruit as a reservoir of yeasts and lactic acid bacteria having biotechnological implications, and phenolics capable of modifying the ecology of microbial consortia. Only a single species of lactic acid bacteria (Enterococcus faecalis) was identified, while Annona fruit seemed to be a preferred niche for yeasts (Saccharomyces cerevisiae, Hanseniaspora uvarum), which were differentially distributed in the fruit. In order to identify ecological implications for inherent phenolics, the antimicrobial potential of water- and methanol/water-soluble extracts from peel and pulp was studied. Pulp extracts did not show any antimicrobial activity against the microbial indicators, while some Gram-positive bacteria (Staphylococcus aureus, Staphylococcus saprophyticus, Listeria monocytogenes, Bacillus megaterium) were susceptible to peel extracts. Among lactic acid bacteria used as indicators, only Lactococcus lactis and Weissella cibaria were inhibited. The chemical profiling of methanol/water-soluble phenolics from Annona peel reported a full panel of 41 phenolics, mainly procyanidins and catechin derivatives. The antimicrobial activity was associated to specific compounds (procyanidin dimer type B [isomer 1], rutin [isomer 2], catechin diglucopyranoside), in addition to unidentified catechin derivatives. E. faecalis, which was detected in the epiphytic microbiota, was well adapted to the phenolics from the peel. Peel phenolics had a growth-promoting effect toward the autochthonous yeasts S. cerevisiae and H. uvarum.
Collapse
Affiliation(s)
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, Torino, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Luca Simone Cocolin
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, Torino, Italy
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, Bari, Italy
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
9
|
Tomić J, Dapčević-Hadnađev T, Škrobot D, Maravić N, Popović N, Stevanović D, Hadnađev M. Spontaneously fermented ancient wheat sourdoughs in breadmaking: Impact of flour quality on sourdough and bread physico-chemical properties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Bandini F, Vaccari F, Soldano M, Piccinini S, Misci C, Bellotti G, Taskin E, Cocconcelli PS, Puglisi E. Rigid bioplastics shape the microbial communities involved in the treatment of the organic fraction of municipal solid waste. Front Microbiol 2022; 13:1035561. [PMID: 36439796 PMCID: PMC9691671 DOI: 10.3389/fmicb.2022.1035561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/03/2023] Open
Abstract
While bioplastics are gaining wide interest in replacing conventional plastics, it is necessary to understand whether the treatment of the organic fraction of municipal solid waste (OFMSW) as an end-of-life option is compatible with their biodegradation and their possible role in shaping the microbial communities involved in the processes. In the present work, we assessed the microbiological impact of rigid polylactic acid (PLA) and starch-based bioplastics (SBB) spoons on the thermophilic anaerobic digestion and the aerobic composting of OFMSW under real plant conditions. In order to thoroughly evaluate the effect of PLA and SBB on the bacterial, archaeal, and fungal communities during the process, high-throughput sequencing (HTS) technology was carried out. The results suggest that bioplastics shape the communities' structure, especially in the aerobic phase. Distinctive bacterial and fungal sequences were found for SBB compared to the positive control, which showed a more limited diversity. Mucor racemosus was especially abundant in composts from bioplastics' treatment, whereas Penicillium roqueforti was found only in compost from PLA and Thermomyces lanuginosus in that from SBB. This work shed a light on the microbial communities involved in the OFMSW treatment with and without the presence of bioplastics, using a new approach to evaluate this end-of-life option.
Collapse
Affiliation(s)
- Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Mariangela Soldano
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Sergio Piccinini
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Chiara Misci
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| |
Collapse
|
11
|
Aydın F, Özer G, Alkan M, Çakır İ. Start Codon Targeted (SCoT) markers for the assessment of genetic diversity in yeast isolated from Turkish sourdough. Food Microbiol 2022; 107:104081. [DOI: 10.1016/j.fm.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
|
12
|
Ban GH, Kim BK, Kim SR, Rhee MS, Kim SA. Bacterial microbiota profiling of oyster mushrooms (Pleurotus ostreatus) based on cultivation methods and distribution channels using high-throughput sequencing. Int J Food Microbiol 2022; 382:109917. [PMID: 36116389 DOI: 10.1016/j.ijfoodmicro.2022.109917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/30/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022]
Abstract
The annual consumption and production of oyster mushrooms (Pleurotus ostreatus) have continued to rise due to its nutritive and health-promoting benefits. Cultivated mushrooms are mostly grown in small to medium-scaled scale production plants that present hygienic challenges which could, in turn, increase associated foodborne pathogenic outbreaks. The present study aimed to investigate the shift in microbial ecologies of oyster mushrooms from pre-distribution (cultivation in bottles or on shelves) to post-distribution at supermarkets and open-air markets. Aerobic plate counts and coliforms were quantified using traditional microbiological techniques, and the microbiome associated with oyster mushrooms (n = 70) was analyzed using 16S rRNA amplicon sequencing for an enhanced level of bacterial microbiota profiling. Overall, coliforms recovered from pre-distribution bottle-cultivated mushrooms were 1.9 log CFU/g higher (p < 0.05) than that of shelf-cultivated mushrooms. The mean aerobic plate counts of oyster mushrooms distributed to open-air markets was 1.2 log CFU/g higher (p < 0.05) than packaged mushrooms from supermarkets while there were no significant differences in coliform counts. The pattern of bacterial composition differed by post-distribution channels, with oyster mushrooms collected from the open-air markets demonstrating the richest microbiome diversity. An increase in the relative abundance of Enterobacteriaceae (55-68 %) and Pseudomonadaceae (27-35 %) was observed in pre- and post-distribution mushrooms, respectively. However, no distinct bacterial microbiota differences were observed for the different cultivation methods or different geographical locations for each market type. The current findings add to our understanding of the effects of cultivation methods and commercial distribution channels regarding the microbiome of oyster mushrooms and may inform potential intervention strategies for future production and distribution processes. Furthermore, the tandem analyses of culture-dependent and culture-independent methods can provide more comprehensive information than that obtained when using each approach independently.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Bo-Kyeong Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Se-Ri Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
13
|
von Gastrow L, Michel E, Legrand J, Amelot R, Segond D, Guezenec S, Rué O, Chable V, Goldringer I, Dousset X, Serpolay-Bessoni E, Taupier-Letage B, Vindras-Fouillet C, Onno B, Valence F, Sicard D. Microbial community dispersal from wheat grains to sourdoughs : a contribution of participatory research. Mol Ecol 2022; 32:2413-2427. [PMID: 35892285 DOI: 10.1111/mec.16630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Understanding microbial dispersal is critical to understand the dynamics and evolution of microbial communities. However, microbial dispersal is difficult to study because of uncertainty about their vectors of migration. This applies to both microbial communities in natural and human-associated environments. Here, we studied microbial dispersal along the sourdoughs bread making chain using a participatory research approach. Sourdough is a naturally fermented mixture of flour and water. It hosts a community of bacteria and yeasts whose origins are only partially known. We analysed the potential of wheat grains and flour to serve as an inoculum for sourdough microbial communities using 16S rDNA and ITS1 metabarcoding. First, in an experiment involving farmers, a miller and bakers, we followed the microbiota from grains to newly initiated and propagated sourdoughs. Second, we compared the microbiota of 46 sourdough samples collected everywhere in France, and of the flour used for their backslopping. The core microbiota detected on the seeds, in the flour and in the sourdough was composed mainly of microbes known to be associated with plants and not living in sourdoughs. No sourdough yeast species were detected on grains and flours. Sourdough lactic acid bacteria were rarely found in flour. When they were, they did not have the same amplicon sequence variant (ASV) as found in the corresponding sourdough. However, the low sequencing depth for bacteria in flour did not allow us to draw definitive conclusion. Thus, our results showed that sourdough yeasts did not come from flour, and suggest that neither do sourdough LAB.
Collapse
Affiliation(s)
- Lucas von Gastrow
- SPO, INRAE, Montpellier SupAgro, Montpellier, France.,STLO, INRAE, Institut Agro, Rennes Cedex, France
| | - Elisa Michel
- SPO, INRAE, Montpellier SupAgro, Montpellier, France.,Oniris, Laboratoire MicrobioTech, UMR GEPEA 6144, Rue de la Géraudière CS 82225, Nantes Cedex 3, France
| | - Judith Legrand
- Génétique Quantitative et Evolution le Moulon, Université Paris-Sud, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rémy Amelot
- SPO, INRAE, Montpellier SupAgro, Montpellier, France
| | - Diego Segond
- SPO, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | | | - Isabelle Goldringer
- Génétique Quantitative et Evolution le Moulon, Université Paris-Sud, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Xavier Dousset
- Oniris, Laboratoire MicrobioTech, UMR GEPEA 6144, Rue de la Géraudière CS 82225, Nantes Cedex 3, France
| | | | - Bruno Taupier-Letage
- Institut Technique de l'agriculture et de l'Alimentation Biologique, Paris, France
| | | | - Bernard Onno
- Oniris, Laboratoire MicrobioTech, UMR GEPEA 6144, Rue de la Géraudière CS 82225, Nantes Cedex 3, France
| | | | | |
Collapse
|
14
|
Bazalová O, Cihlář JZ, Dlouhá Z, Bár L, Dráb V, Kavková M. Rapid sourdough yeast identification using panfungal PCR combined with high resolution melting analysis. METHODS IN MICROBIOLOGY 2022; 199:106522. [PMID: 35716843 DOI: 10.1016/j.mimet.2022.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
The microbial composition of the sourdough starter affects the sourdough bread properties. Therefore, it is crucial to find a tool for rapid, time-saving, and economical identification of the sourdough microbiota. We focused on the rapid identification of sourdough yeasts. We designed a panfungal real time-PCR targeting the ITS2 region (ITS-amplicon) and a fragment of D1/D2 region of 26S rRNA gene (U-amplicon) and used high resolution melting analysis (HRM) for subsequent species identification. The sensitivity and specificity of our method were tested on the reference yeast cultures. We obtained divergent melting peaks (Tm). The further analysis of melt curves suggests the possibility to discriminate yeasts on the genus- and some on species-specific level in the mixed sample. The applicability of this method in routine practice was evaluated on nine sourdough samples. Revealed melt curves of U-amplicons were predominantly characteristic of the sourdough. The evaluation of the Tm and the shape of the melt curve was used to assess the sourdough yeasts. Additionally, using the HRM-PCR method the contamination with the ergot fungus DNA was revealed. Our data showed HRM-PCR is a simple, rapid, and inexpensive tool useful in identifying sourdough yeasts.
Collapse
Affiliation(s)
- Olga Bazalová
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic.
| | - Jaromír Z Cihlář
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Zuzana Dlouhá
- Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Ladislav Bár
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Vladimír Dráb
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Miloslava Kavková
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| |
Collapse
|
15
|
Ameur H, Cantatore V, Filannino P, Cavoski I, Nikoloudaki O, Gobbetti M, Di Cagno R. Date Seeds Flour Used as Value-Added Ingredient for Wheat Sourdough Bread: An Example of Sustainable Bio-Recycling. Front Microbiol 2022; 13:873432. [PMID: 35516437 PMCID: PMC9062590 DOI: 10.3389/fmicb.2022.873432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Our study proposed date seeds flour (DSF) as an innovative ingredient for sourdough bread production through sustainable bio-recycling. We isolated autochthonous lactic acid bacteria and yeasts from DSF and DSF-derived doughs to build up a reservoir of strains from which to select starters ensuring rapid adaptation and high ecological fitness. The screening based on pro-technological criteria led to the formulation of a mixed starter consisting of Leuconostoc mesenteroides, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae strains, which allowed obtaining a mature type I sourdough after consecutive refreshments, in which an aliquot of the durum wheat flour (DWF) was replaced by DSF. The resulting DSF sourdough and bread underwent an integrated characterization. Sourdough biotechnology was confirmed as a suitable procedure to improve some functional and sensory properties of DWF/DSF mixture formulation. The radical scavenging activity increased due to the consistent release of free phenolics. Perceived bitterness and astringency were considerably diminished, likely because of tannin degradation.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Pasquale Filannino,
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, Valenzano, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
- Raffaella Di Cagno,
| |
Collapse
|
16
|
Boyaci Gunduz CP, Erten H. Yeast Biodiversity in Chickpea Sourdoughs and Comparison of the Microbiological and Chemical Characteristics of the Spontaneous Chickpea Fermentations. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Huseyin Erten
- Cukurova University Faculty of Agriculture Food Engineering Department 01330 Adana TURKEY
| |
Collapse
|
17
|
Wang H, Su W, Mu Y, Zhao C. Correlation Between Microbial Diversity and Volatile Flavor Compounds of Suan zuo rou, a Fermented Meat Product From Guizhou, China. Front Microbiol 2021; 12:736525. [PMID: 34745037 PMCID: PMC8564356 DOI: 10.3389/fmicb.2021.736525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Suan zuo rou (SZR), a traditional fermented meat from Guizhou province, China, is loved by local people for its unique flavor and nutritional value. However, the microbial communities and related flavor characteristics of SZR from different regions of Guizhou are unclear. We studied the correlation between the microbial communities and the physicochemical properties and volatile flavor compounds (VFCs) of 15 SZR samples from three regions in Guizhou province. The microbial community structure of SZR was determined by high-throughput sequencing and VFCs were identified by headspace-solid phase microextraction combined with gas chromatography-mass spectrometry. The results indicated that the microbial communities of SZR varied among the regions, as evidenced by the relative abundance of Weissella, Staphylococcus, Brochothrix, Kazachstania, and Debaryomces. There were also significant differences in pH, water activity, NaCl, and total volatile basic nitrogen (P < 0.05). Based on orthogonal projections to latent structures and Pearson’s correlation coefficient, we showed that Wickerhamomyces, Kazachstania, Lactobacillus, Weissella, Brochothrix, Debaryomyces, Staphylococcus, Pediococcus, Pichia, Candida, and Leuconostoc were highly correlated with 48 VFCs (| ρ| > 0.8, P < 0.05). Redundancy analysis showed that most of the dominant bacteria were positively related to water activity, whereas Lactobacillus was positively related with pH, and negatively related with total volatile basic nitrogen.
Collapse
Affiliation(s)
- Hanyu Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China.,Animal Disease Control and Prevention Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Chi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Yang Q, Rutherfurd-Markwick K, Mutukumira AN. Identification of dominant lactic acid bacteria and yeast in rice sourdough produced in New Zealand. Curr Res Food Sci 2021; 4:729-736. [PMID: 34729499 PMCID: PMC8546371 DOI: 10.1016/j.crfs.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
This study characterised a commercial New Zealand gluten free (GF) rice sourdough and its starter culture composition. Acidity of the mother sourdough, dough before proofing and dough after proofing was determined during the production of rice sourdough bread, and colour was measured for the baked bread. Yeast and lactic acid bacteria (LAB) were enumerated in the rice sourdough samples and representative colonies characterised using API kits and sequenced by the Internal Transcribed Spacer and 16 S rRNA region. Sourdough LAB isolates were identified as Lactobacillus (L.) papraplantarum DSM 10667 and L. fermentarum CIP 102980 and the yeast isolates as Saccharomyces (S.) cerevisiae CBS 1171. Dough acidity increased significantly (p < 0.05) during fermentation due to the metabolic activities of the sourdough cultures. After baking, the colour of the rice sourdough bread crust was similar to that of unleavened wheat bread (golden brown). The improved colour of the rice sourdough bread crust may be a result of combined use of sourdough technique and optimal baking conditions. The results of this study may allow bakers to improve the overall quality of GF rice sourdough baked bread by selecting suitable fermentation and baking parameters. Gluten-free rice sourdough bread. Rice sourdough fermentation of gluten-free bread improved bread crust colour Rice sourdough LAB identified as Lactobacillus paraplantarum CIP 102980 and Lactobacillus fermentarum DSM 10667 Yeast isolated from rice sourdough was identified as S. cerevisiae CBS 1171.
Collapse
Affiliation(s)
- Qiwei Yang
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, College of Health, Massey University, Auckland, 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
- Corresponding author.
| |
Collapse
|
19
|
Mechanistic Insight into Yeast Bloom in a Lactic Acid Bacteria Relaying-Community in the Start of Sourdough Microbiota Evolution. Microbiol Spectr 2021; 9:e0066221. [PMID: 34668750 PMCID: PMC8528097 DOI: 10.1128/spectrum.00662-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The spontaneous microbiota of wheat sourdough, often comprising one yeast species and several lactic acid bacteria (LAB) species, evolves over repeated fermentation cycles, which bakers call backslopping. The final product quality largely depends on the microbiota functions, but these fluctuate sometimes during the initial months of fermentation cycles due to microbiota evolution in which three phases of LAB relay occur. In this study, the understanding of yeast-LAB interactions in the start of the evolution of the microbiota was deepened by exploring the timing and trigger interactions when sourdough yeast entered a preestablished LAB-relaying community. Monitoring of 32 cycles of evolution of 6 batches of spontaneous microbiota in wheat sourdoughs revealed that sourdough yeasts affected the LAB community when the 2nd- or 3rd-relaying types of LAB genera emerged. In in vitro pairwise cocultures, all 12 LAB strains containing the 3 LAB-relaying types arrested the growth of a Saccharomyces cerevisiae strain, a frequently found species in sourdoughs, to various extents by sugar-related interactions. These findings suggest competition due to different affinities of each LAB and a S. cerevisiae strain for each sugar. In particular, maltose was the driver of S. cerevisiae growth in all pairwise cocultures. The functional prediction of sugar metabolism in sourdough LAB communities showed a positive correlation between maltose degradation and the yeast population. Our results suggest that maltose-related interactions are key factors that enable yeasts to enter and then settle in the LAB-relaying community during the initial part of evolution of spontaneous sourdough microbiota. IMPORTANCE Unpredictable evolution of spontaneous sourdough microbiota sometimes prevents bakers from making special-quality products because the unstable microbiota causes the product quality to fluctuate. Elucidation of the evolutionary mechanisms of the sourdough community, comprising yeast and lactic acid bacteria (LAB), is fundamental to control fermentation performance. This study investigated the mechanisms by which sourdough yeasts entered and settled in a bacterial community in which a three-phase relay of LAB occurred. Our results showed that all three layers of LAB restricted the cohabiting yeast population by competing for the sugar sources, particularly maltose. During the initial evolution of spontaneous sourdough microbiota, yeasts tended to grow synchronously with the progression of the lactic acid bacterial relay, which was predictably associated with changes in the maltose degradation functions in the bacterial community. Further study of ≥3 species’ interactions while considering yeast diversity can uncover additional interaction mechanisms driving the initial evolution of sourdough microbiota.
Collapse
|
20
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
21
|
Isolation and Characterization of Lactic Acid Bacteria and Yeasts from Typical Bulgarian Sourdoughs. Microorganisms 2021; 9:microorganisms9071346. [PMID: 34206198 PMCID: PMC8306846 DOI: 10.3390/microorganisms9071346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.
Collapse
|
22
|
Staniszewski A, Kordowska-Wiater M. Probiotic and Potentially Probiotic Yeasts-Characteristics and Food Application. Foods 2021; 10:1306. [PMID: 34200217 PMCID: PMC8228341 DOI: 10.3390/foods10061306] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Besides the well-known and tested lactic acid bacteria, yeasts may also be probiotics. The subject of probiotic and potentially probiotic yeasts has been developing and arising potential for new probiotic products with novel properties, which are not offered by bacteria-based probiotics available on the current market. The paper reviews the first probiotic yeast Saccharomyces cerevisiae var. boulardii, its characteristics, pro-healthy activities and application in functional food production. This species offers such abilities as improving digestion of certain food ingredients, antimicrobial activities and even therapeutic properties. Besides Saccharomyces cerevisiae var. boulardii, on this background, novel yeasts with potentially probiotic features are presented. They have been intensively investigated for the last decade and some species have been observed to possess probiotic characteristics and abilities. There are yeasts from the genera Debaryomyces, Hanseniaspora, Pichia, Meyerozyma, Torulaspora, etc. isolated from food and environmental habitats. These potentially probiotic yeasts can be used for production of various fermented foods, enhancing its nutritional and sensory properties. Because of the intensively developing research on probiotic yeasts in the coming years, we can expect many discoveries and possibly even evolution in the segment of probiotics available on the market.
Collapse
Affiliation(s)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
23
|
Calvert MD, Madden AA, Nichols LM, Haddad NM, Lahne J, Dunn RR, McKenney EA. A review of sourdough starters: ecology, practices, and sensory quality with applications for baking and recommendations for future research. PeerJ 2021; 9:e11389. [PMID: 34026358 PMCID: PMC8117929 DOI: 10.7717/peerj.11389] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 01/13/2023] Open
Abstract
The practice of sourdough bread-making is an ancient science that involves the development, maintenance, and use of a diverse and complex starter culture. The sourdough starter culture comes in many different forms and is used in bread-making at both artisanal and commercial scales, in countries all over the world. While there is ample scientific research related to sourdough, there is no standardized approach to using sourdough starters in science or the bread industry; and there are few recommendations on future directions for sourdough research. Our review highlights what is currently known about the microbial ecosystem of sourdough (including microbial succession within the starter culture), methods of maintaining sourdough (analogous to land management) on the path to bread production, and factors that influence the sensory qualities of the final baked product. We present new hypotheses for the successful management of sourdough starters and propose future directions for sourdough research and application to better support and engage the sourdough baking community.
Collapse
Affiliation(s)
- Martha D Calvert
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blackburg, VA, United States of America.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Nick M Haddad
- Kellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory Corners, MI, United States of America
| | - Jacob Lahne
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blackburg, VA, United States of America
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America.,Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
24
|
Xu Z, Lu Z, Soteyome T, Ye Y, Huang T, Liu J, Harro JM, Kjellerup BV, Peters BM. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: coexistence-relevant mechanisms. Crit Rev Microbiol 2021; 47:386-396. [PMID: 33663335 DOI: 10.1080/1040841x.2021.1893265] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coordination of single or multiple microorganisms are required for the manufacture of traditional fermented foods, improving the flavour and nutrition of the food materials. However, both the additional economic benefits and safety concerns have been raised by microbiotas in fermented products. Among the fermented products, Lactobacillus and Saccharomyces cerevisiae are one of the stable microbiotas, suggesting their interaction is mediated by coexistence-relevant mechanisms and prevent to be excluded by other microbial species. Thus, aiming to guide the manufacture of fermented foods, this review will focus on interactions of coexistence-relevant mechanisms between Lactobacillus and S. cerevisiae, including metabolites communications, aggregation, and polymicrobial biofilm. Also, the molecular regulatory network of the coexistence-relevant mechanisms is discussed according to omics researches.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alba Martín-Garcia
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Montserrat Riu-Aumatell
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Elvira López-Tamames
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| |
Collapse
|
26
|
Xu W, Li C, Guo Y, Zhang Y, Ya M, Guo L. A snapshot study of the microbial community dynamics in naturally fermented cow's milk. Food Sci Nutr 2021; 9:2053-2065. [PMID: 33841823 PMCID: PMC8020932 DOI: 10.1002/fsn3.2174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/11/2022] Open
Abstract
Natural fermentation of milk is a prerequisite in the production of traditional dairy products and is considered a bioresource of fermentative microorganisms and probiotics. To understand the microbial dynamics during distinct fermentative phases, the roles of different microbes, and the relationship between bacteria and fungi, microbial community dynamics was investigated by culture-dependent and culture-independent approaches. Natural, static fermentation of milk induces the formation of the underlying curds and the superficial sour cream (Zuohe in the Mongolian language). From an overall perspective, viable LAB increased remarkably. Yeast showed an initial increase in their abundance (from 0 hr to 24 hr), which was followed by a decrease, and mold was detected at the later stages of fermentation (after 68 hr). The observed trends in microbiota variation suggest an antagonistic interaction between bacteria (LAB) and fungi (yeast and mold). The beneficial bacterial and fungal genus and species (e.g., Lactococcus, Streptococcus, Leuconostoc, Dipodascus, Lactococcus lacti, Dipodascus australiensis) are gradually increased in concentration, and the potentially detrimental microbial genus and species (e.g., Acinetobacter, Pseudomonas, Fusarium, Aspergillus, Mortierella, Acinetobacter johnsonii, Fusarium solani) decrease during the decline of bacterial and fungi diversity from natural fermentation. The study of microbial community dynamics could make a great contribution to understand the mechanism of natural fermentation of milk and the formation of curds and Zuohe, and to discover the potentially fermentative microbes for industrial starter cultures.
Collapse
Affiliation(s)
- Wei‐Liang Xu
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilin Gol Food Testing and Risk Assessment CenterXilinhotChina
| | - Chun‐Dong Li
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilin Gol Food Testing and Risk Assessment CenterXilinhotChina
| | - Yuan‐Sheng Guo
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilin Gol Food Testing and Risk Assessment CenterXilinhotChina
| | - Yi Zhang
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilin Gol Food Testing and Risk Assessment CenterXilinhotChina
| | - Mei Ya
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilin Gol Food Testing and Risk Assessment CenterXilinhotChina
| | - Liang Guo
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilin Gol Food Testing and Risk Assessment CenterXilinhotChina
| |
Collapse
|
27
|
Boudaoud S, Aouf C, Devillers H, Sicard D, Segond D. Sourdough yeast-bacteria interactions can change ferulic acid metabolism during fermentation. Food Microbiol 2021; 98:103790. [PMID: 33875218 DOI: 10.1016/j.fm.2021.103790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
The metabolism of ferulic acid (FA) was studied during fermentation with different species and strains of lactic acid bacteria (LAB) and yeasts, in synthetic sourdough medium. Yeast strains of Kazachstania humilis, Kazachstania bulderi, and Saccharomyces cerevisiae, as well as lactic acid bacteria strains of Fructilactobacillus sanfranciscensis, Lactiplantibacillus plantarum, Lactiplantibacillus xiangfangensis, Levilactobacillus hammesii, Latilactobacillus curvatus and Latilactobacillus sakei were selected from French natural sourdoughs. Fermentation in presence or absence of FA was carried out in LAB and yeasts monocultures, as well as in LAB/yeast co-cultures. Our results indicated that FA was mainly metabolized into 4-vinylguaiacol (4-VG) by S. cerevisiae strains, and into dihydroferulic acid (DHFA) and 4-VG in the case of LAB. Interactions of LAB and yeasts led to the modification of FA metabolism, with a major formation of DHFA, even by the strains that do not produce it in monoculture. Interestingly, FA was almost completely consumed by the F. sanfranciscensis bFs17 and K. humilis yKh17 pair and converted into DHFA in 89.5 ± 19.6% yield, while neither bFs17, nor yKh17 strains assimilated FA in monoculture.
Collapse
Affiliation(s)
- Sonia Boudaoud
- UMR 1083 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Chahinez Aouf
- UMR 1208 IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Hugo Devillers
- UMR 1083 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Delphine Sicard
- UMR 1083 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Diego Segond
- UMR 1083 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
28
|
Katsi P, Kosma IS, Michailidou S, Argiriou A, Badeka AV, Kontominas MG. Characterization of Artisanal Spontaneous Sourdough Wheat Bread from Central Greece: Evaluation of Physico-Chemical, Microbiological, and Sensory Properties in Relation to Conventional Yeast Leavened Wheat Bread. Foods 2021; 10:foods10030635. [PMID: 33802818 PMCID: PMC8002528 DOI: 10.3390/foods10030635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
In the present study, both yeast leavened bread (YLB) and artisanal sourdough wheat bread (SDB) were prepared. The physico-chemical, microbiological, and sensory properties of breads were monitored as a function of storage time (T = 25 °C). As expected, the titratable acidity (TA) values of SDB were higher than those of YLB. The aroma profile of SDB was similar to that of YLB, including classes of compounds such as alcohols, aldehydes, ketones, esters, organic acids, terpenes, and sulfur compounds; however, the concentrations between the two were different. Aroma deterioration of bread during storage was partly related to the loss of several volatiles. Texture and sensory analysis showed that SDB was harder, less elastic, but richer in aroma and light sour taste than YLB. Mold growth was apparent when the population of yeasts/molds reached approximately 4 log cfu/g. This yeast/mold count was reached on days 4–5 for YLB and day 18 + for SDB. A 16S amplicon meta-barcoding analysis showed that the bacterial profile of SDB was dominated by a single genus, (Lactobacillus). Analysis of the eukaryotic load showed that at the genus level, Saccharomyces and Alternaria were the most abundant genera, independently of the gene sequenced (18S or ITS). Based primarily on mold growth and texture data, which proved to be the most sensitive quality parameters, the shelf life was ca. 4–5 days for YLB and 10 days for SDB.
Collapse
Affiliation(s)
- Pavlina Katsi
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
| | - Ioanna S. Kosma
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
| | - Sofia Michailidou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (S.M.); (A.A.)
| | - Anagnostis Argiriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (S.M.); (A.A.)
- Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Anastasia V. Badeka
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
- Correspondence: (A.V.B.); (M.G.K.)
| | - Michael G. Kontominas
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
- Correspondence: (A.V.B.); (M.G.K.)
| |
Collapse
|
29
|
Arora K, Ameur H, Polo A, Di Cagno R, Rizzello CG, Gobbetti M. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Bigey F, Segond D, Friedrich A, Guezenec S, Bourgais A, Huyghe L, Agier N, Nidelet T, Sicard D. Evidence for Two Main Domestication Trajectories in Saccharomyces cerevisiae Linked to Distinct Bread-Making Processes. Curr Biol 2021; 31:722-732.e5. [DOI: 10.1016/j.cub.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
|
31
|
Chen J, Lv H, Zhang Z, Zhang H, Zhang B, Wang X, Liu Y, Zhang M, Pang H, Qin G, Wang L, Tan Z. Multilocus Sequence Typing of Leuconostoc mesenteroides Strains From the Qinghai-Tibet Plateau. Front Microbiol 2021; 12:614286. [PMID: 33584616 PMCID: PMC7874059 DOI: 10.3389/fmicb.2021.614286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Leuconostoc mesenteroides strains were a type of epiphytic bacterium widely used in fermented foods and products in the biochemical and pharmaceutical industries but data on its presence in foods from Qinghai-Tibet Plateau in China was scarce. In this study, molecular analysis based on multilocus sequence typing (MLST) with eight housekeeping genes (pyrG, groeL, rpoB, recA, uvrC, murC, carB, and pheS) was carried out on 45 L. mesenteroides strains isolated from different plants and dairy products from Qinghai-Tibet Plateau in China. The objective of this study was to perform genetic diversity analysis and explore the relationship between strains and isolate samples or separate regions. A total of 25 sequence types (STs) were identified with a diversity of up to 55.6%, which were grouped into one clonal complexes (CCs), 3 doublets and 17 singletons by eBURST. The results of minimum spanning tree and clustering analysis indicated these L. mesenteroides strains from the Qinghai-Tibet Plateau were relatively weakly related to the isolated region. However, there was a close relationship between the genotypes of L. mesenteroides strains and the type of the isolated sample, which was consistent with the results of API 50CH. The MLST scheme presented in this study provides a shareable and comparable sequence database and enhances our knowledge of the population diversity of L. mesenteroides strains which will be further used for the selection of industrial strains.
Collapse
Affiliation(s)
- Jun Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Haoxin Lv
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhixia Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Hua Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Bei Zhang
- Department of Chemical and Environmental Engineering, Jiaozuo University, Jiaozuo, China
| | - Xing Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huili Pang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Zhongfang Tan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Oshiro M, Zendo T, Nakayama J. Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J Biosci Bioeng 2021; 131:333-340. [PMID: 33358094 DOI: 10.1016/j.jbiosc.2020.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Sourdough is a naturally fermented dough that is used worldwide to produce a variety of baked foods. Various lactic acid bacteria (LAB), which can determine the quality of sourdough baked foods by producing metabolites, have been found in the sourdough ecosystem. However, spontaneous fermentation of sourdough leads to unpredictable growth of various micro-organisms, which result in unstable product quality. From an ecological perspective, many researchers have recently studied sourdough LAB diversity, particularly the elucidation of LAB community interactions and the dynamic mechanisms during the fermentation process, in response to requests for the control and design of a desired sourdough microbial community. This article reviews recent advances in the study of sourdough LAB diversity and its dynamics in association with unique characteristics of the fermentation system; it also discusses future perspectives for better understanding of the complex sourdough microbial ecosystem, which can be attained efficiently by both in vitro and in situ experimental approaches.
Collapse
Affiliation(s)
- Mugihito Oshiro
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Central Laboratory of Yamazaki Baking Company Limited, 3-23-27 Ichikawa, Ichikawa-shi, Chiba 272-8581, Japan.
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Morales P, Mencher A, Tronchoni J, Gonzalez R. Extracellular vesicles in food biotechnology. Microb Biotechnol 2021; 14:8-11. [PMID: 32864900 PMCID: PMC7888462 DOI: 10.1111/1751-7915.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la RiojaUniversidad de La Rioja)Finca La GrajeraCarretera de Burgos, km 6LogroñoLa Rioja26071Spain
| | - Ana Mencher
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la RiojaUniversidad de La Rioja)Finca La GrajeraCarretera de Burgos, km 6LogroñoLa Rioja26071Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la RiojaUniversidad de La Rioja)Finca La GrajeraCarretera de Burgos, km 6LogroñoLa Rioja26071Spain
- Present address:
Universidad Internacional de ValenciaValenciaSpain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la RiojaUniversidad de La Rioja)Finca La GrajeraCarretera de Burgos, km 6LogroñoLa Rioja26071Spain
| |
Collapse
|
34
|
Yeast Biodiversity in Fermented Doughs and Raw Cereal Matrices and the Study of Technological Traits of Selected Strains Isolated in Spain. Microorganisms 2020; 9:microorganisms9010047. [PMID: 33375367 PMCID: PMC7824024 DOI: 10.3390/microorganisms9010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Bakers use pure microorganisms and/or traditional sourdoughs as the leavening agent for making bread. The performance of each starter and the substances produced by the microorganisms greatly affect the dough rheology and features of breads. Modern sourdoughs inoculated with selected lactic acid bacteria and yeasts are microbiologically stable, safer than traditional sourdoughs, and easy to use. However, the commercial repertoire of baker’s yeasts is still limited. Therefore, there is a demand for new strains of yeast species, capable of conferring distinctive traits to breads made from a variety of agri-food matrices, in the design of innovative starters. In this context, we report the first comprehensive study on yeasts isolated from a wide range of fermented doughs, cereal flours, and grains of Spain. Nine yeast species were identified from 433 isolates, which were distributed among separate clades. Moreover, phenotypic traits of potential technological relevance were identified in selected yeast strains. Mother doughs (MDs) showed the greatest yeast biodiversity, whereas commercial Saccharomyces starters or related and wild strains often dominated the bakery doughs. A metataxonomic analysis of wheat and tritordeum MDs revealed a greater richness of yeast species and percentage variations related to the consistency, flour type, and fermentation time of MDs.
Collapse
|
35
|
Comasio A, Van Kerrebroeck S, De Vuyst L. Lemon juice and apple juice used as source of citrate and malate, respectively, enhance the formation of buttery aroma compounds and/or organic acids during Type 2 and Type 3 sourdough productions performed with Companilactobacillus crustorum LMG 23699. Int J Food Microbiol 2020; 339:109020. [PMID: 33360296 DOI: 10.1016/j.ijfoodmicro.2020.109020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Extra ingredients are often used in traditional sourdough production recipes by artisan bakeries. These ingredients may be the source of microorganisms or stimulate the growth and/or the metabolic activities of the microorganisms added to or naturally present in the flour-water mixture. The present study examined the influence of the addition of lemon juice or apple juice as source of citrate or malate, respectively, on the growth and activity of the citrate- and malate-positive Companilactobacillus crustorum LMG 23699 strain (formerly known as Lactobacillus crustorum LMG 23699), used to initiate firm (dough yield of 200) wheat sourdough productions, and on the flavour of the baked goods produced. Three fermentation strategies were applied, namely one-step long fermentation sourdough production processes with the addition of juice at the start (Type 2) and backslopped fermentations with the addition of juice either only at the start of the sourdough productions or at the start of the sourdough productions and at the beginning of each subsequent refreshment step during the whole backslopping process (both Type 3). It turned out that the starter culture strain used prevailed during all sourdough productions performed. Yeasts were particularly present in Type 3 sourdough productions, although lemon juice retarded their growth. Due to high yeast activity, high concentrations of ethanol and glycerol were produced toward the end of the sourdough productions. Addition of lemon juice stimulated the production of lactic acid, acetic acid, and the buttery flavour compounds acetoin and diacetyl, because of citrate conversion, during the Type 2 and Type 3 sourdough productions. In Type 3 sourdough productions, these compounds were found in higher concentrations only when lemon juice was added at each backslopping step. Alternatively, the addition of apple juice led to high concentrations of lactic acid because of malolactic fermentation in both Type 2 and Type 3 sourdough productions. Moreover, the addition of apple juice increased the initial concentrations of the carbohydrates (fructose, glucose, and sucrose) and sugar alcohols (mannitol and sorbitol), which were exhausted upon backslopping or accumulated in the sourdough matrix, respectively. Baked goods produced using sourdoughs obtained from the Type 2 and Type 3 sourdough productions with the addition of juice at each backslopping step were significantly different in flavour from doughs supplemented with the respective juices and lactic acid and/or Type 3 sourdough productions with the addition of juice only at the start.
Collapse
Affiliation(s)
- Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
36
|
Wang P, Qiao Z, Li X, Su Y, Xie B. Functional characteristic of microbial communities in large-scale biotreatment systems of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141086. [PMID: 32750579 DOI: 10.1016/j.scitotenv.2020.141086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate microbial community structure dominated metabolic function profiles in large-scale food waste (FW) biotreatment systems, bacterial, archaeal and fungal community associated with metabolic function in high-temperature aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes were comprehensively investigated in this study. The qPCR results showed the higher gene copies of bacteria and fungi in initial and AF-treated FW compared with AcoD-treated FW, as well as bacteria and archaea in AcoD-treated FW were highly abundant among detected samples. Furthermore, the total abundances of archaea ((1.18-4.88) × 106 copies/ng DNA) in AcoD system were 2-3 orders of magnitude higher than that in other samples (P < 0.01), indicating active archaeal activity in AcoD system. Correlation analysis of microbial community and metabolic function indicated that the higher abundances of Kazachstania, Pyrobaculum, Sulfophobococcus, Lactobacillus and Candida in initial FW had close linkages with lipid metabolism (P < 0.05). Abundant Aspergillus, Staphylococcus, Pelomonas, Corynebacterium, Faecalibacterium, Methanobacterium and Xeromyces in AF system were positively and significantly correlated with high metabolic activities of energy metabolism, carbohydrate metabolism, amino acid metabolism, fatty acid metabolism, glycosaminoglycan degradation, sulfur metabolism and nitrogen metabolism. As for AcoD system, dominant genera Methanosaeta, Methanoculleus, Methanobacterium, Fastidiosipila, Rikenellaceae RC9, Bifidobacterium and Xeromyces had close relationships with metabolism of cofactors and vitamins, energy metabolism, methane metabolism, carbohydrate metabolism and glycosaminoglycan degradation (P < 0.05). These results are expected to improve the metabolic efficiency by functional microorganism in different large-scale FW treatment systems.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
37
|
Syrokou MK, Themeli C, Paramithiotis S, Mataragas M, Bosnea L, Argyri AA, Chorianopoulos NG, Skandamis PN, Drosinos EH. Microbial Ecology of Greek Wheat Sourdoughs, Identified by a Culture-Dependent and a Culture-Independent Approach. Foods 2020; 9:foods9111603. [PMID: 33158141 PMCID: PMC7694216 DOI: 10.3390/foods9111603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to assess the microecosystem of 13 homemade spontaneously fermented wheat sourdoughs from different regions of Greece, through the combined use of culture-dependent (classical approach; clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and identification by PCR species-specific for Lactiplantibacillus plantarum, and sequencing of the 16S-rRNA and 26S-rRNA gene, for Lactic Acid Bacteria (LAB) and yeasts, respectively) and independent approaches [DNA- and RNA-based PCR-Denaturing Gradient Gel Electrophoresis (DGGE)]. The pH and Total Titratable Acidity (TTA) values ranged from 3.64–5.05 and from 0.50–1.59% lactic acid, respectively. Yeast and lactic acid bacteria populations ranged within 4.60–6.32 and 6.28–9.20 log CFU/g, respectively. The yeast: LAB ratio varied from 1:23–1:10,000. A total of 207 bacterial and 195 yeast isolates were obtained and a culture-dependent assessment of their taxonomic affiliation revealed dominance of Lb. plantarum in three sourdoughs, Levilactobacillus brevis in four sourdoughs and co-dominance of these species in two sourdoughs. In addition, Companilactobacillusparalimentarius dominated in two sourdoughs and Fructilactobacillussanfranciscensis and Latilactobacillus sakei in one sourdough each. Lactococcus lactis, Lb. curvatus, Leuconostoc citreum, Ln. mesenteroides and Lb. zymae were also recovered from some samples. Regarding the yeast microbiota, it was dominated by Saccharomyces cerevisiae in 11 sourdoughs and Pichia membranifaciens and P. fermentans in one sourdough each. Wickerhamomyces anomalus and Kazachstania humilis were also recovered from one sample. RNA-based PCR-DGGE provided with nearly identical results with DNA-based one; in only one sample the latter provided an additional band. In general, the limitations of this approach, namely co-migration of amplicons from different species to the same electrophoretic position and multiband profile of specific isolates, greatly reduced resolution capacity, which resulted in only partial verification of the microbial ecology detected by culture-dependent approach in the majority of sourdough samples. Our knowledge regarding the microecosystem of spontaneously fermented Greek wheat-based sourdoughs was expanded, through the study of sourdoughs originating from regions of Greece that were not previously assessed.
Collapse
Affiliation(s)
- Maria K. Syrokou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Christina Themeli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
- Correspondence:
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Eleftherios H. Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| |
Collapse
|
38
|
Dynamics of microbial community and changes of metabolites during production of type Ι sourdough steamed bread made by retarded sponge-dough method. Food Chem 2020; 330:127316. [DOI: 10.1016/j.foodchem.2020.127316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
39
|
Rogalski E, Ehrmann MA, Vogel RF. Intraspecies diversity and genome-phenotype-associations in Fructilactobacillus sanfranciscensis. Microbiol Res 2020; 243:126625. [PMID: 33129664 DOI: 10.1016/j.micres.2020.126625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/04/2023]
Abstract
In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts.
Collapse
Affiliation(s)
- Esther Rogalski
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
40
|
Çakır E, Arıcı M, Durak MZ. Biodiversity and techno-functional properties of lactic acid bacteria in fermented hull-less barley sourdough. J Biosci Bioeng 2020; 130:450-456. [PMID: 32782196 DOI: 10.1016/j.jbiosc.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to characterize the biodiversity of lactic acid bacteria (LAB) isolated from spontaneously-fermented hull-less barley sourdough and to determine its technological properties. Biodiversity was investigated by analysis of colonies isolated from sourdough on four different agar media. Of the 80 isolates, 67 were rapidly pre-identified as LAB using Fourier transforms infrared spectroscopy (FTIR). As a result of cluster analysis, 32 lactic acid bacteria chosen from different branches were identified. According to the polymerase chain reaction (PCR) results, 9 different species were identified: Pediococcus (dominant species), Lactobacillus curvatus, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus musae, Lactobacillus paralimentarius, Leuconostoc mesenteroides and Lactobacillus equigenerosi. The most species and strain diversity among the media was determined in ModMRS environment. Unlike other studies about hull-less barley, Lactobacillus equigenerosi was identified in this study. LABs were identified with salt and acid tolerance. Generally, different levels of antibacterial activity in these species were shown against (rope spoilage) food borne pathogens. The greatest antimicrobial effect was observed for Pediococcus acidilactici SAB26, Lactobacillus plantarum SAB15 and Pediococcus acidilactici SAB13 compared to the other strains. Pediococcus species were found to have the highest antifungal effect against Penicillium carneum, Aspergillus flavus and A. niger. The phytase activity of LAB, which increases mineral bioavailability, was observed to be highest in Lactobacillus plantarum, Pediococcus pentosaceus, and Leuconostoc mesenteroides.
Collapse
Affiliation(s)
- Elif Çakır
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey.
| | - Muhammet Arıcı
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey
| | - Muhammed Zeki Durak
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey
| |
Collapse
|
41
|
Tlais AZA, Da Ros A, Filannino P, Vincentini O, Gobbetti M, Di Cagno R. Biotechnological re-cycling of apple by-products: A reservoir model to produce a dietary supplement fortified with biogenic phenolic compounds. Food Chem 2020; 336:127616. [PMID: 32763733 DOI: 10.1016/j.foodchem.2020.127616] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, DPPH scavenging capacity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the LC-MS/MS validated method. The accumulation of phenolic acids derivatives highlighted the microbial metabolism during AP fermentation. Bio-converted phenolics were likely responsible for the increased DPPH scavenging capacity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells, and preserved the integrity of tight junctions.
Collapse
Affiliation(s)
- Ali Z A Tlais
- Faculty of Sciences and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Alessio Da Ros
- Faculty of Sciences and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Olimpia Vincentini
- U.O Alimentazione, Nutrizione e Salute, Dipartimento Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Roma, Italy
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, Bolzano, Italy.
| |
Collapse
|
42
|
Comasio A, Verce M, Van Kerrebroeck S, De Vuyst L. Diverse Microbial Composition of Sourdoughs From Different Origins. Front Microbiol 2020; 11:1212. [PMID: 32760353 PMCID: PMC7374928 DOI: 10.3389/fmicb.2020.01212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023] Open
Abstract
Hundreds of sourdoughs have been investigated in the last decades. However, many studies used a culture-dependent and/or culture-independent microbiological approach [mainly based on denaturing gradient gel electrophoresis (DGGE) of PCR amplicons], seldomly combined with a metabolite target analysis, to characterize the microbial species communities of the sourdoughs examined. Moreover, attention was mainly paid on lactic acid bacteria (LAB) and yeast species. In the present study, distinct household-scale (including an artisan lambic brewery) and artisan bakery-scale backslopped sourdoughs (17 in total), obtained from different regions (Belgium, France, United Kingdom, and USA), were examined through a multiphasic approach, encompassing a culture-dependent analysis [targeting LAB, acetic acid bacteria (AAB), and yeasts], different culture-independent techniques [rRNA-PCR-DGGE, metagenetics, and metagenomics (four bakery sourdoughs)], and metabolite target analysis. It turned out that the microbial species diversity of the sourdoughs was influenced by the house microbiota of the producer. Further, when the producer made use of different flours, the sourdoughs harbored similar microbial communities, independent of the flour used. AAB were only present in the Belgian sourdoughs, which might again be related to the processing environment. Fructilactobacillus sanfranciscensis (formerly known as Lactobacillus sanfranciscensis) was the prevalent LAB species of the eight sourdoughs produced by two of the three bakeries of different countries analyzed. These sourdoughs were characterized by the presence of either Saccharomyces cerevisiae or Kazachstania humilis. Moreover, the presence of Fl. sanfranciscensis was positively correlated with the production of mannitol and negatively correlated with the presence of other LAB or AAB species. Sourdoughs produced in an artisan lambic brewery were characterized by the presence of the yeast species Dekkera anomala and Pichia membranifaciens. One household sourdough was characterized by the presence of uncommon species, such as Pediococcus parvulus and Pichia fermentans. Metagenomic sequencing allowed the detection of many more LAB and AAB species than the other methods applied, which opened new frontiers for the understanding of the microbial communities involved during sourdough production processes.
Collapse
Affiliation(s)
| | | | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
43
|
Microbial Diversity Associated with Gwell, a Traditional French Mesophilic Fermented Milk Inoculated with a Natural Starter. Microorganisms 2020; 8:microorganisms8070982. [PMID: 32629873 PMCID: PMC7409170 DOI: 10.3390/microorganisms8070982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Gwell is a traditional mesophilic fermented milk from the Brittany region of France. The fermentation process is based on a back-slopping method. The starter is made from a portion of the previous Gwell production, so that Gwell is both the starter and final product for consumption. In a participatory research framework involving 13 producers, Gwell was characterized from both the sensory and microbial points of view and was defined by its tangy taste and smooth and dense texture. The microbial community of typical Gwell samples was studied using both culture-dependent and culture-independent approaches. Lactococcus lactis was systematically identified in Gwell, being represented by both subspecies cremoris and lactis biovar diacetylactis which were always associated. Geotrichum candidum was also found in all the samples. The microbial composition was confirmed by 16S and ITS2 metabarcoding analysis. We were able to reconstruct the history of Gwell exchanges between producers, and thus obtained the genealogy of the samples we analyzed. The samples clustered in two groups which were also differentiated by their microbial composition, and notably by the presence or absence of yeasts identified as Kazachstania servazii and Streptococcus species.
Collapse
|
44
|
Boyaci‐Gunduz CP, Erten H. Predominant yeasts in the sourdoughs collected from some parts of Turkey. Yeast 2020; 37:449-466. [DOI: 10.1002/yea.3500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Cennet Pelin Boyaci‐Gunduz
- Faculty of Agriculture, Food Engineering Department Cukurova University Adana Turkey
- Faculty of Engineering, Food Engineering Department Adana Alparslan Turkes Science and Technology University Adana Turkey
| | - Huseyin Erten
- Faculty of Agriculture, Food Engineering Department Cukurova University Adana Turkey
| |
Collapse
|
45
|
Fraberger V, Unger C, Kummer C, Domig KJ. Insights into microbial diversity of traditional Austrian sourdough. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Abedfar A, Abbaszadeh S, Hosseininezhad M, Taghdir M. RETRACTED: Physicochemical and biological characterization of the EPS produced by L. cidophilus isolated from rice bran sourdough. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Intraspecific diversity and fermentative properties of Saccharomyces cerevisiae from Chinese traditional sourdough. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Di Cagno R, Filannino P, Cantatore V, Polo A, Celano G, Martinovic A, Cavoski I, Gobbetti M. Design of potential probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. Int J Food Microbiol 2020; 323:108591. [PMID: 32222654 DOI: 10.1016/j.ijfoodmicro.2020.108591] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 01/10/2023]
Abstract
We carried out a step-by-step accurate procedure to design yeast starters with probiotic and technological traits to ferment cornelian cherry fruits puree (CP). Pichia kudriavzevii DCNa1 and Wickerhamomyces subpelliculosus DFNb6 were selected as binary starters due to their metabolic traits and low ethanol yield. Fermentation by selected starters positively affected the physical stability of CP. Depletion of loganic and cornuside acids during CP fermentation, leads us to speculate that yeasts might be involved in the conversion of iridoids to bioactive derivatives. Compared to unfermented CP, fermentation also affected the profile of CP volatiles, resulting in higher amount of alcohols and esters, and lower levels of aldehydes and alkanes. Viable cell number of selected yeasts in CP after 21 days of storage at 4 °C as well as after in vitro simulated digestion remained above the minimum dose recommended for a probiotic beverage. Under the in vitro gastrointestinal batch simulating the digestion process, we provided original evidence about the ability of yeasts conveyed by fermented CP to modulate the intestinal microbiota. We also faced some issues related to the yeasts physiology and the link between biofilm and cell viability that still deserve to be more in depth investigated.
Collapse
Affiliation(s)
- Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Andrea Polo
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Anđela Martinovic
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, Valenzano, 70010 Bari, Italy
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, Valenzano, 70010 Bari, Italy
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
49
|
Xing X, Ma J, Fu Z, Zhao Y, Ai Z, Suo B. Diversity of bacterial communities in traditional sourdough derived from three terrain conditions (mountain, plain and basin) in Henan Province, China. Food Res Int 2020; 133:109139. [PMID: 32466894 DOI: 10.1016/j.foodres.2020.109139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 12/23/2022]
Abstract
To elucidate the bacterial community composition of sourdoughs from different terrain conditions, thirty-two Chinese traditional sourdough samples were collected from three terrain conditions (mountain, plain and basin) in Henan Province. High-throughput sequencing and culture-dependent approaches were employed to identify the bacterial diversity of the sourdough samples. A total of two hundred and six isolates were characterized via 16S rRNA gene sequencing. Pediococcus pentosaceus was isolated from every sample and was the predominant species in the sourdough samples, accounting for 58% of the relative abundance. High-throughput sequencing revealed that the predominant genera (mainly Pediococcus) in the basin group were significantly different from those in the mountain and plain groups. The genus Lactobacillus was predominant in the plain and mountain sourdough samples. Pediococcus pentosaceus was the absolute dominant strain in the basin sourdough samples. Acetobacter, which was widely distributed only in mountain samples, was recognized as the representative genus of the mountain samples. Moreover, we first reported Gluconobacter oxydans in sourdough. This study provided insight into the bacterial diversity of sourdough from three terrain conditions (mountain, plain and basin) in Henan Province and could serve as a reference for the isolation of desired bacterial strains.
Collapse
Affiliation(s)
- Xiaolong Xing
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingyi Ma
- College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhongjun Fu
- Maize Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Yirui Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China.
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China.
| |
Collapse
|
50
|
Çakır E, Arıcı M, Durak MZ, Karasu S. The molecular and technological characterization of lactic acid bacteria in einkorn sourdough: effect on bread quality. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00412-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|