1
|
da Conceição RRP, Queiroz VAV, Simeone MLF, da Silva Araújo DD, do Carmo PHF, de Menezes CB, Figueiredo JEF, de Resende Stoianoff MA. Does sorghum phenolic extract have antifungal effect? Braz J Microbiol 2024; 55:1829-1839. [PMID: 38722522 PMCID: PMC11153430 DOI: 10.1007/s42770-024-01327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
This study aimed to evaluate the antifungal effect of SC319 sorghum phenolic extract (SPE) on the Aspergillus, Fusarium, Penicillium, Stenocarpella, Colletotrichum, and Macrophomina genera. SPE was extracted by 20% ethanol and used in four assays: (1) against Fusarium verticillioides in solid (PDA) and liquid (PD) potato dextrose media; (2) Minimum Inhibitory Concentration (MIC) assay with 16 fungi isolates; (3) Conidial Germination Rate (CGR) with 14 fungi isolates and (4) Growth Curve (GC) with 11 fungi isolates. There was no reduction in the mycelial growth (colony diameter and dry weight) and in the number of Fusarium verticillioides spores in assay 1 (PDA and PD). The colony's dry weight was almost six times higher in the presence than in the absence of SPE. All SPE samples presented MIC (assay 1) above the maximum concentration tested (5000 µg.mL-1) for the 16 isolates. Also, there was no inhibitory effect of SPE on conidia germination rate (CGR). Oppositely, in GC assay, the control had a higher CFU count than the samples with SPE in 24 h. This result suggests that SPE can delay the fungal growth in the first hours of incubation, which is an important finding that may help reduce the severity of fungal diseases in plants. However, further studies are needed to confirm these results, including sorghum genotypes with different profiles of phenolic compounds. Although the SC319 SPE was not effective as an antifungal agent, it may have potential as a growth promoter of beneficial fungi in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Renata Regina Pereira da Conceição
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, no 6.627, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | - Paulo Henrique Fonseca do Carmo
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, no 6.627, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | - Maria Aparecida de Resende Stoianoff
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, no 6.627, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
2
|
Tardif C, Rouger C, Miranda J, Ahmed OS, Richard-Forget F, Atanasova V, Waffo-Teguo P. Targeting of Antifungal Metabolites from Grapevine Byproducts by UPLC-HRMS/MS Approaches Using Bioactivity-Based Molecular Networking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9621-9636. [PMID: 38648422 DOI: 10.1021/acs.jafc.3c09531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.
Collapse
Affiliation(s)
- Charles Tardif
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Caroline Rouger
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave d'Ornon, France
| | - Julie Miranda
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Omar S Ahmed
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
- Department of Analytical Chemistry, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Al-Motamayez District, P.O. Box 77, 3236101 6th of October City, Egypt
| | | | - Vessela Atanasova
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Pierre Waffo-Teguo
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| |
Collapse
|
3
|
Sandu-Bălan (Tăbăcariu) A, Ifrim IL, Patriciu OI, Ștefănescu IA, Fînaru AL. Walnut By-Products and Elderberry Extracts-Sustainable Alternatives for Human and Plant Health. Molecules 2024; 29:498. [PMID: 38276576 PMCID: PMC10819889 DOI: 10.3390/molecules29020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
A current alternative for sustainable development through green chemistry is the replacement of synthetic compounds with natural ones through the superior capitalization of natural resources, with numerous applications in different fields. The benefits of walnuts (Juglans regia L.) and elderberries (Sambucus nigra L.) have been known since ancient times, due to the presence of phytochemicals such as flavonoids, polyphenols, carotenoids, alkaloids, nitrogen-containing compounds, tannins, steroids, anthocyanins, etc. These active compounds have multiple biological activities for human health, including benefits that are antibacterial, antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, antihypertensive, neuroprotective, etc. Like other medicinal plants, the walnut and the elderberry possess important phytosanitary properties (antibacterial, antifungal, and insecticidal) and their extracts can also be used as environmentally safe biopesticides, with the result that they constitute a viable and cheap alternative to environmentally harmful synthetic products. During recent years, walnut by-products and elderberries have attracted the attention of researchers, and investigations have focused on the species' valuable constituents and active properties. Comparing the information from the literature regarding the phytochemical profile and biological activities, it is highlighted that, apart from the predominant specific compounds, the walnut and the elderberry have common bioactive compounds, which come from six classes (phenols and derivatives, flavonoids, hydroxycinnamic acids, tannins, triterpenoids, and phytosteroids), and act on the same microorganisms. From this perspective, the aim of this review is to provide an overview of the bioactive compounds present in the different constitutive parts of walnut by-products and elderberries, which present a specific or common activity related to human health and the protection of agricultural crops in the context of sustainable development.
Collapse
Affiliation(s)
- Anca Sandu-Bălan (Tăbăcariu)
- Doctoral School in Environmental Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania;
| | - Irina-Loredana Ifrim
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| | - Oana-Irina Patriciu
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| | - Ioana-Adriana Ștefănescu
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| | - Adriana-Luminița Fînaru
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| |
Collapse
|
4
|
Joneidi S, Alizadeh SR, Ebrahimzadeh MA. Chlorogenic Acid Derivatives: Structural Modifications, Drug Design, and Biological Activities: A Review. Mini Rev Med Chem 2024; 24:748-766. [PMID: 37608658 DOI: 10.2174/1389557523666230822095959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/15/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Phenolic acids have recently gained considerable attention because of their numerous practical, biological, and pharmacological benefits. Various polyphenolic compounds are widely distributed in plant sources. Flavonoids and phenolic acids are the two main polyphenolic compounds that many plants contain abundant polyphenols. Chlorogenic acid, one of the most abundant phenolic acids, has various biological activities, but it is chemically unstable and degrades into other compounds or different enzymatic processes. METHODS In this review, we have studied many publications about CA and its derivatives. CA derivatives were classified into three categories in terms of structure and determined each part's effects on the body. The biological evaluations, structure-activity relationship, and mechanism of action of CA derivatives were investigated. The search databases for this review were ScienceDirect, Scopus, Pub- Med and google scholar. RESULTS Many studies have reported that CA derivatives have demonstrated several biological effects, including anti-oxidant, anti-inflammatory, anti-microbes, anti-mutation, anti-carcinogenic, anti-viral, anti-hypercholesterolemia, anti-hypertensive, anti-bacterial, and hypoglycemic actions. The synthesis of new stable CA derivatives can enhance its metabolic stability and biological activity. CONCLUSION The present study represented different synthetic methods and biological activities of CA derivatives. These compounds showed high antioxidant activity across a wide range of biological effects. Our goal was to help other researchers design and develop stable analogs of CA for the improvement of its metabolic stability and the promotion of its biological activity.
Collapse
Affiliation(s)
- Shima Joneidi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Chtioui W, Heleno S, Migheli Q, Rodrigues P. Plant extracts as biocontrol agents against Aspergillus carbonarius growth and ochratoxin A production in grapes. Int J Food Microbiol 2023; 407:110425. [PMID: 37804776 DOI: 10.1016/j.ijfoodmicro.2023.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Aspergillus carbonarius (Bainier) Thom. is an important pathogen and ochratoxin A (OTA) producer in grapes that can be controlled by adopting sustainable approaches. Here we evaluate the application of natural plant extracts as an alternative to synthetic fungicides to reduce OTA contamination and to prevent infection of grapes by two isolates of A. carbonarius. In a preliminary screening, natural extracts of chestnut flower, cistus, eucalyptus, fennel, and orange peel were evaluated for their antifungal and anti-mycotoxigenic efficiency in a grape-based medium at concentrations of 10 and 20 mg/mL. Cistus and orange peel extracts demonstrated the best antifungal activity at both concentrations. Although the eucalyptus extract demonstrated no significant effect on Aspergillus vegetative growth, it significantly reduced OTA by up to 85.75 % at 10 mg/mL compared to the control. Chestnut flower, cistus, eucalyptus, and orange peel extracts were then tested at the lowest concentration (10 mg/mL) for their antifungal activity in artificially inoculated grape berries. The cistus and orange peel extracts demonstrated the greatest antifungal activity and significantly reduced mold symptoms in grapes. Moreover, all tested natural extracts were able to reduce OTA content in grape berries (17.7 ± 8.3 % - 82.3 ± 3.85 % inhibition), although not always significantly. Eucalyptus extract was particularly efficient, inhibiting OTA production by both strains of A. carbonarius by up to >80 % with no effects on fungal growth. The use of natural eucalyptus extract represents a feasible strategy to reduce OTA formation without disrupting fungal growth, apparently maintaining the natural microbial balance, while cistus and orange peel extracts appear promising as inhibitors of A. carbonarius mycelial growth. Our findings suggest that plant extracts may be useful sources of bioactive chemicals for preventing A. carbonarius contamination and OTA production. Nonetheless, it will be necessary to evaluate their effect on the organoleptic properties of the grapes.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Sandrina Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
6
|
Youssef NH, El Gammal MH, Altaie HAA, Qadhi A, Tufarelli V, Losacco C, Abd El‐Hack ME, Abdelsalam NR. Mycotoxins in milk: Occurrence and evaluation of certain detoxification attempts. Food Sci Nutr 2023; 11:2751-2766. [PMID: 37324856 PMCID: PMC10261776 DOI: 10.1002/fsn3.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 04/05/2023] Open
Abstract
Milk contaminated with mycotoxins is a significant issue affecting human health, especially in infants. The current study aimed to investigate the presence of mycotoxins in milk collected from women farmers' vendors (WFV), and to evaluate certain herbal plant fibers as green mycotoxin binders. Moreover, explore the binding efficiency ratios of mycotoxins using shaking or soaking process incorporated with herbal extracts. Furthermore, compare the taste evaluations of tested milk are enriched with herbal extracts. Results indicated that the fumonisins were not detected in the collected cow milk samples but realized a 25% occurrence ratio in buffalo's milk samples. A high occurrence ratio of aflatoxin M1 (aflaM1) was observed in buffalo and cow milk samples. The soaking process of plant fibers in contaminated milk overnight significantly degrades and adsorbs mycotoxins particles. The shacking process incorporated with plant fibers exhibited more effectiveness in mycotoxins degradation than soaking or shacking processes alone. The speed of shacking process played an important role in the mycotoxin's binding process. All the tested plant fibers effectively reduced all mycotoxin presence in contaminated milk, especially green tea, during the soaking or shacking process. Moreover, the shacking process incorporated with plant fibers promoted and supported the mycotoxins degradation process.
Collapse
Affiliation(s)
- Nesrine H. Youssef
- Regional Center for Food and FeedDekhila PortAlexandriaEgypt
- Agricultural Research CenterAlexandriaEgypt
| | | | - Hayman A. A. Altaie
- Department of Medical Laboratory Techniques, College of Medical TechnologyAl‐Kitab UniversityKirkukIraq
| | - Alaa Qadhi
- Clinical Nutrition Department, Faculty of Applied Medical SciencesUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area, Section of Veterinary Science and Animal ProductionUniversity of Bari ‘Aldo Moro’ValenzanoItaly
| | - Caterina Losacco
- Department of Precision and Regenerative Medicine and Jonian Area, Section of Veterinary Science and Animal ProductionUniversity of Bari ‘Aldo Moro’ValenzanoItaly
| | | | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha)Alexandria UniversityAlexandriaEgypt
| |
Collapse
|
7
|
Nehela Y, Mazrou YSA, Taha NA, Elzaawely AA, Xuan TD, Makhlouf AH, El-Nagar A. Hydroxylated Cinnamates Enhance Tomato Resilience to Alternaria alternata, the Causal Agent of Early Blight Disease, and Stimulate Growth and Yield Traits. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091775. [PMID: 37176833 PMCID: PMC10181299 DOI: 10.3390/plants12091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The important vegetable crop, tomato, is challenged with numerous abiotic and biotic stressors, particularly the newly emerged fungicide-resistant strains of phytopathogenic fungi such as Alternaria alternata, the causal agent of early blight disease. The current study investigated the potential antifungal activity of four cinnamate derivatives including cinnamic acid, ρ-coumaric acid, caffeic acid, and ferulic acid against A. alternata. Our in vitro findings showed that all tested compounds exhibited dose-dependent fungistatic action against A. alternata when their concentrations were increased from 0.1, 0.3, 0.5, and 0.7, to 0.9 mM, respectively. The high concentration of ferulic acid (0.9 mM) completely inhibited the radial mycelial growth of A. alternata and it was comparable to the positive control (difenoconazole fungicide). Additionally, under greenhouse conditions, foliar application of the four tested cinnamates significantly reduced the severity of early blight disease without any phytotoxicity on treated tomato plants. Moreover, it significantly improved the growth traits (plant height, total leaf area, number of leaves per plant, and shoot fresh weight), total chlorophyll, and yield components (number of flowers per plant, number of fruits per plant, and fruit yield) of treated A. alternata-infected plants. Collectively, our findings suggest that cinnamate derivatives could be good candidates as eco-friendly alternatives to reduce the use of chemical fungicides against A. alternata.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser S A Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
- Department of Agriculture Economic, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Naglaa A Taha
- Vegetable Diseases Research Department, Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt
| | - Abdelnaser A Elzaawely
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Tran Dang Xuan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - Abeer H Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Asmaa El-Nagar
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
8
|
Lopes M, Silva AS, Séndon R, Barbosa-Pereira L, Cavaleiro C, Ramos F. Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini. Molecules 2023; 28:molecules28062726. [PMID: 36985696 PMCID: PMC10059647 DOI: 10.3390/molecules28062726] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Increasing soil salinisation represents a serious threat to food security, and therefore the exploitation of high-yielding halophytes, such as Salicornia and Sarcocornia, needs to be considered not merely in arid regions but worldwide. In this study, Salicornia ramosissima and Sarcocornia perennis alpini were evaluated for nutrients, bioactive compounds, antioxidant capacity, and contaminants. Both were shown to be nutritionally relevant, exhibiting notable levels of crude fibre and ash, i.e., 11.26-15.34 and 39.46-40.41% dry weight (dw), respectively, and the major minerals were Na, K, and Mg. Total phenolics thereof were 67.05 and 38.20 mg of gallic acid equivalents/g extract dw, respectively, mainly p-coumaric acid and quercetin. Both species displayed antioxidant capacity, but S. ramossima was prominent in both the DPPH and ß-carotene bleaching assays. Aflatoxin B1 was detected in S. ramosissima, at 5.21 µg/Kg dw, which may pose a health threat. The Cd and Pb levels in both were low, but the 0.01 mg/Kg Hg in S. perennis alpini met the maximum legal limit established for marine species including algae. Both species exhibit high potential for use in the agro-food, cosmetics, and pharmaceutical sectors, but specific regulations and careful cultivation strategies need to be implemented, in order to minimise contamination risks by mycotoxins and heavy metals.
Collapse
Affiliation(s)
- Maria Lopes
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Centre for Study in Animal Science (CECA), ICETA, University of Porto, 4051-501 Porto, Portugal
| | - Raquel Séndon
- Analytical Chemistry, Nutrition and Food Science Department, Pharmacy Faculty, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Letricia Barbosa-Pereira
- Analytical Chemistry, Nutrition and Food Science Department, Pharmacy Faculty, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Cavaleiro
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Fernando Ramos
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
9
|
A secondary function of trehalose-6-phosphate synthase is required for resistance to oxidative and desiccation stress in Fusarium verticillioides. Fungal Biol 2023; 127:918-926. [PMID: 36906382 DOI: 10.1016/j.funbio.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The disaccharide trehalose has long been recognized for its role as a stress solute, but in recent years some of the protective effects previously ascribed to trehalose have been suggested to arise from a function of the trehalose biosynthesis enzyme trehalose-6-phosphate (T6P) synthase that is distinct from its catalytic activity. In this study, we use the maize pathogenic fungus Fusarium verticillioides as a model to explore the relative contributions of trehalose itself and a putative secondary function of T6P synthase in protection against stress as well as to understand why, as shown in a previous study, deletion of the TPS1 gene coding for T6P synthase reduces pathogenicity against maize. We report that a TPS1-deletion mutant of F. verticillioides is compromised in its ability to withstand exposure to oxidative stress meant to simulate the oxidative burst phase of maize defense and experiences more ROS-induced lipid damage than the wild-type strain. Eliminating T6P synthase expression also reduces resistance to desiccation, but not resistance to phenolic acids. Expression of catalytically-inactive T6P synthase in the TPS1-deletion mutant leads to a partial rescue of the oxidative and desiccation stress-sensitive phenotypes, suggesting the importance of a T6P synthase function that is independent of its role in trehalose synthesis.
Collapse
|
10
|
Hussain K, Jaweed TH, Kamble AC. Modulation of phenylpropanoid and lignin biosynthetic pathway is crucial for conferring resistance in pigeon pea against Fusarium wilt. Gene 2023; 851:146994. [DOI: 10.1016/j.gene.2022.146994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
11
|
Valanciene E, Malys N. Advances in Production of Hydroxycinnamoyl-Quinic Acids: From Natural Sources to Biotechnology. Antioxidants (Basel) 2022; 11:antiox11122427. [PMID: 36552635 PMCID: PMC9774772 DOI: 10.3390/antiox11122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hydroxycinnamoyl-quinic acids (HCQAs) are polyphenol esters formed of hydroxycinnamic acids and (-)-quinic acid. They are naturally synthesized by plants and some micro-organisms. The ester of caffeic acid and quinic acid, the chlorogenic acid, is an intermediate of lignin biosynthesis. HCQAs are biologically active dietary compounds exhibiting several important therapeutic properties, including antioxidant, antimicrobial, anti-inflammatory, neuroprotective, and other activities. They can also be used in the synthesis of nanoparticles or drugs. However, extraction of these compounds from biomass is a complex process and their synthesis requires costly precursors, limiting the industrial production and availability of a wider variety of HCQAs. The recently emerged production through the bioconversion is still in an early stage of development. In this paper, we discuss existing and potential future strategies for production of HCQAs.
Collapse
Affiliation(s)
- Egle Valanciene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: (E.V.); (N.M.)
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: (E.V.); (N.M.)
| |
Collapse
|
12
|
Ma Y, Zhou R, Luo X, Li A, Wang R, Zhang B, Zhou H, Wu T, Wang Y, An J, Zhang Z, Zhao W, Yang C, Ding YY, Liu Y. Inhibition of
Fusarium Graminearum
Growth and Deoxynivalenol Biosynthesis by Phenolic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202201546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yue Ma
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Rui Zhou
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiong‐Fei Luo
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - An‐Ping Li
- Gansu Institute for Drug Control State Key Laboratory of Grassland Agro-ecosystems Lanzhou 730000 P. R. China
| | - Rui Wang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong Province State Key Laboratory of Grassland Agro-ecosystems Weifang University Weifang 261061 China
| | - Bao‐Qi Zhang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Han Zhou
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Tian‐Lin Wu
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yi‐Rong Wang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jun‐Xia An
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Zhi‐Jun Zhang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Wen‐Bin Zhao
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Cheng‐Jie Yang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yan Yan Ding
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Ying‐Qian Liu
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
- School of Pharmacy Lanzhou University State Key Laboratory of Grassland Agro-ecosystems Lanzhou University Lanzhou 730000 China
| |
Collapse
|
13
|
Acuña-Gutiérrez C, Jiménez VM, Müller J. Occurrence of mycotoxins in pulses. Compr Rev Food Sci Food Saf 2022; 21:4002-4017. [PMID: 35876644 DOI: 10.1111/1541-4337.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023]
Abstract
Pulses, dry grains of the Fabaceae family used for food and feed, are particularly important agricultural products with increasing commercial and nutritional relevance. Similar to other plant commodities, pulses can be affected by fungi in the field and during postharvest. Some of these fungi produce mycotoxins, which can seriously threaten human and animal health by causing acute poisoning and chronic effects. In this review, information referring to the analysis and occurrence of these compounds in pulses is summarized. An overview of the aims pursued, and of the methodologies employed for mycotoxin analysis in the different reports is presented, followed by a comprehensive review of relevant articles on mycotoxins in pulses, categorized according to the geographical region, among other considerations. Moreover, special attention was given to the effect of climatic conditions on microorganism infestation and mycotoxin accumulation. Furthermore, the limited literature available was considered to look for possible correlations between the degree of fungal infection and the mycotoxin incidence in pulses. In addition, the potential effect of certain phenolic compounds on reducing fungi infestation and mycotoxin accumulation was reviewed with examples on beans. Emphasis was also given to a specific group of mycotoxins, the phomopsins, that mainly impact lupin. Finally, the negative consequences of mycotoxin accumulation on the physiology and development of contaminated seeds and seedlings are presented, focusing on the few reports available on pulses. Given the agricultural and nutritional potential that pulses offer for human well-being, their promotion should be accompanied by attention to food safety issues, and mycotoxins might be among the most serious threats. Practical Application: According to the manuscript template available in the website, this section is for "JFS original research manuscripts ONLY; optional". Since we are publishing in CRFSFS this requirement will not be done.
Collapse
Affiliation(s)
- Catalina Acuña-Gutiérrez
- Institute of Agricultural Engineering Tropics and Subtropics Group (440e), University of Hohenheim, Stuttgart, Germany.,CIGRAS, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Víctor M Jiménez
- CIGRAS, Universidad de Costa Rica, San Pedro, Costa Rica.,IIA, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Joachim Müller
- Institute of Agricultural Engineering Tropics and Subtropics Group (440e), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Jing Y, Zhan M, Li C, Pei T, Wang Q, Li P, Ma F, Liu C. The apple FERONIA receptor-like kinase MdMRLK2 negatively regulates Valsa canker resistance by suppressing defence responses and hypersensitive reaction. MOLECULAR PLANT PATHOLOGY 2022; 23:1170-1186. [PMID: 35412700 PMCID: PMC9276949 DOI: 10.1111/mpp.13218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 05/05/2023]
Abstract
Valsa canker, caused by the fungus Valsa mali, is one of the most destructive diseases of apple trees in China and other East Asian countries. The plant receptor-like kinase FERONIA is involved in plant cell growth, development, and immunity. However, little is known about the function of FERONIA in apple defence against V. mali. In this study, we found that MdMRLK2 was highly induced by V. mali in twigs of V. mali-susceptible Malus mellana but not in those of the resistant species Malus yunnaensis. 35S:MdMRLK2 apple plants showed compromised resistance relative to wild-type (WT) plants. Further analyses indicated that 35S:MdMRLK2 apple plants had enhanced abscisic acid (ABA) levels and reduced salicylic acid (SA) levels relative to the WT on V. mali infection. MdMRLK2 overexpression also suppressed polyphenol accumulation and inhibited the activities of phenylalanine ammonia-lyase (PAL), β-1,3-glucanase (GLU), and chitinase (CHT) during V. mali infection. Moreover, MdMRLK2 interacted with MdHIR1, a hypersensitive-induced response protein, and suppressed the MdHIR1-mediated hypersensitive reaction (HR), probably by impairing MdHIR1 self-interaction. Collectively, these findings demonstrate that overexpression of MdMRLK2 compromises Valsa canker resistance, probably by (a) altering ABA and SA levels, (b) suppressing polyphenol accumulation, (c) inhibiting PAL, GLU, and CHT activities, and (d) blocking MdHIR1-mediated HR by disrupting MdHIR1 self-interaction.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
15
|
Chitosan for eco-friendly control of mycotoxinogenic Fusarium graminearum. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Wang F, Chen Y, Hu H, Liu X, Wang Y, Saleemi MK, He C, Haque MA. Protocatechuic acid: A novel detoxication agent of fumonisin B1 for poultry industry. Front Vet Sci 2022; 9:923238. [PMID: 35958305 PMCID: PMC9360745 DOI: 10.3389/fvets.2022.923238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Fumonisin B1 (FB1) is a major fusarium mycotoxin that largely contaminates feedstuffs and foods, posing a health risk to both animals and humans. This mycotoxin can enter the human body directly through contaminated food consumption or indirectly by toxins and their metabolites. In a prior study, feed-borne FB1 is one of the leading mycotoxins in breeder eggs, leading to reduced hatchability and gizzard ulceration in chicken progenies. Currently, no effective way is available to remove FB1 from feeds and human-contaminated foods. We hypothesize that FB1 can be reduced to low risk by protocatechuic acid (PCA). To assess the ability of FB1 to be degraded in vivo, 1 ppm of FB1 was treated with PCA, or D-glucose, or silymarin, or anti-FB1 monoclonal antibody. Our study revealed that both D-glucose and PCA exhibited 53.4 and 71.43% degradation, respectively, at 80°C for 2 h, while 35.15% of FB1 detoxification was determined in the silymarin group at 60°C for 0.5 h. A dose-dependent manner was found after treatment with D-glucose or PCA at 80°C for 2 h. As for detoxification of anti-FB1 monoclonal antibody, the 1:3,000 dilution induced significant FB1 detoxification, accounting for 25.9% degradation at 25°C for 2 h. Furthermore, 50 SPF 11-day-old embryonated eggs were divided into 10 groups, with five eggs per group. Post treatment with PCA or D-glucose, or silymarin or anti-FB1 monoclonal antibody, the treated samples were inoculated into albumens and monitored daily until the hatching day. Consequently, 100% of the chickens survived in the D-glucose group and other control groups, except for the FB1 control group, while 80, 80, and 60% hatching rates were found in the PCA-treated group, the anti-FB1 monoclonal antibody-treated group, and the silymarin-treated group. Additionally, both the FB1 group and the silymarin-treated group yielded lower embryo growth than other groups did. Postmortem, lower gizzard ulceration index was determined in the PCA-treated group and the anti-FB1 monoclonal antibody-treated group compared to those of the silymarin-treated group and D-glucose-treated group. Based on the above evidence, PCA is a promising detoxification to reduce FB1 contamination in the poultry industry, contributing to the eradication of mycotoxin residuals in the food chain and maintaining food security for human beings.
Collapse
Affiliation(s)
- Fei Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Chen
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huilong Hu
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinyi Liu
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| |
Collapse
|
17
|
Nicaise V, Chereau S, Pinson-Gadais L, Verdal-Bonnin MN, Ducos C, Jimenez M, Coriou C, Bussière S, Robert T, Nguyen C, Richard-Forget F, Cornu JY. Interaction between the Accumulation of Cadmium and Deoxynivalenol Mycotoxin Produced by Fusarium graminearum in Durum Wheat Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8085-8096. [PMID: 35730681 DOI: 10.1021/acs.jafc.2c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Durum wheat is one of the cereal crops that accumulates the highest concentrations of cadmium (Cd) and deoxynivalenol (DON) mycotoxin in its grains, thereby affecting the safety of products made of durum wheat grains (pasta and semolina). This study investigates in planta the interaction between Cd and Fusarium graminearum, the main causal agent of DON accumulation in grains. A pot experiment was designed to characterize the response of durum wheat to F. graminearum infection at three levels of Cd exposure: 0.1, 2, and 10 mg Cd kg-1 soil, which showed that the accumulation of Cd and DON resulted from interacting processes. On the one hand, plant exposure to Cd reduced the concentration of DON in grains. The mitigating effect of Cd on DON accumulation was attributed to the restricted growth of F. graminearum, which could result from enhanced plant resistance to the fungal pathogen induced by Cd exposure. On the other hand, F. graminearum infection of durum wheat increased the Cd concentration in the grains. The promoting effect of Fusarium infection on Cd accumulation was attributed to decoupling of the allocation of Cd and photoassimilates to the grains and to the reduced strength of the grain sink for photoassimilates caused by the fungus. Provided that this result is confirmed in field conditions, it suggests that in Cd-contaminated soils, particular attention should be paid to agronomic practices that affect Fusarium head blight disease to avoid further increase in the risk of exceeding the regulatory limit set by the European Union for Cd in durum wheat.
Collapse
Affiliation(s)
- Valérie Nicaise
- ISPA, Bordeaux Sciences Agro, INRAE, Villenave-d'Ornon F-33882, France
- INRAE, MycSA, Villenave-d'Ornon F-33882, France
| | | | | | | | | | - Mélanie Jimenez
- ISPA, Bordeaux Sciences Agro, INRAE, Villenave-d'Ornon F-33882, France
| | - Cécile Coriou
- ISPA, Bordeaux Sciences Agro, INRAE, Villenave-d'Ornon F-33882, France
| | - Sylvie Bussière
- ISPA, Bordeaux Sciences Agro, INRAE, Villenave-d'Ornon F-33882, France
| | - Thierry Robert
- ISPA, Bordeaux Sciences Agro, INRAE, Villenave-d'Ornon F-33882, France
| | - Christophe Nguyen
- ISPA, Bordeaux Sciences Agro, INRAE, Villenave-d'Ornon F-33882, France
| | | | - Jean-Yves Cornu
- ISPA, Bordeaux Sciences Agro, INRAE, Villenave-d'Ornon F-33882, France
| |
Collapse
|
18
|
Abbas A, Yli-Mattila T. Biocontrol of Fusarium graminearum, a Causal Agent of Fusarium Head Blight of Wheat, and Deoxynivalenol Accumulation: From In Vitro to In Planta. Toxins (Basel) 2022; 14:299. [PMID: 35622546 PMCID: PMC9143666 DOI: 10.3390/toxins14050299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Crop diseases caused by Fusarium graminearum threaten crop production in both commercial and smallholder farming. F. graminearum produces deoxynivalenol mycotoxin, which is stable during food and feed processing. Therefore, the best way to prevent the sporulation of pathogens is to develop new prevention strategies. Plant-based pesticides, i.e., natural fungicides, have recently gained interest in crop protection as alternatives to synthetic fungicides. Herein we show that treatment with the methanolic extract of medicinal plant Zanthoxylum bungeanum (M20 extract), decreased F. graminearum growth and abrogated DON production. The F. graminearum DNA levels were monitored by a quantitative TaqMan real-time PCR, while DON accumulation was assessed by HPLC quantification. This M20 extract was mainly composed of four flavonoids: quercetin, epicatechin, kaempferol-3-O-rhamnoside, and hyperoside. The in vitro bioassay, which measured the percent inhibition of fungal growth, showed that co-inoculation of four F. graminearum strains with the M20 extract inhibited the fungal growth up to 48.5%. After biocontrol treatments, F. graminearum DNA level was reduced up to 85.5% compared to that of wheat heads, which received F. graminearum mixture only. Moreover, DON production was decreased in wheat heads by 73% after biocontrol treatment; meanwhile in wheat heads inoculated with F. graminearum conidia, an average of 2.263 ± 0.8 mg/kg DON was detected. Overall, this study is a successful case from in vitro research to in planta, giving useful information for wheat protection against F. graminearum responsible for Fusarium Head Blight and DON accumulation in grains. Further studies are needed to study the mechanism by which M20 extract inhibited the DON production and what changes happened to the DON biosynthetic pathway genes.
Collapse
Affiliation(s)
| | - Tapani Yli-Mattila
- Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland;
| |
Collapse
|
19
|
Gnonlonfoun E, Fotin G, Risler A, Elfassy A, Schwebel S, Schmitt M, Borges F, Mangavel C, Revol-Junelles AM, Fick M, Framboisier X, Rondags E. Inhibition of the Growth of Fusarium tricinctum and Reduction of Its Enniatin Production by Erwinia gerundensis Isolated from Barley Kernels. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2041970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eusèbe Gnonlonfoun
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Gabriela Fotin
- Institut Français des Boissons, de la Brasserie et de la Malterie (IFBM), Vandoeuvre-lès-Nancy, France
| | - Arnaud Risler
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Annelore Elfassy
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sophie Schwebel
- Institut Français des Boissons, de la Brasserie et de la Malterie (IFBM), Vandoeuvre-lès-Nancy, France
| | - Marc Schmitt
- Institut Français des Boissons, de la Brasserie et de la Malterie (IFBM), Vandoeuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Michel Fick
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Xavier Framboisier
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Emmanuel Rondags
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
20
|
Buckwheat Milling Waste Effects on Root Morphology and Mycorrhization of Silver Fir Seedlings Inoculated with Black Summer Truffle (Tuber aestivum Vittad.). FORESTS 2022. [DOI: 10.3390/f13020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large amounts of buckwheat waste are generated annually by the industry and are used in several different ways. To date, there has been little research regarding its suitability as a medium for growing seedlings in nurseries. The aim of this study was therefore to analyze the suitability of common and Tartary buckwheat wastes (brans and husks) as media used for raising seedlings. A pot experiment with five different treatments was carried out, in which silver fir root parameters were analyzed and compared 6 and 12 months after summer truffle-spore inoculation. A significantly higher concentration of the antioxidant rutin was confirmed in Tartary buckwheat bran compared to other buckwheat waste used. We also confirmed a significantly positive effect of added Tartary buckwheat husks on specific root length, root tip density, and specific root tip density compared to added common buckwheat husks or Tartary buckwheat bran, for which a significantly negative effect on branching density was confirmed. A significantly negative effect of added buckwheat husks and Tartary buckwheat bran was confirmed for summer truffle mycorrhization level.
Collapse
|
21
|
Ahmed OS, Tardif C, Rouger C, Atanasova V, Richard‐Forget F, Waffo‐Téguo P. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Compr Rev Food Sci Food Saf 2022; 21:1161-1197. [DOI: 10.1111/1541-4337.12891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Omar S. Ahmed
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Caroline Rouger
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA) INRAE Villenave d'Ornon France
| | | | - Pierre Waffo‐Téguo
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| |
Collapse
|
22
|
Chtioui W, Balmas V, Delogu G, Migheli Q, Oufensou S. Bioprospecting Phenols as Inhibitors of Trichothecene-Producing Fusarium: Sustainable Approaches to the Management of Wheat Pathogens. Toxins (Basel) 2022; 14:72. [PMID: 35202101 PMCID: PMC8875213 DOI: 10.3390/toxins14020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Fusarium spp. are ubiquitous fungi able to cause Fusarium head blight and Fusarium foot and root rot on wheat. Among relevant pathogenic species, Fusarium graminearum and Fusarium culmorum cause significant yield and quality loss and result in contamination of the grain with mycotoxins, mainly type B trichothecenes, which are a major health concern for humans and animals. Phenolic compounds of natural origin are being increasingly explored as fungicides on those pathogens. This review summarizes recent research activities related to the antifungal and anti-mycotoxigenic activity of natural phenolic compounds against Fusarium, including studies into the mechanisms of action of major exogenous phenolic inhibitors, their structure-activity interaction, and the combined effect of these compounds with other natural products or with conventional fungicides in mycotoxin modulation. The role of high-throughput analysis tools to decipher key signaling molecules able to modulate the production of mycotoxins and the development of sustainable formulations enhancing potential inhibitors' efficacy are also discussed.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy;
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| |
Collapse
|
23
|
Ramos AH, Timm NDS, Rockenbach BA, Ferreira CD, Hoffmann JF, de Oliveira M. Red rice drying and storage: Effects on technological properties and phenolic compounds of the raw and cooked grains. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Characteristic Volatile Fingerprints of Four Chrysanthemum Teas Determined by HS-GC-IMS. Molecules 2021; 26:molecules26237113. [PMID: 34885694 PMCID: PMC8658894 DOI: 10.3390/molecules26237113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.
Collapse
|
25
|
García-Rodríguez Y, Bravo-Monzón AE, Espinosa-García FJ. Growth response of maize seed-borne fungi to cereal phenolic acid mixtures. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Liu X, Fang X, Wang S, Wu D, Gao T, Lee YW, Mohamed SR, Ji F, Xu J, Shi J. The antioxidant methyl gallate inhibits fungal growth and deoxynivalenol production in Fusarium graminearum. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Production of the Fusarium toxin deoxynivalenol (DON) is associated with oxidative stress and has been indicated to be part of an adaptive response to oxidative stress in the important wheat fungus Fusarium graminearum. In this study, we found that the antioxidant methyl gallate (MG) displays inhibitory effects against mycelial growth, conidial formation and germination, and DON biosynthesis in F. graminearum in a dose-dependent manner. Treatment with 0.05% (w/v) MG resulted in an abnormal swollen conidial morphology. The expression of the TRI genes involved in DON biosynthesis was significantly reduced, and the induction of Tri1-GFP green fluorescence signals in the spherical and crescent-shaped toxisomes was abolished in the MG-treated mycelium. RNA-Seq analysis of MG-treated F. graminearum showed that 0.5% (w/v) MG inhibited DON production by possibly altering membrane functions and oxidoreductase activities. Coupled with the observations that MG treatment decreases catalase, POD and SOD activity in F. graminearum. The results of this study indicated that MG displays antifungal activity against DON production by modulating its oxidative response. Taken together, the current study revealed the potential of MG in inhibiting mycotoxins in F. graminearum.
Graphical abstract
Collapse
|
27
|
Zhang M, Wang J, Luo Q, Yang C, Yang H, Cheng Y. CsMYB96 enhances citrus fruit resistance against fungal pathogen by activating salicylic acid biosynthesis and facilitating defense metabolite accumulation. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153472. [PMID: 34315028 DOI: 10.1016/j.jplph.2021.153472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 05/21/2023]
Abstract
Citrus fruit are generally confronted with various fungal diseases that cause fruit deterioration and economic loss. Salicylic acid (SA), a plant hormone, is an important signal molecule required for stimulating the disease resistance of plants. However, there has been limited information about the molecular mechanism of SA biosynthesis involving biotic stress response in citrus fruit. In the present study, an R2R3 MYB transcription factor (CsMYB96) was identified to mediate SA signaling in response to fungal diseases. The transient overexpression assay revealed that CsMYB96 contributed to the strong tolerance of citrus fruit to Penicillium italicum along with an increase in SA content; meanwhile, CsMYB96 conferred resistance to Botrytis cinerea in Arabidopsis plants. Further metabolomic profiling of stable transgenic Arabidopsis revealed that CsMYB96 participated in the regulation of various metabolism pathways and enhanced the accumulation of phenolic acids. RNA-seq analysis confirmed that overexpression of CsMYB96 activated the expression of genes involved in plant-pathogen interaction, phenylpropanoid biosynthesis, and SA signaling. Besides, CsMBY96 directly activated the transcription of calmodulin binding protein 60g (CsCBP60g), a predominant transcription factor required for the activation of SA signaling. In summary, our results reveal that CsMYB96 promotes SA biosynthesis and the accumulation of defense metabolites to enhance the fungal pathogen resistance of citrus fruit and Arabidopsis and provide new insights into the regulation of disease response.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China.
| | - Qujuan Luo
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Ce Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
28
|
Righetti L, Bhandari DR, Rolli E, Tortorella S, Bruni R, Dall’Asta C, Spengler B. Mycotoxin Uptake in Wheat - Eavesdropping Fusarium Presence for Priming Plant Defenses or a Trojan Horse to Weaken Them? FRONTIERS IN PLANT SCIENCE 2021; 12:711389. [PMID: 34381485 PMCID: PMC8350570 DOI: 10.3389/fpls.2021.711389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Fusarium mycotoxins represent a major threat for cereal crops and food safety. While previous investigations have described plant biotransforming properties on mycotoxins or metabolic relapses of fungal infections in plants, so far, the potential consequences of radical exposure in healthy crops are mostly unknown. Therefore, we aimed at evaluating whether the exposure to mycotoxins, deoxynivalenol (DON) and zearalenone (ZEN), at the plant-soil interface may be considered a form of biotic stress capable of inducing priming or a potential initiation of fungal attack. To address this, we used atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging to investigate the activation or the inhibition of specific biosynthetic pathways and in situ localization of primary and secondary metabolites in wheat. According to our untargeted metabolomics investigation, the translocation of plant defense metabolites (i.e., hydroxycinnamic acid amide and flavones) follows the mycotoxin accumulation organs, which is the root for ZEN-treated plantlet and culm for DON-treated sample, suggesting a local "defense-on-demand response." Therefore, it can be hypothesized that DON and ZEN are involved in the eavesdropping of Fusarium presence in soil and that wheat response based on secondary metabolites may operate on multiple organs with a potential interplay that involves masked mycotoxins.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Enrico Rolli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Renato Bruni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Huang XX, Wang Y, Lin JS, Chen L, Li YJ, Liu Q, Wang GF, Xu F, Liu L, Hou BK. The novel pathogen-responsive glycosyltransferase UGT73C7 mediates the redirection of phenylpropanoid metabolism and promotes SNC1-dependent Arabidopsis immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:149-165. [PMID: 33866633 DOI: 10.1111/tpj.15280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have shown that global metabolic reprogramming is a common event in plant innate immunity; however, the relevant molecular mechanisms remain largely unknown. Here, we identified a pathogen-induced glycosyltransferase, UGT73C7, that plays a critical role in Arabidopsis disease resistance through mediating redirection of the phenylpropanoid pathway. Loss of UGT73C7 function resulted in significantly decreased resistance to Pseudomonas syringae pv. tomato DC3000, whereas constitutive overexpression of UGT73C7 led to an enhanced defense response. UGT73C7-activated immunity was demonstrated to be dependent on the upregulated expression of SNC1, a Toll/interleukin 1 receptor-type NLR gene. Furthermore, in vitro and in vivo assays indicated that UGT73C7 could glycosylate p-coumaric acid and ferulic acid, the upstream metabolites in the phenylpropanoid pathway. Mutations that lead to the loss of UGT73C7 enzyme activities resulted in the failure to induce SNC1 expression. Moreover, glycosylation activity of UGT73C7 resulted in the redirection of phenylpropanoid metabolic flux to biosynthesis of hydroxycinnamic acids and coumarins. The disruption of the phenylpropanoid pathway suppressed UGT73C7-promoted SNC1 expression and the immune response. This study not only identified UGT73C7 as an important regulator that adjusts phenylpropanoid metabolism upon pathogen challenge, but also provided a link between phenylpropanoid metabolism and an NLR gene.
Collapse
Affiliation(s)
- Xu-Xu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yong Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ji-Shan Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Chen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qian Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
30
|
Ji L, Nasir F, Tian L, Chang J, Sun Y, Zhang J, Li X, Tian C. Outbreaks of Root Rot Disease in Different Aged American Ginseng Plants Are Associated With Field Microbial Dynamics. Front Microbiol 2021; 12:676880. [PMID: 34248889 PMCID: PMC8267804 DOI: 10.3389/fmicb.2021.676880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
American ginseng (Panax quinquefolium L.) is a perennial plant that is cultivated for medicinal purposes. Unfortunately, outbreaks of root rot disease in American ginseng (AG) reduce yields and result in serious economic losses. Information on the dynamics of soil microbial communities associated with healthy and diseased AG of different ages is limited. The present study explored the differences in field soil microbial community structure, composition, interaction, and their predictive functions associated with healthy and diseased AG at different growth ages. Changes in soil physicochemical properties were also examined to determine the possible reasons for disease outbreaks. Results revealed that in different growth years, the genera of soil-borne pathogens, such as Alternaria, Botrytis, Cladosporium, Sarocladium, and Fusarium, were increased in diseased AG soil samples in comparison with those in the healthy AG soil samples. In contrast, the abundance of some key and potentially beneficial microbes, such as Bacillus, Chaetomium, Dyella, Kaistobacter, Paenibacillus, Penicillium, and Trichoderma, was decreased. Additionally, as AG plants age, the relative abundance of symbiotic fungi tended to decrease, while the relative abundance of potential plant pathogenic fungi gradually increased. Various soil properties, such as available phosphorus, the ratio of total nitrogen to total phosphorus (N/P), and pH, were significantly (P < 0.05) associated with microbial community composition. Our findings provide a scientific basis for understanding the relationship among the root rot disease outbreaks in American ginseng as well as their corresponding soil microbial communities and soil physicochemical properties.
Collapse
Affiliation(s)
- Li Ji
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingjing Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jianfeng Zhang
- School of Life Sciences, Jilin Agricultural University, Jilin, China
| | - Xiujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
31
|
Polysaccharide Matrices for the Encapsulation of Tetrahydrocurcumin-Potential Application as Biopesticide against Fusarium graminearum. Molecules 2021; 26:molecules26133873. [PMID: 34202905 PMCID: PMC8270288 DOI: 10.3390/molecules26133873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
Cereals are subject to contamination by pathogenic fungi, which damage grains and threaten public health with their mycotoxins. Fusarium graminearum and its mycotoxins, trichothecenes B (TCTBs), are especially targeted in this study. Recently, the increased public and political awareness concerning environmental issues tends to limit the use of traditional fungicides against these pathogens in favor of eco-friendlier alternatives. This study focuses on the development of biofungicides based on the encapsulation of a curcumin derivative, tetrahydrocurcumin (THC), in polysaccharide matrices. Starch octenylsuccinate (OSA-starch) and chitosan have been chosen since they are generally recognized as safe. THC has been successfully trapped into particles obtained through a spray-drying or freeze-drying processes. The particles present different properties, as revealed by visual observations and scanning electron microscopy. They are also different in terms of the amount and the release of encapsulated THC. Although freeze-dried OSA-starch has better trapped THC, it seems less able to protect the phenolic compound than spray-dried particles. Chitosan particles, both spray-dried and lyophilized, have shown promising antifungal properties. The IC50 of THC-loaded spray-dried chitosan particles is as low as 0.6 ± 0.3 g/L. These particles have also significantly decreased the accumulation of TCTBs by 39%.
Collapse
|
32
|
Ackerman A, Wenndt A, Boyles R. The Sorghum Grain Mold Disease Complex: Pathogens, Host Responses, and the Bioactive Metabolites at Play. FRONTIERS IN PLANT SCIENCE 2021; 12:660171. [PMID: 34122480 PMCID: PMC8192977 DOI: 10.3389/fpls.2021.660171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Grain mold is a major concern in sorghum [Sorghum bicolor (L.) Moench] production systems, threatening grain quality, safety, and nutritional value as both human food and livestock feed. The crop's nutritional value, environmental resilience, and economic promise poise sorghum for increased acreage, especially in light of the growing pressures of climate change on global food systems. In order to fully take advantage of this potential, sorghum improvement efforts and production systems must be proactive in managing the sorghum grain mold disease complex, which not only jeopardizes agricultural productivity and profitability, but is also the culprit of harmful mycotoxins that warrant substantial public health concern. The robust scholarly literature from the 1980s to the early 2000s yielded valuable insights and key comprehensive reviews of the grain mold disease complex. Nevertheless, there remains a substantial gap in understanding the complex multi-organismal dynamics that underpin the plant-pathogen interactions involved - a gap that must be filled in order to deliver improved germplasm that is not only capable of withstanding the pressures of climate change, but also wields robust resistance to disease and mycotoxin accumulation. The present review seeks to provide an updated perspective of the sorghum grain mold disease complex, bolstered by recent advances in the understanding of the genetic and the biochemical interactions among the fungal pathogens, their corresponding mycotoxins, and the sorghum host. Critical components of the sorghum grain mold disease complex are summarized in narrative format to consolidate a collection of important concepts: (1) the current state of sorghum grain mold in research and production systems; (2) overview of the individual pathogens that contribute to the grain mold complex; (3) the mycotoxin-producing potential of these pathogens on sorghum and other substrates; and (4) a systems biology approach to the understanding of host responses.
Collapse
Affiliation(s)
- Arlyn Ackerman
- Cereal Grains Breeding and Genetics, Pee Dee Research and Education Center, Department of Plant & Environmental Sciences, Clemson University, Florence, SC, United States
| | - Anthony Wenndt
- Plant Pathology and Plant-Microbe Biology, The School of Integrated Plant Sciences, Cornell University, Ithaca, NY, United States
| | - Richard Boyles
- Cereal Grains Breeding and Genetics, Pee Dee Research and Education Center, Department of Plant & Environmental Sciences, Clemson University, Florence, SC, United States
| |
Collapse
|
33
|
Effect of Naturally Occurring Compounds on Fumonisin Production and fum Gene Expression in Fusarium verticillioides. AGRONOMY-BASEL 2021. [DOI: 10.3390/agronomy11061060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fusarium verticillioides, one of the most common pathogens in maize, is responsible for yield losses and reduced kernel quality due to contamination by fumonisins (FBs). Two F. verticillioides isolates that differed in their ability to produce FBs were treated with a selection of eight natural phenolic compounds with the aim of identifying those that were able to decrease toxin production at concentrations that had a limited effect on fungal growth. Among the tested compounds, ellagic acid and isoeugenol, which turned out to be the most effective molecules against fungal growth, were assayed at lower concentrations, while the first retained its ability to inhibit toxin production in vitro, the latter improved both the fungal growth and FB accumulation. The effect of the most effective phenolic compounds on FB accumulation was also tested on maize kernels to highlight the importance of appropriate dosages in order to avoid conditions that are able to promote mycotoxin biosynthesis. An expression analysis of genes involved in FB production allowed more detailed insights into the mechanisms underlying the inhibition of FBs by phenolic compounds. The expression of the fum gene was generally down-regulated by the treatments; however, some treatments in the low-producing F. verticillioides strain up-regulated fum gene expression without improving FB production. This study showed that although different phenolic compounds are effective for FB reduction, they can modulate biosynthesis at the transcription level in opposite manners depending on strain. In conclusion, on the basis of in vitro and in vivo screening, two out of the eight tested phenols (ellagic acid and carvacrol) appear to be promising alternative molecules for the control of FB occurrence in maize.
Collapse
|
34
|
Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato. World J Microbiol Biotechnol 2021; 37:93. [PMID: 33948741 DOI: 10.1007/s11274-021-03062-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Chlorogenic acid is a plant polyphenol with antioxidant and antimicrobial activities. Fusarium fujikuroi is a fungal pathogen that causes many vegetables and fruits, including tomato, to rot. The effects of chlorogenic acid on the development of Fusarium rot of cherry tomato fruit were examined in the present study. Results showed that conidial germination, germ tube elongation, cell viability, and mycelial growth of F. fujikuroi were all significantly inhibited by chlorogenic acid. Chlorogenic acid stimulated the accumulation of reactive oxygen species (ROS), leading to cell apoptosis in F. fujikuroi. The addition of N-acetylcysteine partially recovered the mycelial growth, implying the antifungal activity of chlorogenic acid is related to a ROS burst. The application of chlorogenic acid decreased disease incidence and severity in cherry tomato fruit in a concentration-dependent manner. Taken together, these results suggest that chlorogenic acid inhibits the postharvest rot of cherry tomato fruit caused by F. fujikuroi by inducing cellular oxidative stress in the pathogen.
Collapse
|
35
|
Khan F, Bamunuarachchi NI, Tabassum N, Kim YM. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2979-3004. [PMID: 33656341 DOI: 10.1021/acs.jafc.0c07579] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Caffeic acid is a plant-derived compound that is classified as hydroxycinnamic acid which contains both phenolic and acrylic functional groups. Caffeic acid has been greatly employed as an alternative strategy to combat microbial pathogenesis and chronic infection induced by microbes such as bacteria, fungi, and viruses. Similarly, several derivatives of caffeic acid such as sugar esters, organic esters, glycosides, and amides have been chemically synthesized or naturally isolated as potential antimicrobial agents. To overcome the issue of water insolubility and poor stability, caffeic acid and its derivative have been utilized either in conjugation with other bioactive molecules or in nanoformulation. Besides, caffeic acid and its derivatives have also been applied in combination with antibiotics or photoirradiation to achieve a synergistic mode of action. The present review describes the antimicrobial roles of caffeic acid and its derivatives exploited either in free form or in combination or in nanoformulation to kill a diverse range of microbial pathogens along with their mode of action. The chemistry employed for the synthesis of the caffeic acid derivatives has been discussed in detail as well.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle 82200, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan 48513, South Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
36
|
Screening of Wood/Forest and Vine By-Products as Sources of New Drugs for Sustainable Strategies to Control Fusarium graminearum and the Production of Mycotoxins. Molecules 2021; 26:molecules26020405. [PMID: 33466739 PMCID: PMC7830912 DOI: 10.3390/molecules26020405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
Fusarium graminearum is a fungal pathogen that can colonize small-grain cereals and maize and secrete type B trichothecene (TCTB) mycotoxins. The development of environmental-friendly strategies guaranteeing the safety of food and feed is a key challenge facing agriculture today. One of these strategies lies on the promising capacity of products issued from natural sources to counteract crop pests. In this work, the in vitro efficiency of sixteen extracts obtained from eight natural sources using subcritical water extraction at two temperatures was assessed against fungal growth and TCTB production by F. graminearum. Maritime pine sawdust extract was shown to be extremely efficient, leading to a significant inhibition of up to 89% of the fungal growth and up to 65% reduction of the mycotoxin production by F. graminearum. Liquid chromatography/mass spectrometry analysis of this active extract revealed the presence of three families of phenolics with a predominance of methylated compounds and suggested that the abundance of methylated structures, and therefore of hydrophobic compounds, could be a primary factor underpinning the activity of the maritime pine sawdust extract. Altogether, our data support that wood/forest by-products could be promising sources of bioactive compounds for controlling F. graminearum and its production of mycotoxins.
Collapse
|
37
|
Loskutov IG, Khlestkina EK. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. PLANTS (BASEL, SWITZERLAND) 2021; 10:E86. [PMID: 33401643 PMCID: PMC7823506 DOI: 10.3390/plants10010086] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Cereal grains provide half of the calories consumed by humans. In addition, they contain important compounds beneficial for health. During the last years, a broad spectrum of new cereal grain-derived products for dietary purposes emerged on the global food market. Special breeding programs aimed at cultivars utilizable for these new products have been launched for both the main sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum, millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for example, high breadmaking quality and protein content for common wheat or content of protein, lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds, vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while growing plants in contrast to the post-harvesting improvement of staple foods with natural and synthetic additives, the new breeding programs need a source of genes for the improvement of the content of health benefit components in grain. The current review aims to consider current trends and achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species, or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques, are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and other compounds are discussed, and certain cases of contributions to special health-improving diets are summarized. Correlations between the content of certain bioactive compounds and the resistance to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising the levels of health-benefiting components in cereal grain might at the same time match the task of developing cultivars adapted to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Igor G. Loskutov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia;
| | | |
Collapse
|
38
|
Gautier C, Pinson-Gadais L, Verdal-Bonnin MN, Ducos C, Tremblay J, Chéreau S, Atanasova V, Richard-Forget F. Investigating the Efficiency of Hydroxycinnamic Acids to Inhibit the Production of Enniatins by Fusarium avenaceum and Modulate the Expression of Enniatins Biosynthetic Genes. Toxins (Basel) 2020; 12:E735. [PMID: 33255199 PMCID: PMC7760901 DOI: 10.3390/toxins12120735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023] Open
Abstract
Enniatins (ENNs) that belong to the group of emerging mycotoxins are widespread contaminants of agricultural commodities. There is currently insufficient evidence to rule out health concerns associated with long-term exposure to ENNs and efforts must be strengthened to define a control strategy. While the potential of plant compounds to counteract the contamination with legislated mycotoxins has been reported, little remains known regarding ENNs. The present study evidenced for the first time the efficiency of hydroxycinnamic acids to inhibit the fungal growth and ENNs yield by Fusarium avenaceum. Notably, 0.5 mM of exogenous ferulic, caffeic, and p-coumaric acids led to a drastic reduction of ENNs synthesis in pH4 broths, with ferulic acid being the most potent. The ENNs production inhibitory activity of ferulic acid was shown to be associated with a significant down-regulation of the expression of ENNs biosynthetic genes. To further investigate the bioactivity of ferulic acid, its metabolic fate was characterized in fungal broths and the capacity of F. avenaceum to metabolize it through a C2-cleavage type degradation was demonstrated. Overall, our data support the promising use of ferulic acid in ENNs control strategies, either as part of an environmentally friendly plant-care product or as a biomarker of plant resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Florence Richard-Forget
- INRAE, Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (C.G.); (L.P.-G.); (M.-N.V.-B.); (C.D.); (J.T.); (S.C.); (V.A.)
| |
Collapse
|
39
|
Boonmee S, Atanasova V, Chéreau S, Marchegay G, Hyde KD, Richard-Forget F. Efficiency of Hydroxycinnamic Phenolic Acids to Inhibit the Production of Ochratoxin A by Aspergillus westerdijkiae and Penicillium verrucosum. Int J Mol Sci 2020; 21:E8548. [PMID: 33202726 PMCID: PMC7696880 DOI: 10.3390/ijms21228548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Ochratoxin A (OTA) is one of the worldwide most important mycotoxins in terms of health and agroeconomic consequences. With the aim to promote the use of phytochemicals as alternatives to synthetic fungicides, the effect of hydroxycinnamic acids on the fungal growth and OTA yield by two major OTA-producing species was investigated. After a first step dedicated to the definition of most suitable culture conditions, the impact of 0.5 mM ferulic (FER), p-coumaric (COUM), caffeic and chlorogenic acids was evaluated on Aspergillus westerdijkiae and Penicillium verrucosum. Whereas no fungal growth reduction was observed regardless of the phenolic acid and fungal isolate, our results demonstrated the capacity of FER and COUM to inhibit OTA production. The most efficient compound was FER that led to a 70% reduction of OTA yielded by P. verrucosum and, although not statistically significant, a 35% inhibition of OTA produced by A. westerdijkiae. To further investigate the bioactivity of FER and COUM, their metabolic fate was characterized in fungal broths. The capacity of P. verrucosum to metabolize FER and COUM through a C2-clivage type degradation was demonstrated. Overall, our data support the potential use of FER to prevent OTA contamination and reduce the use of synthetic pesticides.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Vessela Atanasova
- UR1264 Mycology and Food Safety Research Unit (MycSA), INRAE Research Centre, F-22882 Villenave d’Ornon, France; (S.C.); (G.M.); (F.R.-F.)
| | - Sylvain Chéreau
- UR1264 Mycology and Food Safety Research Unit (MycSA), INRAE Research Centre, F-22882 Villenave d’Ornon, France; (S.C.); (G.M.); (F.R.-F.)
| | - Gisèle Marchegay
- UR1264 Mycology and Food Safety Research Unit (MycSA), INRAE Research Centre, F-22882 Villenave d’Ornon, France; (S.C.); (G.M.); (F.R.-F.)
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (K.D.H.)
| | - Florence Richard-Forget
- UR1264 Mycology and Food Safety Research Unit (MycSA), INRAE Research Centre, F-22882 Villenave d’Ornon, France; (S.C.); (G.M.); (F.R.-F.)
| |
Collapse
|
40
|
Physical and chemical parameters, Fusarium verticillioides growth and fumonisin production in kernels of nine maize genotypes. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Koval D, Plocková M, Kyselka J, Skřivan P, Sluková M, Horáčková Š. Buckwheat Secondary Metabolites: Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11631-11643. [PMID: 32985180 DOI: 10.1021/acs.jafc.0c04538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research groups have put significant emphasis on the evaluation of nutritional, health-promoting, and other biological activities of secondary metabolites from buckwheat. Among these phytochemicals, phenolic and lipophilic antioxidants, particularly, phenolic acids, flavonoids, and tocopherols, have been the focus of the latest studies since antioxidant activity has recently been associated with the possibility of inhibiting fungal growth and mycotoxin biosynthesis. The mycotoxin contamination of cereal and pseudocereal grains caused primarily by Fusarium, Penicillium, and Aspergillus species poses a significant hazard to human health. Therefore, efforts to examine the involvement of plant antioxidants in the biosynthesis of mycotoxins at the transcriptional level have emerged. In addition, hydrophobic interactions of buckwheat phenolics with cell membranes could also explain their capacity to reduce fungal development. Eventually, possibilities of enhancing the biological activity of cereal and pseudocereal phytochemicals have been studied, and sourdough fermentation has been proposed as an efficient method to increase antioxidant activities. This effect could result in an increased antifungal effects of sourdough and bakery products. This review reports the main advances in research on buckwheat phenolics and other antioxidant phytochemicals, highlighting possible mechanisms of action and processes that could improve their biological activities.
Collapse
Affiliation(s)
- Daniel Koval
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Pavel Skřivan
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Marcela Sluková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
42
|
Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Scaglioni P, Scarpino V, Marinaccio F, Vanara F, Furlong EB, Blandino M. Impact of microalgal phenolic extracts on the control of Fusarium graminearum and deoxynivalenol contamination in wheat. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, microalgal phenolic extracts (MPE) of Nannochloropsis sp. and Spirulina sp. were tested in in vitro experiments and, in comparison with synthetic fungicides, in field experiments, for their ability to control Fusarium graminearum development and limit deoxynivalenol (DON) contamination. In in vitro experiments, the Nannochloropsis and Spirulina extracts inhibited fungal biomass by 34 and 25%, respectively, compared with the untreated control. This effect was confirmed by a reduction in ergosterol production (-80% for Nannochloropsis and -75% for Spirulina) and in DON content (-97% for Nannochloropsis and -62% for Spirulina). In field experiments, application of the fungicide prothioconazole and prothioconazole + tebuconazole resulted in control of Fusarium head blight (FHB) and foliar disease, leading to a significant increase in grain yield (+13%) and a reduction in DON content (-46%) compared to the untreated control. The application of MPE at wheat flowering reduced the severity of FHB compared with the control (-35% for Spirulina and -39% for Nannochloropsis). However, the MPE did not significantly control foliar diseases (Septoria tritici blotch) and therefore did not enhance the grain yield. Moreover, no effect in reducing the DON content in comparison to the control was observed in the field. In view of that, the use of MPE in wheat fields as real alternatives to conventional fungicides requires the discovery of solutions to empower their persistence and efficacy.
Collapse
Affiliation(s)
- P.T. Scaglioni
- Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Bairro Carreiros, CEP 96203-900, Rio Grande, RS, Brazil
- Programa de Pós- Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Avenida Eliseu Maciel, S/N, CEP 96160-000, Capão do Leão, Pelotas, RS, Brazil
| | - V. Scarpino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - F. Marinaccio
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - F. Vanara
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - E. Badiale Furlong
- Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Bairro Carreiros, CEP 96203-900, Rio Grande, RS, Brazil
| | - M. Blandino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
44
|
Hu D, Yu S, Yu D, Liu N, Tang Y, Fan Y, Wang C, Wu A. Biogenic Trichoderma harzianum-derived selenium nanoparticles with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Doppler M, Kluger B, Bueschl C, Steiner B, Buerstmayr H, Lemmens M, Krska R, Adam G, Schuhmacher R. Stable Isotope-Assisted Plant Metabolomics: Investigation of Phenylalanine-Related Metabolic Response in Wheat Upon Treatment With the Fusarium Virulence Factor Deoxynivalenol. FRONTIERS IN PLANT SCIENCE 2019; 10:1137. [PMID: 31736983 PMCID: PMC6831647 DOI: 10.3389/fpls.2019.01137] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
The major Fusarium mycotoxin deoxynivalenol (DON) is a virulence factor in wheat and has also been shown to induce defense responses in host plant tissue. In this study, global and tracer labeling with 13C were combined to annotate the overall metabolome of wheat spikes and to evaluate the response of phenylalanine-related pathways upon treatment with DON. At anthesis, spikes of resistant and susceptible cultivars as well as two related near isogenic wheat lines (NILs) differing in the presence/absence of the major resistance QTL Fhb1 were treated with 1 mg DON or water (control), and samples were collected at 0, 12, 24, 48, and 96 h after treatment (hat). A total of 172 Phe-derived wheat constituents were detected with our untargeted approach employing 13C-labeled phenylalanine and subsequently annotated as flavonoids, lignans, coumarins, benzoic acid derivatives, hydroxycinnamic acid amides (HCAAs), as well as peptides. Ninety-six hours after the DON treatment, up to 30% of the metabolites biosynthesized from Phe showed significantly increased levels compared to the control samples. Major metabolic changes included the formation of precursors of compounds implicated in cell wall reinforcement and presumed antifungal compounds. In addition, also dipeptides, which presumably are products of proteolytic degradation of truncated proteins generated in the presence of the toxin, were significantly more abundant upon DON treatment. An in-depth comparison of the two NILs with correlation clustering of time course profiles revealed some 70 DON-responsive Phe derivatives. While several flavonoids had constitutively different abundance levels between the two NILs differing in resistance, other Phe-derived metabolites such as HCAAs and hydroxycinnamoyl quinates were affected differently in the two NILs after treatment with DON. Our results suggest a strong activation of the general phenylpropanoid pathway and that coumaroyl-CoA is mainly diverted towards HCAAs in the presence of Fhb1, whereas the metabolic route to monolignol(-conjugates), lignans, and lignin seems to be favored in the absence of the Fhb1 resistance quantitative trait loci.
Collapse
Affiliation(s)
- Maria Doppler
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Bernhard Kluger
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
46
|
Liu Q, Yao L, Xu Y, Cheng H, Wang W, Liu Z, Liu J, Cui X, Zhou Y, Ning W. In vitro evaluation of hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase expression and regulation in Taraxacum antungense in relation to 5-caffeoylquinic acid production. PHYTOCHEMISTRY 2019; 162:148-156. [PMID: 30897352 DOI: 10.1016/j.phytochem.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Chlorogenic acids (CGA; including 5-caffeoylquinic acid and its regio-isomers) in Taraxacum antungense Kitag. have antioxidant and anti-inflammatory properties and exert other pharmacological effects. T. antungense hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (TaHQT)1 and TaHQT2, which belong to the BAHD acyltransferase family, are candidates for synthesizing 5-caffeoylquinic acid and that have not been extensively characterized. In this study, we cloned the TaHQT1 and TaHQT2 genes and analysed the properties of the expressed enzymes both in vitro and in vivo. Quantitative reverse transcription PCR analysis revealed that TaHQT1 was highly expressed in the root, whereas the strongest TaHQT2 expression was observed in T. antungense leaves. In Nicotiana benthamiana leaf cells, TaHQT1 and TaHQT2 were localized at the cell periphery as well as in the cytoplasm and nucleus. The 5-caffeoylquinic acid concentrations in T. antungense calli were reduced by TaHQT1 and TaHQT2 knockdown relative to the control. Conversely, inoculation of T. antungense plants tissues with recombinant TaHQT1 and TaHQT2 increased 5-caffeoylquinic acid levels in situ. These in vitro and in vivo findings demonstrate that both HQTs are involved in regulating 5-caffeoylquinic acid biosynthesis in T. antungense, which can be exploited to increase 5-caffeoylquinic acid production in plants for medicinal or other beneficial purposes.
Collapse
Affiliation(s)
- Qun Liu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Lixiang Yao
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Yachen Xu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Haitao Cheng
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiting Wang
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Zijia Liu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Jia Liu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Xin Cui
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Yujie Zhou
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Wei Ning
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China.
| |
Collapse
|
47
|
Righetti L, Cirlini M, Folloni S, Ranieri R, Galaverna G, Bertuzzi T, Dall’Asta C, Battilani P, Giorni P. 5-n-alkylresorcinols but not hydroxycinnamic acids are directly related to a lower accumulation of deoxynivalenol and its glucoside in Triticum spp. Genotypes with different ploidity levels. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Bilska K, Stuper-Szablewska K, Kulik T, Buśko M, Załuski D, Perkowski J. Resistance-Related l-Pyroglutamic Acid Affects the Biosynthesis of Trichothecenes and Phenylpropanoids by F. graminearum Sensu Stricto. Toxins (Basel) 2018; 10:toxins10120492. [PMID: 30477204 PMCID: PMC6315601 DOI: 10.3390/toxins10120492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
Fungicide application remains amongst the most widely used methods of fungal control in agroecosystems. However, the extensive use of fungicides poses hazards to human health and the natural environment and does not always ensure the effective decrease of mycotoxins in food and feed. Nowadays, the rising threat from mycotoxin contamination of staple foods has stimulated efforts in developing alternative strategies to control plant pathogenic fungi. A substantial effort is focused on the identification of plant-derived compounds inhibiting mycotoxin production by plant pathogenic fungi. l-Pyroglutamic acid has recently been suggested as playing a role in the response of barley to toxigenic Fusaria. Considering the above, we studied the response of various strains of F. graminearum sensu stricto to different levels of l-pyroglutamic acid on solid YES (yeast extract sucrose) media. l-Pyroglutamic acid decreased the accumulation of trichothecenes in all examined strains. Gene expression studies addressing Tri genes (Tri4, Tri5, and Tri10), which induce the biosynthesis of trichothecenes, revealed the production of mycotoxins by l-pyroglutamic acid to be inhibited at the transcriptional level. Besides inhibitory effects on mycotoxin production, l-pyroglutamic acid exhibited variable and concentration-related effects on phenylpropanoid production by fungi. Accumulation of most of the fungal-derived phenolic acids decreased in the presence of 100 and 400 µg/g of l-pyroglutamic acid. However, a higher dose (800 µg/g) of l-pyroglutamic acid increased the accumulation of trans-cinnamic acid in the media. The accumulation of fungal-derived naringenin increased in the presence of l-pyroglutamic acid. Contrasting results were obtained for quercetin, apigenin, luteolin, and kaempferol, the accumulation of which decreased in the samples treated with 100 and 400 µg/g of l-pyroglutamic acid, whereas the highest l-pyroglutamic acid concentration (800 µg/g) seemed to induce their biosynthesis. The results obtained in this study provide new insights for breeders involved in studies on resistance against Fusaria.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Maciej Buśko
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | - Dariusz Załuski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Juliusz Perkowski
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| |
Collapse
|
49
|
Atanasova-Penichon V, Legoahec L, Bernillon S, Deborde C, Maucourt M, Verdal-Bonnin MN, Pinson-Gadais L, Ponts N, Moing A, Richard-Forget F. Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure. Appl Environ Microbiol 2018; 84:e01705-17. [PMID: 29427428 PMCID: PMC5881057 DOI: 10.1128/aem.01705-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Fusarium graminearum is a major plant pathogen that causes devastating diseases of cereals and produces type B trichothecene (TCTB) mycotoxins in infected grains. A comprehensive understanding of the molecular and biochemical mechanisms underlying the regulation of TCTB biosynthesis is required for improving strategies to control the TCTB contamination of crops and ensuring that these strategies do not favor the production of other toxic metabolites by F. graminearum Elucidation of the association of TCTB biosynthesis with other central and specialized processes was the focus of this study. Combined 1H nuclear magnetic resonance (1H NMR) and liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) analyses were used to compare the exo- and endometabolomes of F. graminearum grown under toxin-inducing and -repressing caffeic acid conditions. Ninety-five metabolites were putatively or unambiguously identified, including 26 primary and 69 specialized metabolites. Our data demonstrated that the inhibition of TCTB production induced by caffeic acid exposure was associated with significant changes in the secondary and primary metabolism of F. graminearum, although the fungal growth was not affected. The main metabolic changes were an increase in the accumulation of several polyketides, including toxic ones, alterations in the tricarboxylic organic acid cycle, and modifications in the metabolism of several amino acids and sugars. While these findings provide insights into the mechanisms that govern the inhibition of TCTB production by caffeic acid, they also demonstrate the interdependence between the biosynthetic pathway of TCTB and several primary and specialized metabolic pathways. These results provide further evidence of the multifaceted role of TCTB in the life cycle of F. graminearumIMPORTANCEFusarium graminearum is a major plant pathogen that causes devastating diseases of cereal crops and produces type B trichothecene (TCTB) mycotoxins in infected grains. The best way to restrict consumer exposure to TCTB is to limit their production before harvest, which requires increasing the knowledge on the mechanisms that regulate their biosynthesis. Using a metabolomics approach, we investigated the interconnection between the TCTB production pathway and several fungal metabolic pathways. We demonstrated that alteration in the TCTB biosynthetic pathway can have a significant impact on other metabolic pathways, including the biosynthesis of toxic polyketides, and vice versa. These findings open new avenues for identifying fungal targets for the design of molecules with antimycotoxin properties and therefore improving sustainable strategies to fight against diseases caused by F. graminearum Our data further demonstrate that analyses should consider all fungal toxic metabolites rather than the targeted family of mycotoxins when assessing the efficacy of control strategies.
Collapse
Affiliation(s)
| | - Laurie Legoahec
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | | | - Laetitia Pinson-Gadais
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Nadia Ponts
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | | |
Collapse
|
50
|
Buenrostro-Figueroa J, Velázquez M, Flores-Ortega O, Ascacio-Valdés J, Huerta-Ochoa S, Aguilar C, Prado-Barragán L. Solid state fermentation of fig ( Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|