1
|
Witte T, Hicks C, Hermans A, Shields S, Overy DP. Debunking the Myth of Fusarium poae T-2/HT-2 Toxin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3949-3957. [PMID: 38375818 PMCID: PMC10905990 DOI: 10.1021/acs.jafc.3c08437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Fusarium poae is commonly detected in field surveys of Fusarium head blight (FHB) of cereal crops and can produce a range of trichothecene mycotoxins. Although experimentally validated reports of F. poae strains producing T-2/HT-2 trichothecenes are rare, F. poae is frequently generalized in the literature as a producer of T-2/HT-2 toxins due to a single study from 2004 in which T-2/HT-2 toxins were detected at low levels from six out of forty-nine F. poae strains examined. To validate/substantiate the observations reported from the 2004 study, the producing strains were acquired and phylogenetically confirmed to be correctly assigned as F. poae; however, no evidence of T-2/HT-2 toxin production was observed from axenic cultures. Moreover, no evidence for a TRI16 ortholog, encoding a key acyltransferase shown to be necessary for T-2 toxin production in other Fusarium species, was observed in any of the de novo assembled genomes of the F. poae strains. Our findings corroborate multiple field-based and in vitro studies on FHB-associated Fusarium populations which also do not support the production of T-2/HT-2 toxins with F. poae and therefore conclude that F. poae should not be generalized as a T-2/HT-2 toxin producing species of Fusarium.
Collapse
Affiliation(s)
- Thomas
E. Witte
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Carmen Hicks
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Anne Hermans
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Sam Shields
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - David P. Overy
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
2
|
Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions. J Fungi (Basel) 2022; 8:jof8090968. [PMID: 36135693 PMCID: PMC9506348 DOI: 10.3390/jof8090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.
Collapse
|
3
|
Draft Genome Sequences of Prototrophic and Biotin-Auxotrophic Fusarium langsethiae Strains Isolated from an Oat Grain in the Northern Region of Russia. Microbiol Resour Announc 2022; 11:e0125021. [PMID: 35652634 PMCID: PMC9302093 DOI: 10.1128/mra.01250-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusarium langsethiae is a suspected plant-pathogenic fungus causing cereal contamination with trichothecene mycotoxins. Here, we report the genome sequences of two F. langsethiae strains, MFG217701 (a prototroph) and MFG217702 (a biotin auxotroph), isolated from a grain of oat harvested in Russia.
Collapse
|
4
|
Zuo Y, Verheecke-Vaessen C, Molitor C, Medina A, Magan N, Mohareb F. De novo genome assembly and functional annotation for Fusarium langsethiae. BMC Genomics 2022; 23:158. [PMID: 35193498 PMCID: PMC8864894 DOI: 10.1186/s12864-022-08368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Fusarium langsethiae is a T-2 and HT-2 mycotoxins producing species firstly characterised in 2004. It is commonly isolated from oats in Northern Europe. T-2 and HT-2 mycotoxins exhibit immunological and haemotological effects in animal health mainly through inhibition of protein, RNA and DNA synthesis. The development of a high-quality and comprehensively annotated assembly for this species is therefore essential in providing the molecular understanding and the mechanism of T-2 and HT-2 biosynthesis in F. langsethiae to help develop effective control strategies. RESULTS The F. langsethiae assembly was produced using PacBio long reads, which were then assembled independently using Canu, SMARTdenovo and Flye. A total of 19,336 coding genes were identified using RNA-Seq informed ab-initio gene prediction. Finally, predicting genes were annotated using the basic local alignment search tool (BLAST) against the NCBI non-redundant (NR) genome database and protein hits were annotated using InterProScan. Genes with blast hits were functionally annotated with Gene Ontology. CONCLUSIONS We developed a high-quality genome assembly of a total length of 59 Mb and N50 of 3.51 Mb. Raw sequence reads and assembled genome is publicly available and can be downloaded from: GenBank under the accession JAFFKB000000000. All commands used to generate this assembly are accessible via GitHub: https://github.com/FadyMohareb/fusarium_langsethiae .
Collapse
Affiliation(s)
- Ya Zuo
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, School of Water, Energy and Environment, Cranfield University, College Road, MK43 0AL, Bedford, UK
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Road, MK43 0AL, Bedford, UK
| | - Corentin Molitor
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, School of Water, Energy and Environment, Cranfield University, College Road, MK43 0AL, Bedford, UK
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Road, MK43 0AL, Bedford, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Road, MK43 0AL, Bedford, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, School of Water, Energy and Environment, Cranfield University, College Road, MK43 0AL, Bedford, UK.
| |
Collapse
|
5
|
Nichea MJ, Proctor RH, Probyn CE, Palacios SA, Cendoya E, Sulyok M, Chulze SN, Torres AM, Ramirez ML. Fusarium chaquense, sp. nov, a novel type A trichothecene-producing species from native grasses in a wetland ecosystem in Argentina. Mycologia 2021; 114:46-62. [PMID: 34871141 DOI: 10.1080/00275514.2021.1987102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The Chaco wetland is among the most biologically diverse regions in Argentina. In collections of fungi from asymptomatic native grasses (Poaceae) from the wetlands, we identified isolates of Fusarium that were morphologically similar to F. armeniacum, but distinct from it by their production of abundant microconidia. All the isolates had identical, or nearly identical, partial sequences of TEF1 and RPB2. But they were distinct from reference sequences from F. armeniacum and Fusarium species closely related to it. Phylogenetic analysis of 34 full-length housekeeping gene sequences retrieved from whole genome sequences of three Chaco wetland isolates, 29 genes resolved the isolates as an exclusive clade within the F. sambucinum species complex. Based on results of the morphological and phylogenetic analysis, we concluded that the Chaco wetland isolates are a distinct and novel species, herein described as Fusarium chaquense, sp. nov., which is closely related to F. armeniacum. F. chaquense in culture can produce the trichothecenes T-2 and HT-2 toxin, neosolaniol, diacetoxyscirpenol, and monoacetoxyscirpenol, as well as beauvericin and the pigment aurofusarin. Genome sequence analysis also revealed the presence of three previously described loci required for trichothecene biosynthesis. This research represents the first study of Fusarium in a natural ecosystem in Argentina.
Collapse
Affiliation(s)
- María J Nichea
- Instituto de Investigaciones en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Rio Cuarto, Ruta 36 Km 601, Córdoba, 5800, Argentina
| | - Robert H Proctor
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, 1815 N University Street, Peoria, Illinois 61604
| | - Crystal E Probyn
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, 1815 N University Street, Peoria, Illinois 61604
| | - Sofía A Palacios
- Instituto de Investigaciones en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Rio Cuarto, Ruta 36 Km 601, Córdoba, 5800, Argentina
| | - Eugenia Cendoya
- Instituto de Investigaciones en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Rio Cuarto, Ruta 36 Km 601, Córdoba, 5800, Argentina
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Austria
| | - Sofía N Chulze
- Instituto de Investigaciones en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Rio Cuarto, Ruta 36 Km 601, Córdoba, 5800, Argentina
| | - Adriana M Torres
- Instituto de Investigaciones en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Rio Cuarto, Ruta 36 Km 601, Córdoba, 5800, Argentina
| | - María L Ramirez
- Instituto de Investigaciones en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Rio Cuarto, Ruta 36 Km 601, Córdoba, 5800, Argentina
| |
Collapse
|
6
|
Munkvold GP, Proctor RH, Moretti A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:373-402. [PMID: 34077240 DOI: 10.1146/annurev-phyto-020620-102825] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. Fusarium species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with Fusarium diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of Fusarium genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus Fusarium and how mycotoxin risk aligns with current phylogenetic species concepts.
Collapse
Affiliation(s)
- Gary P Munkvold
- Department of Plant Pathology and Microbiology and Seed Science Center, Iowa State University, Ames, Iowa 50010, USA;
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, USA;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy;
| |
Collapse
|
7
|
Witte TE, Harris LJ, Nguyen HDT, Hermans A, Johnston A, Sproule A, Dettman JR, Boddy CN, Overy DP. Apicidin biosynthesis is linked to accessory chromosomes in Fusarium poae isolates. BMC Genomics 2021; 22:591. [PMID: 34348672 PMCID: PMC8340494 DOI: 10.1186/s12864-021-07617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Fusarium head blight is a disease of global concern that reduces crop yields and renders grains unfit for consumption due to mycotoxin contamination. Fusarium poae is frequently associated with cereal crops showing symptoms of Fusarium head blight. While previous studies have shown F. poae isolates produce a range of known mycotoxins, including type A and B trichothecenes, fusarins and beauvericin, genomic analysis suggests that this species may have lineage-specific accessory chromosomes with secondary metabolite biosynthetic gene clusters awaiting description. METHODS We examined the biosynthetic potential of 38 F. poae isolates from Eastern Canada using a combination of long-read and short-read genome sequencing and untargeted, high resolution mass spectrometry metabolome analysis of extracts from isolates cultured in multiple media conditions. RESULTS A high-quality assembly of isolate DAOMC 252244 (Fp157) contained four core chromosomes as well as seven additional contigs with traits associated with accessory chromosomes. One of the predicted accessory contigs harbours a functional biosynthetic gene cluster containing homologs of all genes associated with the production of apicidins. Metabolomic and genomic analyses confirm apicidins are produced in 4 of the 38 isolates investigated and genomic PCR screening detected the apicidin synthetase gene APS1 in approximately 7% of Eastern Canadian isolates surveyed. CONCLUSIONS Apicidin biosynthesis is linked to isolate-specific putative accessory chromosomes in F. poae. The data produced here are an important resource for furthering our understanding of accessory chromosome evolution and the biosynthetic potential of F. poae.
Collapse
Affiliation(s)
- Thomas E. Witte
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Linda J. Harris
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Hai D. T. Nguyen
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Anne Hermans
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Anne Johnston
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Amanda Sproule
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Jeremy R. Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - David P. Overy
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| |
Collapse
|
8
|
Rabaaoui A, Dall’Asta C, Righetti L, Susca A, Logrieco AF, Namsi A, Gdoura R, Werbrouck SPO, Moretti A, Masiello M. Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms ( Phoenix dactylifera) in Tunisia. Toxins (Basel) 2021; 13:toxins13070463. [PMID: 34209422 PMCID: PMC8310299 DOI: 10.3390/toxins13070463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues.
Collapse
Affiliation(s)
- Amal Rabaaoui
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.R.); (S.P.O.W.)
- Laboratory of Toxicology-Microbiology and Environmental Health, Department of Biology, University Sfax, Sfax 3000, Tunisia;
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Area delle Scienze 27/A, 43124 Parma, Italy; (C.D.); (L.R.)
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Area delle Scienze 27/A, 43124 Parma, Italy; (C.D.); (L.R.)
| | - Antonia Susca
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
| | - Antonio Francesco Logrieco
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
| | - Ahmed Namsi
- Laboratoire de Phytopathologie, Centre Régional de Recherches en Agriculture Oasienne, Degache 2260, Tunisia;
| | - Radhouane Gdoura
- Laboratory of Toxicology-Microbiology and Environmental Health, Department of Biology, University Sfax, Sfax 3000, Tunisia;
| | - Stefaan P. O. Werbrouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.R.); (S.P.O.W.)
| | - Antonio Moretti
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
- Correspondence:
| | - Mario Masiello
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
| |
Collapse
|
9
|
Verheecke-Vaessen C, Lopez-Pietro A, Garcia-Cela E, Medina A, Magan N. Intra-species variability in Fusarium langsethiae strains in growth and T-2/HT-2 mycotoxin production in response to climate change abiotic factors. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to evaluate the potential intra-species variability of 3 Fusarium langsethiae strains in response to extreme climate change (CC) conditions on an oat-based matrix. The impact of elevated temperature (25 vs 30-34 °C) coupled with increasing drought stress (0.98 vs 0.95 aw) and elevated CO2 (400 vs 1000 ppm) were examined on lag phases prior to growth, growth rate, and production of the mycotoxins T-2 and HT-2 and their ratio. In comparison to the control conditions (25 °C; 0.98; 400 ppm), exposure to increased temperature (30-34 °C), showed similar reductions in the lag phase and fungal growth rates of all 3 strains. However, with elevated CO2 a reduction in both lag phases prior to growth and growth rate occurred regardless of the aw examined. For T-2 and HT-2 mycotoxin production, T-2 showed the most intra-species variability in response to the interacting abiotic stress factors, with the 3 strains having different environmental conditions for triggering increases in T-2 production: Strain 1 produced higher T-2 toxin at 25 °C, while Strain 2 and the type strain (Fl201059) produced most at 0.98 aw/30 °C. Only Strain 2 showed a reduction in toxin production when exposed to elevated CO2. HT-2 production was higher at 25 °C for the type strain and higher at 30-34 °C for the other two strains, regardless of the aw or CO2 level examined. The HT-2/T-2 ratio showed no significant differences due to the imposed interacting CC abiotic conditions.
Collapse
Affiliation(s)
- C. Verheecke-Vaessen
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, United Kingdom
| | - A. Lopez-Pietro
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, United Kingdom
- Chemical Engineering Department, School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - E. Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, United Kingdom
- Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL109AB, United Kingdom
| | - A. Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, United Kingdom
| | - N. Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, United Kingdom
| |
Collapse
|
10
|
Verheecke-Vaessen C, Garcia-Cela E, Lopez-Prieto A, Osk Jonsdottir I, Medina A, Magan N. Water and temperature relations of Fusarium langsethiae strains and modelling of growth and T-2 and HT-2 mycotoxin production on oat-based matrices. Int J Food Microbiol 2021; 348:109203. [PMID: 33930835 DOI: 10.1016/j.ijfoodmicro.2021.109203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2021] [Accepted: 04/11/2021] [Indexed: 11/15/2022]
Abstract
In the UK and Northern Europe, ripening oats can become contaminated with T-2 and HT-2 mycotoxins, produced mainly by Fusarium langsethiae. There are indicative levels related to the maximum limits for oat grain for these toxins. The objectives of this study were to examine the effect of interacting conditions of temperature (10-30 °C) and water activity (aw, 0.995-0.90) on (a) lag times prior to growth, (b) growth and (c) T-2 and HT-2 toxins by two strains of F. langsethiae isolated from oats in the UK and compare this with the type strain (Fl201059) which has been genomically sequenced, and (d) develop (and validated with published data) a probabilistic models for impacts of temperature × aw on growth and toxin production. All three strains had an optimum aw range and temperature of 0.995-0.98 and 25 °C for growth. For T-2 + HT-2 production these were 0.995 aw and 20 °C. Overall, the type strain produced higher amounts of T-2 + HT-2 with a HT-2/T-2 ratio of up to 76. Using this study data sets and those from the literature, probabilistic models were developed and validated for growth and T-2 + HT-2 toxin production in relation to temperature × aw conditions. These models, when applied in stored oats, will be beneficial in determining the conditions on the relative level of risk of contamination with these two toxins in the context of the EU indicative maximum levels.
Collapse
Affiliation(s)
- Carol Verheecke-Vaessen
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, UK.
| | - Esther Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, UK; Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL109AB, UK
| | - Alejandro Lopez-Prieto
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, UK; Chemical Engineering Department, School of Industrial Engineering, Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Inga Osk Jonsdottir
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, UK
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, UK
| |
Collapse
|
11
|
Wu Q, Kuca K, Nepovimova E, Wu W. Type A Trichothecene Diacetoxyscirpenol-Induced Emesis Corresponds to Secretion of Peptide YY and Serotonin in Mink. Toxins (Basel) 2020; 12:toxins12060419. [PMID: 32630472 PMCID: PMC7354585 DOI: 10.3390/toxins12060419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
The trichothecene mycotoxins contaminate cereal grains and have been related to alimentary toxicosis resulted in emetic response. This family of mycotoxins comprises type A to D groups of toxic sesquiterpene chemicals. Diacetoxyscirpenol (DAS), one of the most toxic type A trichothecenes, is considered to be a potential risk for human and animal health by the European Food Safety Authority. Other type A trichothecenes, T-2 toxin and HT-2 toxin, as well as type B trichothecene deoxynivalenol (DON), have been previously demonstrated to induce emetic response in the mink, and this response has been associated with the plasma elevation of neurotransmitters peptide YY (PYY) and serotonin (5-hydroxytryptamine, 5-HT). However, it is found that not all the type A and type B trichothecenes have the capacity to induce PYY and 5-HT. It is necessary to identify the roles of these two emetogenic mediators on DAS-induced emesis. The goal of this study was to determine the emetic effect of DAS and relate this effect to PYY and 5-HT, using a mink bioassay. Briefly, minks were fasted one day before experiment and given DAS by intraperitoneally and orally dosing on the experiment day. Then, emetic episodes were calculated and blood collection was employed for PYY and 5-HT test. DAS elicited robust emetic responses that corresponded to upraised PYY and 5-HT. Blocking the neuropeptide Y2 receptor (NPY2R) diminished emesis induction by PYY and DAS. The serotonin 3 receptor (5-HT3R) inhibitor granisetron totally restrained the induction of emesis by serotonin and DAS. In conclusion, our findings demonstrate that PYY and 5-HT have critical roles in DAS-induced emetic response.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jinzhou 434025, China;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (K.K.); (W.W.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (K.K.); (W.W.)
| |
Collapse
|
12
|
Tralamazza SM, Rocha LO, Oggenfuss U, Corrêa B, Croll D. Complex Evolutionary Origins of Specialized Metabolite Gene Cluster Diversity among the Plant Pathogenic Fungi of the Fusarium graminearum Species Complex. Genome Biol Evol 2019; 11:3106-3122. [PMID: 31609418 PMCID: PMC6836718 DOI: 10.1093/gbe/evz225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal genomes encode highly organized gene clusters that underlie the production of specialized (or secondary) metabolites. Gene clusters encode key functions to exploit plant hosts or environmental niches. Promiscuous exchange among species and frequent reconfigurations make gene clusters some of the most dynamic elements of fungal genomes. Despite evidence for high diversity in gene cluster content among closely related strains, the microevolutionary processes driving gene cluster gain, loss, and neofunctionalization are largely unknown. We analyzed the Fusarium graminearum species complex (FGSC) composed of plant pathogens producing potent mycotoxins and causing Fusarium head blight on cereals. We de novo assembled genomes of previously uncharacterized FGSC members (two strains of F. austroamericanum, F. cortaderiae, and F. meridionale). Our analyses of 8 species of the FGSC in addition to 15 other Fusarium species identified a pangenome of 54 gene clusters within FGSC. We found that multiple independent losses were a key factor generating extant cluster diversity within the FGSC and the Fusarium genus. We identified a modular gene cluster conserved among distantly related fungi, which was likely reconfigured to encode different functions. We also found strong evidence that a rare cluster in FGSC was gained through an ancient horizontal transfer between bacteria and fungi. Chromosomal rearrangements underlying cluster loss were often complex and were likely facilitated by an enrichment in specific transposable elements. Our findings identify important transitory stages in the birth and death process of specialized metabolism gene clusters among very closely related species.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Liliana Oliveira Rocha
- Food Engineering Faculty, Department of Food Science, University of Campinas, Av. Monteiro Lobato, Brazil
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Benedito Corrêa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| |
Collapse
|
13
|
Verheecke-Vaessen C, Diez-Gutierrez L, Renaud J, Sumarah M, Medina A, Magan N. Interacting climate change environmental factors effects on Fusarium langsethiae growth, expression of Tri genes and T-2/HT-2 mycotoxin production on oat-based media and in stored oats. Fungal Biol 2019; 123:618-624. [DOI: 10.1016/j.funbio.2019.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
|
14
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Parent-Massin D, van Egmond H, Altieri A, Colombo P, Horváth Z, Levorato S, Edler L. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J 2018; 16:e05367. [PMID: 32626015 PMCID: PMC7009455 DOI: 10.2903/j.efsa.2018.5367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
4,15‐Diacetoxyscirpenol (DAS) is a mycotoxin primarily produced by Fusarium fungi and occurring predominantly in cereal grains. As requested by the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed the risk of DAS to human and animal health related to its presence in food and feed. Very limited information was available on toxicity and on toxicokinetics in experimental and farm animals. Due to the limitations in the available data set, human acute and chronic health‐based guidance values (HBGV) were established based on data obtained in clinical trials of DAS as an anticancer agent (anguidine) after intravenous administration to cancer patients. The CONTAM Panel considered these data as informative for the hazard characterisation of DAS after oral exposure. The main adverse effects after acute and repeated exposure were emesis, with a no‐observed‐adverse‐effect level (NOAEL) of 32 μg DAS/kg body weight (bw), and haematotoxicity, with a NOAEL of 65 μg DAS/kg bw, respectively. An acute reference dose (ARfD) of 3.2 μg DAS/kg bw and a tolerable daily intake (TDI) of 0.65 μg DAS/kg bw were established. Based on over 15,000 occurrence data, the highest acute and chronic dietary exposures were estimated to be 0.8 and 0.49 μg DAS/kg bw per day, respectively, and were not of health concern for humans. The limited information for poultry, pigs and dogs indicated a low risk for these animals at the estimated DAS exposure levels under current feeding practices, with the possible exception of fattening chicken. Assuming similar or lower sensitivity than for poultry, the risk was considered overall low for other farm and companion animal species for which no toxicity data were available. In consideration of the similarities of several trichothecenes and the likelihood of co‐exposure via food and feed, it could be appropriate to perform a cumulative risk assessment for this group of substances.
Collapse
|
15
|
Wollenberg RD, Saei W, Westphal KR, Klitgaard CS, Nielsen KL, Lysøe E, Gardiner DM, Wimmer R, Sondergaard TE, Sørensen JL. Chrysogine Biosynthesis Is Mediated by a Two-Module Nonribosomal Peptide Synthetase. JOURNAL OF NATURAL PRODUCTS 2017; 80:2131-2135. [PMID: 28708398 DOI: 10.1021/acs.jnatprod.6b00822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Production of chrysogine has been reported from several fungal genera including Penicillium, Aspergillus, and Fusarium. Anthranilic acid and pyruvic acid, which are expected precursors of chrysogine, enhance production of this compound. A possible route for the biosynthesis using these substrates is via a nonribosomal peptide synthetase (NRPS). Through comparative analysis of the NRPSs from genome-sequenced producers of chrysogine we identified a candidate NRPS cluster comprising five additional genes named chry2-6. Deletion of the two-module NRPS (NRPS14 = chry1) abolished chrysogine production in Fusarium graminearum, indicating that the gene cluster is responsible for chrysogine biosynthesis. Overexpression of NRPS14 enhanced chrysogine production, suggesting that the NRPS is the bottleneck in the biosynthetic pathway.
Collapse
Affiliation(s)
- Rasmus Dam Wollenberg
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Wagma Saei
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Klaus Ringsborg Westphal
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Carina Sloth Klitgaard
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Erik Lysøe
- Department of Biotechnology and Plant Health, NIBIO-Norwegian Institute of Bioeconomy Research , Høgskoleveien 7, 1430 Ås, Norway
| | - Donald Max Gardiner
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and Food, Queensland Bioscience Precinct , Brisbane, Australia
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
- Department of Chemistry and Bioscience, Aalborg University , Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| |
Collapse
|
16
|
Reynolds HT, Slot JC, Divon HH, Lysøe E, Proctor RH, Brown DW. Differential Retention of Gene Functions in a Secondary Metabolite Cluster. Mol Biol Evol 2017; 34:2002-2015. [DOI: 10.1093/molbev/msx145] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Gavrilova O, Skritnika A, Gagkaeva T. Identification and Characterization of Spontaneous Auxotrophic Mutants in Fusarium langsethiae. Microorganisms 2017; 5:E14. [PMID: 28362313 PMCID: PMC5488085 DOI: 10.3390/microorganisms5020014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/18/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
Analysis of 49 strains of Fusarium langsethiae originating from northern Europe (Russia, Finland, Sweden, UK, Norway, and Latvia) revealed the presence of spontaneous auxotrophic mutants that reflect natural intraspecific diversity. Our investigations detected that 49.0% of F. langsethiae strains were auxotrophic mutants for biotin, and 8.2% of the strains required thiamine as a growth factor. They failed to grow on vitamin-free media. For both prototrophic and auxotrophic strains, no growth defect was observed in rich organic media. Without essential vitamins, a significant reduction in the growth of the auxotrophic strains results in a decrease of the formation of T-2 toxin and diacetoxyscirpenol. In addition, all analysed F. langsethiae strains were distinguished into two subgroups based on PCR product sizes. According to our results, 26 and 23 strains of F. langsethiae belong to subgroups I and II respectively. We determined that the deletion in the intergenic spacer (IGS) region of the rDNA of F. langsethiae belonging to subgroup II is linked with temperature sensitivity and causes a decrease in strain growth at 30 °C. Four thiamine auxotrophic strains were found in subgroup I, while 21 biotin auxotrophic strains were detected in subgroups II. To the best of our knowledge, the spontaneous mutations in F. langsethiae observed in the present work have not been previously reported.
Collapse
Affiliation(s)
- Olga Gavrilova
- All-Russian Institute of Plant Protection (VIZR), St.-Petersburg, Pushkin 196608, Russia.
| | - Anna Skritnika
- All-Russian Institute of Plant Protection (VIZR), St.-Petersburg, Pushkin 196608, Russia.
| | - Tatiana Gagkaeva
- All-Russian Institute of Plant Protection (VIZR), St.-Petersburg, Pushkin 196608, Russia.
| |
Collapse
|
18
|
Morcia C, Tumino G, Ghizzoni R, Badeck FW, Lattanzio VMT, Pascale M, Terzi V. Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley. Toxins (Basel) 2016; 8:E247. [PMID: 27556490 PMCID: PMC4999861 DOI: 10.3390/toxins8080247] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
T-2 and HT-2 toxins are two of the most toxic members of type-A trichothecenes, produced by a number of Fusarium species. The occurrence of these mycotoxins was studied in barley samples during a survey carried out in the 2011-2014 growing seasons in climatically different regions in Italy. The percentage of samples found positive ranges from 22% to 53%, with values included between 26 and 787 μg/kg. The percentage of samples with a T-2 and HT-2 content above the EU indicative levels for barley of 200 μg/kg ranges from 2% to 19.6% in the 2011-2014 period. The fungal species responsible for the production of these toxins in 100% of positive samples has been identified as Fusarium langsethiae, a well-known producer of T-2 and HT-2 toxins. A positive correlation between the amount of F. langsethiae DNA and of the sum of T-2 and HT-2 toxins was found. This is the first report on the occurrence of F. langsethiae-and of its toxic metabolites T-2 and HT-2-in malting barley grown in Italy.
Collapse
Affiliation(s)
- Caterina Morcia
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giorgio Tumino
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Roberta Ghizzoni
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franz W Badeck
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Veronica M T Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), via G. Amendola 122/O, 70126 Bari, Italy.
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), via G. Amendola 122/O, 70126 Bari, Italy.
| | - Valeria Terzi
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|