1
|
Neggazi I, Colás-Medà P, Viñas I, Bainotti MB, Alegre I. Influence of physicochemical characteristics on the growth and guaiacol production of Alicyclobacillus acidoterrestris in fruit juices. Int J Food Microbiol 2024; 425:110856. [PMID: 39214026 DOI: 10.1016/j.ijfoodmicro.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Alicyclobacillus acidoterrestris is a bacterium known for causing spoilage in the taste and odour of fruit juices due to its thermoacidophilic nature. Its spoilage is attributed to the formation of guaiacol, which requires the presence of suitable precursors in the juices that A. acidoterrestris can metabolize. Therefore, A. acidoterrestris could exhibit different behaviour depending on the physicochemical characteristics the juice. In this study, we aimed to evaluate the behaviour of five A. acidoterrestris strains in seven different fruit juices by monitoring total cell and spore populations and quantifying guaiacol production. Also, physicochemical and phenolic profile, focusing on antimicrobials and guaiacol precursors, were analysed to better understand differences. Results showed growth in orange, apple, and plum juices for all the tested strains, with total cell populations reaching approximately 7 log cfu/mL, except for plum juice. In persimmon juice, growth was only observed in 3 out of 5 strains, for both total cells and spores. In contrast, all strains were inhibited in peach, black grape, and strawberry juices, maintaining a consistent population around 4 log cfu/mL. A strong negative correlation was observed between bacterial population and compounds such as kaempferol (for strains R3, R111, and P1), cyanidin chloride (for strains R111 and P1), and p-coumaric acid (for strain 7094 T). Regarding guaiacol production, orange and persimmon juices exhibited the highest guaiacol levels, with strain P1 (362.3 ± 12.6 ng/mL) and strain EC1 (325.1 ± 1.4 ng/mL) as the top producers, respectively. Plum, black grape, and strawberry juices showed similar guaiacol concentrations (16.9 ± 2.8 to 105.0 ± 33.7 ng/mL). Vanillin was showed positive correlations with guaiacol production in almost all strains (7094 T, R3, R111, and P1), with correlation coefficients of 0.97, 0.99, 0.82, and 0.87, respectively. We have reported different behaviour of A. acidoterrestris strains depending on juice type. Despite growth inhibition observed in some juices, enough guaiacol quantities to spoil the juice can be produced. This highlights the necessity of exploring strategies to prevent guaiacol production, even under growth restriction.
Collapse
Affiliation(s)
- Isma Neggazi
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Pilar Colás-Medà
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Inmaculada Viñas
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Maria Belén Bainotti
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Isabel Alegre
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
2
|
Thapa K, Julianingsih D, Tung CW, Phan A, Hashmi MA, Bleich K, Biswas D. Berry Pomace Extracts as a Natural Washing Aid to Mitigate Enterohaemorrhagic E. coli in Fresh Produce. Foods 2024; 13:2746. [PMID: 39272511 PMCID: PMC11394880 DOI: 10.3390/foods13172746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) outbreaks have been frequently linked to the consumption of produce. Furthermore, produce grown on organic farms possess a higher risk, as the farmers avoid antibiotics and chemicals. This study sets out to evaluate the effectiveness of advanced postharvest disinfection processes using berry pomace extracts (BPEs) in reducing EHEC load in two common leafy greens, spinach and lettuce. Spinach and lettuce were inoculated with ~5 log CFU/leaf EHEC EDL-933 and then treated with three different concentrations of BPE (1, 1.5, and 2 gallic acid equivalent, GAE mg/mL) for increasing periods of time. After the wash, the bacteria were quantified. Changes in the relative expression of virulence genes and the genes involved in cell division and replication and response against stress/antibiotics were studied. We observed a significant reduction in EHEC EDL933, ranging from 0.5 to 1.6 log CFU/spinach leaf (p < 0.05) washed with BPE water. A similar trend of reduction, ranging from 0.3 to 1.3 log CFU/mL, was observed in pre-inoculated lettuce washed with BPE water. We also quantified the remaining bacterial population in the residual treatment solutions and found the survived bacterial cells (~3 log CFU/mL) were low despite repeated washing with the same solution. In addition, we evaluated the phenolic concentration in leftover BPE, which did not change significantly, even after multiple uses. Alterations in gene expression levels were observed, with downregulation ranging from 1 to 3 log folds in the genes responsible for the adhesion and virulence of EHEC EDL933 and significant upregulation of genes responsible for survival against stress. All other genes were upregulated, ranging from 2 to 7 log folds, with a dose-dependent decrease in expression. This finding shows the potential of BPE to be used for sanitation of fresh produce as a natural and sustainable approach.
Collapse
Affiliation(s)
- Kanchan Thapa
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Dita Julianingsih
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Chuan-Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Anna Phan
- Biological Sciences Program, Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Muhammad Abrar Hashmi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Kayla Bleich
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Orimaye OE, Ekunseitan DA, Omaliko PC, Fasina YO. Mitigation Potential of Herbal Extracts and Constituent Bioactive Compounds on Salmonella in Meat-Type Poultry. Animals (Basel) 2024; 14:1087. [PMID: 38612326 PMCID: PMC11011123 DOI: 10.3390/ani14071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Herbal extracts have been widely evaluated in poultry production for their beneficial effects and potential substitute for antibiotics, which contribute to AMR and risks to human health through the consumption of infected meat. Salmonellosis is a systemic infection caused by Salmonella, an intracellular bacterium with the ability to cause systemic infections with significant implications for both the health and safety of farmers and consumers. The excessive use of antibiotics has escalated the incidence of antibiotic resistance bacteria in the poultry and livestock industry, highlighting the urgent need for alternatives especially in meat-type poultry. Both in vivo usage and in vitro studies of bioactive compounds from herbal extracts have demonstrated the effective antimicrobial activities against pathogenic bacteria, showing promise in managing Salmonella infections and enhancing poultry performance. Phytobiotic feed additives have shown promising results in improving poultry output due to their pharmacological properties, such as stimulating consumption, and enhancing antioxidant properties and preventing the increasing antimicrobial resistance threats. Despite potential for synergistic effects from plant-derived compounds, a further investigation into is essential to fully understand their role and mechanisms of action, for developing effective delivery systems, and for assessing environmental sustainability in controlling Salmonella in poultry production.
Collapse
Affiliation(s)
| | | | | | - Yewande O. Fasina
- Animal Sciences Department, North Carolina A&T State University, Greensboro, NC 27411, USA; (O.E.O.); (D.A.E.)
| |
Collapse
|
4
|
Santos LFD, Lopes ST, Nazari MT, Biduski B, Pinto VZ, Santos JSD, Bertolin TE, Santos LRD. Fruit pomace as a promising source to obtain biocompounds with antibacterial activity. Crit Rev Food Sci Nutr 2023; 63:12597-12609. [PMID: 35866531 DOI: 10.1080/10408398.2022.2103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The demand for natural compounds to replace synthetic additives has aroused the interest of different sectors of society, especially the scientific community, due to their safety, biocompatibility, biodegradability and low toxicity. Alternative sources for antimicrobial compounds have been explored, such as fruit pomace. These by-products have essential compounds in their composition with different potential for application in food and packaging. In this context, this review systematizes the use of pomace from different fruits as a source of antibacterial compounds. Also, it summarizes the extraction methods and the applications of these compounds. Grape pomace, cranberry, and apple extracts are the most explored for antibacterial control, especially against genus Listeria, Salmonella, Staphylococcus, and Escherichia. In addition, phenolic acids, anthocyanins, flavonoids, and proanthocyanins are the main compounds identified in the studied fruit pomace extracts. In the reviewed articles, the biocompounds recovery is performed by methods with the absence of high temperatures (>80 °C); in some studies, the solid-liquid extraction method at mild temperatures (<30 °C) was well explored, using ethanol and water as solvent. The use of fruit processing by-products for bacterial control highlights the possibility of favoring the three pillars of sustainability (social, economic, and environmental) in the food industry.
Collapse
Affiliation(s)
| | | | | | - Bárbara Biduski
- University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Vania Zanella Pinto
- Graduate Program in Food Science and Tecnology, Federal University of Fronteira Sul, Parana, Brazil
| | | | | | | |
Collapse
|
5
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
6
|
Mao Y, Wang Y, Luo X, Chen X, Wang G. Impact of cell-free supernatant of lactic acid bacteria on Staphylococcus aureus biofilm and its metabolites. Front Vet Sci 2023; 10:1184989. [PMID: 37397004 PMCID: PMC10310794 DOI: 10.3389/fvets.2023.1184989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction A safe bio-preservative agent, lactic acid bacteria (LAB) can inhibit the growth of pathogenic bacteria and spoilage organisms. Its cell-free supernatant (LAB-CFS), which is rich in bioactive compounds, is what makes LAB antibacterial work. Methods This study focused on the changes in biofilm activity and related metabolic pathways of S. aureus treated with lactic acid bacteria planktonic CFS (LAB-pk-CFS) and biofilm state (LAB-bf-CFS). Results The findings demonstrated that the LAB-CFS treatment considerably slowed Staphylococcus aureus (S. aureus) growth and prevented it from forming biofilms. Additionally, it inhibits the physiological traits of the S. aureus biofilm, including hydrophobicity, motility, eDNA, and PIA associated to the biofilm. The metabolites of S. aureus biofilm treated with LAB-CFS were greater in the LAB-bf-CFS than they were in the LAB-pk-CFS, according to metabolomics studies. Important metabolic pathways such amino acids and carbohydrates metabolism were among the most noticeably altered metabolic pathways. Discussion These findings show that LAB-CFS has a strong potential to combat S. aureus infections.
Collapse
Affiliation(s)
- Yanni Mao
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuxia Wang
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaofeng Luo
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaohui Chen
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Dos Santos LF, Biduski B, Lopes ST, Bertolin TE, Dos Santos LR. Brazilian native fruit pomace as a source of bioactive compounds on starch-based films: Antimicrobial activities and food simulator release. Int J Biol Macromol 2023; 242:124900. [PMID: 37201884 DOI: 10.1016/j.ijbiomac.2023.124900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
The bioactive compounds extraction from fruit pomace is an ecological alternative for these abundant and low-added-value by-products. This study aimed to evaluate the antimicrobial potential of pomace extracts from Brazilian native fruits (araçá, uvaia, guabiroba and butiá) and the effect on physicochemical, mechanical properties and the migration of antioxidants and phenolic compounds from starch-based films. The film with butiá extract had the lowest mechanical resistance (1.42 MPa) but the highest elongation (63 %). In comparison, uvaia extract had less impact on film mechanical properties (3.70 MPa and 58 %) compared to the other extracts. The extracts and films showed antimicrobial activity against Listeria monocytogenes, L. inoccua, B. cereus and S. aureu. Approximately 2 cm inhibition halo was noticed for the extracts, while films ranged from 0.33 to 1.46 cm inhibition halo. Films with guabiroba extract had the lowest antimicrobial activity (0.33 to 0.5 cm). The phenolic compounds were released from the film matrix in the first hour at 4 °C with maintenance in the stability. The fatty-food simulator showed a controlled release of antioxidant compounds, which can assist in controlling food oxidation. Brazilian native fruit has shown to be a viable alternative to isolate bioactive compounds and produce film packaging with antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Lára Franco Dos Santos
- Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil
| | - Bárbara Biduski
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland; Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Samuel Teixeira Lopes
- Undergraduate Program in Chemical Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Luciana Ruschel Dos Santos
- Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
8
|
Tabashsum Z, Scriba A, Biswas D. Alternative approaches to therapeutics and subtherapeutics for sustainable poultry production. Poult Sci 2023; 102:102750. [PMID: 37207572 DOI: 10.1016/j.psj.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
The world population is growing rapidly and thus its demand for food is growing as well. To meet the demand of the ever-increasing number of consumers, the poultry industry and both of its main sectors-conventional and organic/cage-free farming-are expanding in parallel. Due to increasing demand of poultry products and higher mortality rate of chicks (an average 0.3% increase of mortality over last 5 yr), both conventional and organic poultry farming systems struggle with various issues; animal welfare, environmental sustainability, and antibiotic resistance of the prevailing zoonotic/enteric pathogens are common issues for conventional farming whereas slow growth rate, higher costs, inefficient land use, different diseases of the chicken, and cross-contamination with bacterial pathogens into the final products are the major issues for organic poultry farming. On top of these issues, the use of subtherapeutic antibiotics was recently banned in conventional farming systems and by definition the organic farming system cannot use the antibiotics/synthetic chemicals even for therapeutic use. In conventional farming system, use of therapeutic antibiotics may result in residuals antibiotics in the final products. As a result, sustainable alternatives are in demand to mitigate the prevailing issues for both conventional and organic farming. Potential alternatives may include bacteriophages, vaccination, probiotics, plant-derived prebiotics, and synbiotics. These alternatives have beneficial attributes and shortcomings of their use in both conventional and organic poultry production system. In this review, we'll discuss the scope of these potential alternatives as therapeutics and subtherapeutics in sustainable poultry production and ways to improve their efficacy.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Aaron Scriba
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
10
|
Alvarado-Martinez Z, Tabashsum Z, Aditya A, Suh G, Wall M, Hshieh K, Biswas D. Purified Plant-Derived Phenolic Acids Inhibit Salmonella Typhimurium without Alteration of Microbiota in a Simulated Chicken Cecum Condition. Microorganisms 2023; 11:microorganisms11040957. [PMID: 37110380 PMCID: PMC10144919 DOI: 10.3390/microorganisms11040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (ST) remains a predominant zoonotic pathogen because of its colonization in poultry, survivability in the environment, and increasing antibiotic-resistance pattern. Plant-derived phenolics, gallic acid (GA), protocatechuic acid (PA), and vanillic acids (VA) have demonstrated antimicrobial activity in vitro; therefore, this study collected chicken cecal fluid and supplemented it with these phenolics to evaluate their potential for eliminating ST and mod-ulating the microbiota of complex environments. ST was quantified through plating, while micro-biome analysis was performed through pair-end 16S-rRNA gene sequencing. CFU/mL of ST in cecal fluid with GA was significantly reduced by 3.28 and 2.78 log at 24 h and 48 h, while PA only had a slight numerical decrease. VA significantly reduced ST by 4.81 and 5.20 log at 24 h and 48 h. Changes in relative abundance of major phyla were observed at 24 h for samples with GA and VA as Firmicute levels increased 8.30% and 20.90%, while Proteobacteria decreased 12.86% and 18.48%, respectively. Significant changes in major genre were observed in Acinetobacter (3.41% for GA) and Escherichia (13.53% for VA), while Bifidobacterium increased (3.44% for GA) and Lactobacillus remained unchanged. Results suggest that phenolic compounds exert different effects on certain pathogens, while supporting some commensal bacteria.
Collapse
Affiliation(s)
- Zabdiel Alvarado-Martinez
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland-College Park, College Park, MD 20742, USA
| | - Grace Suh
- Department of Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Matthew Wall
- Department of Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Katherine Hshieh
- Department of Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland-College Park, College Park, MD 20742, USA
- Department of Animal and Avian Sciences, University of Maryland-College Park, College Park, MD 20742, USA
- Center for Food Safety and Security Systems, University of Maryland-College Park, College Park, MD 20742, USA
| |
Collapse
|
11
|
Ahmed N, El-Fateh M, Amer MS, El-Shafei RA, Bilal M, Diarra MS, Zhao X. Antioxidative and Cytoprotective Efficacy of Ethanolic Extracted Cranberry Pomace against Salmonella Enteritidis Infection in Chicken Liver Cells. Antioxidants (Basel) 2023; 12:antiox12020460. [PMID: 36830018 PMCID: PMC9952629 DOI: 10.3390/antiox12020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a globally significant zoonotic foodborne pathogen. Chicken liver is a vital organ that has been recently implicated in several reported human salmonellosis outbreaks in the U.S. One promising strategy for reducing Salmonella in chickens could be through supplementation with natural antimicrobial additives. Ethanolic extracted cranberry pomace (CPOH) is an excellent source of bioactive polyphenolic compounds with antioxidant and antimicrobial activities. However, the protective effect of CPOH against S. Enteritidis-induced chicken hepatic cell damage remains unclear. In this study, we used a chicken hepatoma cell (LMH) infection model to investigate the protective effects and potential mechanisms of CPOH. CPOH increased the viability of S. Enteritidis-infected LMH cells. Furthermore, CPOH reduced the adhesion and invasion of S. Enteritidis to LMH cells. CPOH downregulated the expression of Rho GTPase genes that are essential for Salmonella's entry into LMH cells. Additionally, the expression of antioxidant regulatory genes, such as Nrf2, HO-1, Txn, and Gclc, was increased. Our data show that CPOH effectively protected LMH cells from cell damage through the inhibition of S. Enteritidis adhesion and invasion, as well as the induction of the expression of master antioxidant genes. These findings offer opportunities to develop sustainable, safe, and economic strategies to reduce the colonization and pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Mohamed El-Fateh
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Magdy S. Amer
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Reham A. El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Muhammad Bilal
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Moussa S. Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-514-398-7975
| |
Collapse
|
12
|
Montanari C, Barbieri F, Lorenzini S, Gottardi D, Šimat V, Özogul F, Gardini F, Tabanelli G. Survival, growth, and biogenic amine production of Enterococcus faecium FC12 in response to extracts and essential oils of Rubus fruticosus and Juniperus oxycedrus. Front Nutr 2023; 9:1092172. [PMID: 36712524 PMCID: PMC9880475 DOI: 10.3389/fnut.2022.1092172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Enterococci are lactic acid bacteria (LAB) usually found as food contaminants in fermented products such as cheeses and fermented sausages. Due to their antibiotic resistance, the presence of virulence factors, and the ability to produce biogenic amines (BAs), the determination of these bacteria is crucial to assure food quality and safety. BAs production and consequent accumulation in foods can cause toxicological effects on human health. Plant phenolic compounds are promising alternatives to chemical preservatives and reflect consumers' demand for "green" solutions. In this study, the antimicrobial effect of blackberry (Rubus fruticosus) leaves and prickly juniper (Juniperus oxycedrus) needles, both as phenolic extracts (PE) and essential oils (EO), were evaluated against Enterococcus faecium FC12, a known tyramine-producing strain. Methods The growth kinetics in the presence of sub-lethal concentrations of such plant derivatives were modeled (Gompertz equation) and BA production was monitored over time by HPLC. Moreover, flow cytometry (FCM) was used to study the effects of EOs and PEs on cell viability. Results The EOs showed a higher antimicrobial effect (especially R. fruticosus added at 0.75 mg/ml), determining an initial decrease of culturable cells followed by a recovery, even if with lower growth rates and final cell loads. Different rates of BA formation were observed, with tyramine concentrations ranging from 120 to 160 mg/l after 96 h of incubation, and 2-phenylethylamine was produced in lower amounts, usually after reaching the peak of tyramine. FCM confirmed the higher efficacy of R. fruticosus EO that induced cell membrane injury in 93% of the total population. However, complete recovery occurred in the following incubation, demonstrating transient damage. Discussion Although further research is required to better investigate this recovery and to assess the suitability of this approach in a real food system, the present study showed the potential antimicrobial activity of plant derivatives, especially R. fruticosus EO, against the tyramine-producing E. faecium FC12.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Silvia Lorenzini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy,Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy,Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy,Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy,*Correspondence: Giulia Tabanelli ✉
| |
Collapse
|
13
|
Mao Y, Liu P, Chen H, Wang Y, Li C, Wang Q. Baicalein Inhibits the Staphylococcus aureus Biofilm and the LuxS/AI-2 System in vitro. Infect Drug Resist 2023; 16:2861-2882. [PMID: 37193303 PMCID: PMC10182811 DOI: 10.2147/idr.s406243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) is a common cause of mastitis in dairy cows, a condition that has a significant economic impact. S. aureus displays quorum sensing (QS) system-controlled virulence characteristics, like biofilm formation, that make therapy challenging. In order to effectively combat S. aureus, one potential technique is to interfere with quorum sensing. Methods This study evaluated the effects of different Baicalin (BAI) concentrations on the growth and the biofilm of S. aureus isolates, including the biofilm formation and mature biofilm clearance. The binding activity of BAI to LuxS was verified by molecular docking and kinetic simulations. The secondary structure of LuxS in the formulations was characterized using fluorescence quenching and Fourier transform infrared (FTIR) spectroscopy. Additionally, using fluorescence quantitative PCR, the impact of BAI on the transcript levels of the luxS and biofilm-related genes was investigated. The impact of BAI on LuxS at the level of protein expression was also confirmed by a Western blotting investigation. Results According to the docking experiments, they were able to engage with the amino acid residues in LuxS and BAI through hydrogen bonding. The results of molecular dynamics simulations and the binding free energy also confirmed the stability of the complex and supported the experimental results. BAI showed weak inhibitory activity against S. aureus but significantly reduced biofilm formation and disrupted mature biofilms. BAI also downregulated luxS and biofilm-associated genes' mRNA expression. Successful binding was confirmed using fluorescence quenching and FTIR. Discussion We thus report that BAI inhibits the S. aureus LuxS/AI-2 system for the first time, which raises the possibility that BAI could be employed as a possible antimicrobial drug to treat S. aureus strain-caused biofilms.
Collapse
Affiliation(s)
- Yanni Mao
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People’s Republic of China
| | - Panpan Liu
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People’s Republic of China
| | - Haorong Chen
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People’s Republic of China
| | - Yuxia Wang
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People’s Republic of China
| | - Caixia Li
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People’s Republic of China
| | - Quiqin Wang
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People’s Republic of China
- Correspondence: Quiqin Wang, Email
| |
Collapse
|
14
|
Peng M, Joo J, Alvarado-Martinez Z, Tabashsum Z, Aditya A, Biswas D. Intracellular autolytic whole cell Salmonella vaccine prevents colonization of pathogenic Salmonella Typhimurium in chicken. Vaccine 2022; 40:6880-6892. [PMID: 36272875 DOI: 10.1016/j.vaccine.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022]
Abstract
Salmonella enterica (SE) is a major foodborne bacterial pathogen in the United States, commonly found as the normal flora of various animals that is attributed to causing at least 1.2 million infections annually. Poultry plays a major role in disseminating SE through direct contact with live animals and consumption of contaminated products. Vaccinating poultry against SE is a sustainable approach that can reduce SE in the host, preventing future infections in humans. An intracellular autolytic SE serovar Typhimurium vaccine (STLT2+P13+19) was developed by integrating genes 13 (holin) and 19 (lysozyme) of bacteriophage P22 into the bacterial chromosome. These were inserted downstream of sseA, an SPI-2 chaperone in SE that expresses during the intracellular phase of SE. Intracellular viability of STLT2+P13+19 reduced by 94.42% at 24 hr compared to the wild type in chicken macrophage cells (HD-11), whereas growth rate and adhesion ability remained unchanged. Inoculating STLT2+P13+19 in HD-11 significantly enhanced the relative log fold expression of genes associated to production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12 p40, IL-18, and GM-CSF) and Toll-like-receptors (TRL-3 and 7). Vaccination of an in vivo chicken model demonstrated significant changes in secretion of iNOS, IL-6, IL-8, IL-12, and TNF-α, as well as a reduction in the intestinal colonization of SE serovar Typhimurium. Microbiome analysis of cecal fluid using 16S rRNA gene sequencing also showed modulation of intestinal microbial composition, specifically a decrease in relative abundance of Proteobacteria and increasing Firmicutes. This study provides insight into a novel vaccine design that could make food products safer without the use of synthetic compounds.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Jungsoo Joo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Zabdiel Alvarado-Martinez
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA.
| | - Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA.
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA.
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA; Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA.
| |
Collapse
|
15
|
Silva S, Costa EM, Oliveira H, Freitas VD, Morais RM, Calhau C, Pintado M. Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems. Molecules 2022; 27:6991. [PMID: 36296591 PMCID: PMC9611478 DOI: 10.3390/molecules27206991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 10/15/2023] Open
Abstract
Several arguments have been made to substantiate the need for natural antimicrobials for the food industry. With blueberry extracts, the most compelling are both their healthy connotation and the possibility of obtaining a multipurpose solution that can be an antioxidant, colorant, and antimicrobial. From an antimicrobial perspective, as blueberry/anthocyanin-rich extracts have been associated with a capacity to inhibit harmful bacteria while causing little to no inhibition on potential probiotic microorganisms, the study of potential benefits that come from synergies between the extract and probiotics may be of particular interest. Therefore, the present work aimed to evaluate the effect of an anthocyanin-rich extract on the adhesion of five different probiotics as well as their effect on the probiotics' capacity to compete with or block pathogen adhesion to a mucin/BSA-treated surface. The results showed that, despite some loss of probiotic adhesion, the combined presence of extract and probiotic is more effective in reducing the overall amount of adhered viable pathogen cells than the PROBIOTIC alone, regardless of the probiotic/pathogen system considered. Furthermore, in some instances, the combination of the extract with Bifidobacterium animalis Bo allowed for almost complete inhibition of pathogen adhesion.
Collapse
Affiliation(s)
- Sara Silva
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eduardo M. Costa
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Hélder Oliveira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Vitor De Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Rui M. Morais
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo, NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde, Universidade do Porto, 4200-450 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
16
|
Ding C, Wu H, Cao X, Gao Z, Tang Z, Fan W, Yan L, Liu B, Lin H, Song S. Lactobacillus crispatus-derived exopolysaccharides with antibacterial activity limit Salmonella typhimurium invasion by inhibiting inflammasome-mediated pyroptosis. Food Funct 2022; 13:10501-10515. [PMID: 36148688 DOI: 10.1039/d2fo02125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel heteropolysaccharide (EPS 7-4) with a molecular weight of 53 387 Da was isolated from Lactobacillus crispatus, and it was mainly composed of mannose (36.9%) and glucose (30.8%). EPS 7-4 showed excellent inhibitory effects on the proliferation, biofilm formation, and virulence factor gene expression of Salmonella typhimurium (S. typhimurium) by disrupting the integrity of the bacterial wall. Furthermore, EPS 7-4 can effectively restrict bacterial translocation, upregulate the abundance of Lactobacillus spp. and Bifidobacterium spp., and alleviate the S. typhimurium induced severe inflammatory response in the intestinal tract of mice. Besides, we demonstrated that EPS 7-4 can protect mice by inhibiting S. typhimurium induced pyroptosis, with the mechanism that EPS 7-4 affects ASC oligomerization during inflammasome-mediated pyroptosis. Therefore, due to its excellent anti-bacterial and anti-inflammatory abilities, EPS 7-4 is a promising health regulator owing to its excellent antibacterial and anti-inflammatory abilities.
Collapse
Affiliation(s)
- Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huixian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Management Office of Dafeng Milu National Nature Reserve, Yancheng, 224136, China
| | - Xiuyun Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bin Liu
- Management Office of Dafeng Milu National Nature Reserve, Yancheng, 224136, China
| | - Hong Lin
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, 210019, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Effects of Rubus fruticosus and Juniperus oxycedrus derivatives on culturability and viability of Listeria monocytogenes. Sci Rep 2022; 12:13158. [PMID: 35915316 PMCID: PMC9343658 DOI: 10.1038/s41598-022-17408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
The consumers' demand for safe foods without chemical additives increased the research for green solutions, based on natural antimicrobials. Plants can be an important source of bioactive compounds able to prevent the development of foodborne pathogens and spoilage microflora. This paper aimed to characterize phenolic extracts (PEs) and essential oils (EOs) obtained from Mediterranean Rubus fruticosus leaves and Juniperus oxycedrus needles and to evaluate their antimicrobial effects against Listeria monocytogenes Scott A. The growth dynamics with sub-lethal concentrations of plant derivatives were modeled and flow cytometry was used to better evidence the effect on cell viability and culturability. The results showed that these plant derivatives affected the growth of L. monocytogenes, increasing lag phase (about 40 h in the presence of PEs vs. 8 h in the control) and decreasing the final cell load of at least 1 log cycle with respect to the control. R. fruticosus EO was the most effective, determining an initial decrease of cell counts of about 6 log cycles, followed by a restart of growth after 10 h, with rate similar to the control (0.08 with R. fruticosus EO vs. 0.09 ((log CFU/ml)/h in the control) but significantly lower final cell load (7.33 vs. 8.92 log CFU/ml). According to flow cytometry, only R. fruticosus EO induced a relevant increase of dead cells, while the other plant derivatives determined different extent of sub-lethal cell injury. The discrepancy observed in some cases between viability and culturability could indicate the presence of cells not able to grow in culture media, whose fate needs to be further investigated to assess their potential recovery, thus bringing to an overestimation of the antimicrobial effect of these substances. This research contributed to increase the knowledge of these underused raw materials such as blackberry leaves and juniper needles that can be exploited in food and other industries.
Collapse
|
18
|
Ekonomou S, Akshay Thanekar P, Lamprou DA, Weaver E, Doran O, Stratakos AC. Development of Geraniol-Loaded Liposomal Nanoformulations against Salmonella Colonization in the Pig Gut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7004-7014. [PMID: 35653283 PMCID: PMC9204824 DOI: 10.1021/acs.jafc.2c00910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Salmonella is a global health threat, with pig production being one of the main sources of human salmonellosis. The current study investigated the antivirulence properties of geraniol for inhibiting the in vitro colonization of Salmonella. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of geraniol against Salmonella typhimurium followed by the sub-MIC of geraniol were determined. Results provided clear evidence that geraniol at 1/8 MIC can be used as an effective, non-toxic antivirulence compound to inhibit virulence factors (motility, adhesion, and invasiveness) affecting the colonization of S. typhimurium on IPEC-J2 cells. Additionally, the findings signified that microfluidics is an emerging technology suitable for the preparation of stable liposomes with a small size (<200 nm) and high encapsulation efficiency (EE) of up to 92.53%, which can act as effective carriers of geraniol into the pig gastrointestinal tract (GIT), targeting Salmonella, preventing colonization, and thus increasing the safety of the food supply chain.
Collapse
Affiliation(s)
- Sotirios
I. Ekonomou
- Faculty
of Health and Applied Sciences (HAS), University
of the West of, Coldharbour Ln, Bristol BS16 1QY, England
| | - Pooja Akshay Thanekar
- Faculty
of Health and Applied Sciences (HAS), University
of the West of, Coldharbour Ln, Bristol BS16 1QY, England
| | - Dimitrios A. Lamprou
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Edward Weaver
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Olena Doran
- Faculty
of Health and Applied Sciences (HAS), University
of the West of, Coldharbour Ln, Bristol BS16 1QY, England
| | - Alexandros Ch. Stratakos
- Faculty
of Health and Applied Sciences (HAS), University
of the West of, Coldharbour Ln, Bristol BS16 1QY, England
- . Tel: (0044) 01173284743
| |
Collapse
|
19
|
Al-Mnaser A, Dakheel M, Alkandari F, Woodward M. Polyphenolic phytochemicals as natural feed additives to control bacterial pathogens in the chicken gut. Arch Microbiol 2022; 204:253. [PMID: 35412092 PMCID: PMC9001821 DOI: 10.1007/s00203-022-02862-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 01/21/2023]
Abstract
Poultry provides an important protein source consumed globally by human population, and simultaneously, acts as a substantial reservoir of antibiotic resistant bacterial species such as Escherichia coli, Salmonella, Campylobacter, Clostridium perfringens. These bacterial species can include commensal strains with beneficial roles on poultry health and productivity, and pathogenic strains not only to poultry but zoonotically to man. This review paper evaluates the role of phytochemicals as possible alternatives to antibiotics and natural anti-bacterial agents to control antibiotic resistance in poultry. The focus of this paper is on the polyphenolic phytochemicals as they constitute the major group; carvacrol oil (the active ingredient of oregano), thymol oil (the main ingredient of oregano), oregano oil, and tannins oil as feed additives and their mechanism of actions that might enhance avian gut health by controlling antibiotic-resistant bacterial strains spread in poultry.
Collapse
Affiliation(s)
- Afnan Al-Mnaser
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG6 6DZ, UK.
- Dasman Diabetes Institute, Dasman, Sharq, Kuwait.
| | - Mohammed Dakheel
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Fatemah Alkandari
- Department of Plant Protection, Public Authority of Agriculture Affairs and Fish Resources, Al-Rabia, Kuwait
| | - Martin Woodward
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG6 6DZ, UK
- Folium Science, Unit DX, Bristol, BS2 0XJ, UK
| |
Collapse
|
20
|
Diez-Sánchez E, Quiles A, Hernando I. Use of Berry Pomace to Design Functional Foods. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elena Diez-Sánchez
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - Amparo Quiles
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - Isabel Hernando
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
21
|
Multicomponent Polyphenolic Extracts from Vaccinium corymbosum at Lab and Pilot Scale. Characterization and Effectivity against Nosocomial Pathogens. PLANTS 2021; 10:plants10122801. [PMID: 34961272 PMCID: PMC8708234 DOI: 10.3390/plants10122801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
An extraction method was designed and scaled up to produce multicomponent polyphenolic extracts from blueberries (Vaccinium corymbosum) of three different varieties. The process was specifically drawn up to comply with green chemistry principles. Extracts were obtained for the direct assessment of their antimicrobial and antiadhesive activities, and their direct use in the control of infections caused by concerning multidrug-resistant nosocomial pathogens. Analytical characterization was performed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Similar qualitative profiles were obtained in the three studied varieties with some significant quantitative differences. Up to 22 different polyphenols were identified with a clear predominance of anthocyani(di)ns followed by flavanols, non-flavonoids, and far behind by flavan-3-ols and procyanidins. The individual content of the main polyphenols was also discussed. A pilot scale extract has been also produced as a proof-of-concept, showing that scaling-up triples the content of bioactive phytochemicals. The effect of the polyphenolic extracts was analyzed against seven multidrug-resistance bacterial species by performing biofilm formation and growth and killing curves assays. All the studied varieties showed antibacterial and antiadhesive activities, being the extract containing the highest concentration of bioactive polyphenols, the most active with a high bactericidal effect.
Collapse
|
22
|
Recent advances in anti-adhesion mechanism of natural antimicrobial agents on fresh produce. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Tian Y, Yang B. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Crit Rev Food Sci Nutr 2021; 63:345-377. [PMID: 34251918 DOI: 10.1080/10408398.2021.1946673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing demand for natural food preservatives is raised by consumers. For Nordic berry species, abundance of phenolic compounds and potent activities of anti-oxidation and anti-bacteria enables a great potential as food preservatives. This review provides a systematic examination of current literature on phenolic profiles, anti-oxidative and anti-bacterial activities of various extracts of Nordic berry species, as well as the impact of various structure features of phenolics on the bioactivities. Special attention is placed on exploitation of leaves of berry species and pomaces after juice-pressing as side-streams of berry production and processing. The current progress and challenges in application of Nordic berry species as food preservatives are discussed. To fully explore the potential application of Nordic berry species in food industry and especially to valorize the side-streams of berry cultivation (leaves) and juice-pressing industry (pomaces), it is crucial to obtain extracts and fractions with targeted phenolic composition, which have high food preserving efficacy and minimal impact on sensory qualities of food products.
Collapse
Affiliation(s)
- Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Bauza-Kaszewska J, Żary-Sikorska E, Gugolek A, Ligocka A, Kosmala M, Karlińska E, Fotschki B, Juśkiewicz J. Synergistic Antimicrobial Effect of Raspberry (Rubus idaeus L., Rosaceae) Preparations and Probiotic Bacteria on Enteric Pathogens. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/132897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Assessment of the Effectiveness of Pre-harvest Meat Safety Interventions to Control Foodborne Pathogens in Broilers: a Systematic Review. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
Ensuring broilers’ meat safety is a priority to policy makers, producers, and consumers. This systematic review aims to update the recent knowledge on pre-harvest interventions to control main foodborne pathogens in broilers and to assess their effectiveness.
Recent Findings
A total of 815 studies were retrieved from PubMed® and Web of Science for 13 pathogens. In total, 51 studies regarding Campylobacter spp., Salmonella spp., VTEC, ESBL-AmpC Escherichia coli, and Clostridium perfringens were included in this review.
Summary
Research mostly focused on Salmonella spp. and Campylobacter spp. Biosecurity and management interventions had mixed outcomes, while the effectiveness of feed additives, though intensively researched, remains controversial. Research on other pathogens (i.e. ESBL-AmpC E. coli/Salmonella, and Toxoplasma gondii) was scarce, with publications focusing on epidemiology and/or on source-attribution studies. This is also true regarding research on Listeria monocytogenes, Bacillus cereus, Clostridium botulinum, Clostridium perfringens, and Staphylococcus aureus as these are frequently controlled by post-harvest interventions. Overall, studies on recent developments of novel pathogen-specific immunisation strategies are lacking.
Collapse
|
26
|
Elgueta E, Mena J, Orihuela PA. Hydroethanolic Extracts of Haplopappus baylahuen Remy and Aloysia citriodora Palau Have Bactericide Activity and Inhibit the Ability of Salmonella Enteritidis to Form Biofilm and Adhere to Human Intestinal Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3491831. [PMID: 33575326 PMCID: PMC7857884 DOI: 10.1155/2021/3491831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023]
Abstract
We analysed whether the hydroethanolic extracts from leaves of Haplopappus baylahuen Remy (bailahuen) and Aloysia citriodora Palau (cedron) inhibit the growth and ability of Salmonella Enteritidis to form biofilms and to adhere to human intestinal epithelial cells. Herein, we first determined the total phenolic content and antioxidant and antibacterial activities of the extracts. Then, Salmonella Enteritidis was treated with the extracts to analyse biofilm formation by scanning electronic microscopy and the violet crystal test. We also measured the efflux pump activity of Salmonella Enteritidis since biofilm formation is associated with this phenomenon. Furthermore, the human intestinal cell line Caco-2 was infected with Salmonella Enteritidis pretreated with the extracts, and 30 min later, the number of bacteria that adhered to the cell surface was quantified. Finally, we determined by qPCR the expression of genes associated with biofilm formation, namely, the diguanilate cyclase AdrA protein gene (adrA) and the BapA protein gene (bapA), and genes associated with adhesion, namely, the transcriptional regulator HilA (hilA). The phenolic content and antioxidant and bactericide activities were higher in bailahuen than in the cedron extract. Biofilm formation was inhibited by the extracts in a dose-dependent manner, while the activity of efflux pumps was decreased only with the cedron extract. Adhesion to Caco-2 cells was also inhibited without differences between doses and extracts. The extracts decreased the expression of adrA; with the cedron extract being the most efficient. The expression of hilA is affected only with the cedron extract. We concluded that hydroethanolic extracts of bailahuen and cedron differentially inhibit the growth of Salmonella Enteritidis and affect its the ability to form biofilms and to adhere to human intestinal epithelial cells. These results highlight the presence of molecules in bailahuen and cedron with a high potential for the control of the Salmonella Enteritidis pathogenesis.
Collapse
Affiliation(s)
- Estefanía Elgueta
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Mena
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro A. Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
27
|
Maizel D, Salinas FM, Solórzano I, Raiger Iustman L, Ferrero MA, Mauas PJD, Alché LE. Study of the Extremely-Tolerant Brevibacterium linens AE038-8 with Antiviral Activity Against Herpes Simplex Virus Type 1. Curr Microbiol 2021; 78:688-695. [PMID: 33399943 DOI: 10.1007/s00284-020-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/06/2020] [Indexed: 11/25/2022]
Abstract
Brevibacterium linens AE038-8 is an arsenic hyper-tolerant bacterial strain, previously isolated from well water in Tucumán, Argentina. The aim of this study was to characterize this strain regarding its resistance to different stress factors and to evaluate its antiviral activity against Herpes simplex virus type 1 (HSV-1). We found that B. linens AE038-8 was capable of tolerating high concentrations of heavy metals such as Cd(II), Cr(VI) and Cu(II). When grown in the presence of NaCl, it could tolerate up to 3 M in LB25 medium. When cultivated, B. linens released to the supernatants a bioactive principle with antiviral activity against HSV-1 virus regardless growth conditions.
Collapse
Affiliation(s)
- Daniela Maizel
- Instituto de Astronomía y Física del Espacio, CONICET, Universidad de Buenos Aires, C1428ZAA, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428ZAA, Buenos Aires, Argentina
| | - Franco Maximiliano Salinas
- Buenos Aires Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428ZAA, Buenos Aires, Argentina
| | - Inés Solórzano
- Buenos Aires Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Raiger Iustman
- Buenos Aires Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Microbiología Ambiental y Nanotecnología, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428ZAA, Buenos Aires, Argentina
| | | | - Pablo Jacobo David Mauas
- Instituto de Astronomía y Física del Espacio, CONICET, Universidad de Buenos Aires, C1428ZAA, Buenos Aires, Argentina
| | - Laura Edith Alché
- Buenos Aires Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Universidad de Buenos Aires, Buenos Aires, Argentina. .,CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428ZAA, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Duskaev G, Rakhmatullin S, Kvan O. Effects of Bacillus cereus and coumarin on growth performance, blood biochemical parameters, and meat quality in broilers. Vet World 2020; 13:2484-2492. [PMID: 33363345 PMCID: PMC7750213 DOI: 10.14202/vetworld.2020.2484-2492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Aim: Progressive antibiotic resistance has become the primary threat to public health. The search for alternative substances with similar effects is now a global challenge for poultry farming. The aim of this study was to investigate the action of the probiotic Bacillus cereus (BC) and coumarin (CO) on broiler productivity, biochemical indicators of blood, and muscular and liver tissues. Materials and Methods: The trial of this study included Arbor Acres cross broiler chickens that were grown up to the age of 42 days. The experiment was conducted on 200 broiler chickens divided into four experimental groups of 50 individuals each: The control group received ration without additives (main ration [MR]), the first experimental group received MR+BC, the second received MR+CO, and the third received −MR+BC+CO. A biochemical and hematological analyzer was used to estimate elemental concentrations using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Results: Inclusion of CO and CO+BC in the diet improved growth rates and reduced feed consumption (FC) per kg of live weight gain. Decreased white blood cell count, increased creatinine and triglycerides (CO), changes in aminotransferase and transpeptidase activity, and increases in chemical elements in the liver and pectoral muscles (BC+CO) were observed. The inclusion of BC+CO in the diet contributed to increases in a greater number of chemical elements in the liver (calcium [Ca], K, magnesium, Mn, Si, and Zn) and the pectoral muscles (Ca, Na, Co, Cu, Fe, Mn, Ni, and Zn). Conclusion: The inclusion of CO and CO+BC in the diet improves growth rates and reduces FC in broilers against a background of the absence of mortality during the experiment.
Collapse
Affiliation(s)
- Galimzhan Duskaev
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the RAS, Orenburg, Russia
| | - Shamil Rakhmatullin
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the RAS, Orenburg, Russia
| | - Olga Kvan
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the RAS, Orenburg, Russia
| |
Collapse
|
29
|
Aditya A, Peng M, Young A, Biswas D. Antagonistic Mechanism of Metabolites Produced by Lactobacillus casei on Lysis of Enterohemorrhagic Escherichia coli. Front Microbiol 2020; 11:574422. [PMID: 33329433 PMCID: PMC7719638 DOI: 10.3389/fmicb.2020.574422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Enhancing extracellular metabolic byproducts of probiotics is one of the promising strategies to improve overall host health as well as to control enteric infections caused by various foodborne pathogens. However, the underlying mechanism of action of those metabolites and their effective concentrations are yet to be established. In this study, we determined the antibacterial potential of the metabolites in the cell-free culture supernatant (CFCS) collected from wild-type Lactobacillus casei (LCwt) and genetically modified LC to overexpress linoleate isomerase (LCCLA). We also evaluated the mechanism of action of CFCSs collected from the culture of LCwt in the presence or absence of 0.5% peanut flour (CFCSwt and CFCSwt+PF, respectively) and LCCLA alone (CFCSCLA) against enterohemorrhagic Escherichia coli (EHEC). The metabolites present in CFCSwt+PF and CFCSCLA eliminated EHEC within 24 and 48 h, respectively. Whereas CFCSwt failed to eliminate EHEC but reduced their growth by 6.7 logs (p < 0.05) as compared to the control. Significant downregulation of the expression of cell division gene, ftsZ, supported the observed degree of bactericidal and bacteriostatic properties of the collected CFCSs. Upregulation of EHEC genes related to maintaining cell membrane integrity, DNA damage repair, and molecular chaperons indicated an intensive stress condition imposed by the total metabolites present in CFCSs on EHEC growth and cellular structures. A range of deviated morphological features provoked by the metabolites indicated a membrane-targeted action, in general, to compromise the membrane permeability of EHEC. The information obtained from this study may contribute to a more efficient prevention of EHEC related infections.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Alana Young
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States.,Biological Sciences Program, University of Maryland, College Park, College Park, MD, United States.,Centre for Food Safety and Security Systems, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
30
|
Gato E, Rosalowska A, Martínez-Guitián M, Lores M, Bou G, Pérez A. Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomed Pharmacother 2020; 132:110885. [PMID: 33113420 DOI: 10.1016/j.biopha.2020.110885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
The therapeutic effect of Vaccinium polyphenols against uropathogens has been widely studied. Most attention has focused on the antimicrobial activity against P-fimbriated Escherichia coli strains. The present study investigated the anti-adhesive and anti-biofilm activity of a saline extract of blueberry (Vaccinium corymbosum) targeting intestinal colonization by a highly adherent Klebsiella pneumoniae strain. This strain, responsible for a large outbreak of infection in Spain, was selected on the basis of its remarkable capacity to colonize the gastrointestinal tract of patients. The blueberry extract was obtained using a medium scale ambient temperature system (MSAT) in a novel approach based on the use of an aqueous solvent and addition of mineral salts. The polyphenolic content was determined by liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS). The findings confirmed that the blueberry extract is a rich source of phenolic compounds, including the most polar polyphenols (mostly non-flavonoids), intermediate polarity compounds (flavan-3-ols and most procyanidins) and low polarity compounds (flavonols and anthocyanins). The extract significantly inhibited biofilm formation and bacterial adhesion to HT-29 colorectal cells by a highly adherent multidrug-resistant K. pneumoniae. Although some individual anthocyanidins (malvidin, delphinidin and cyanidin) and one hydroxycinnamic acid (caffeic acid) proved capable of reducing bacterial adhesion, the unfractionated extract was more active than any of the individual polyphenolic compounds. In addition, the extract displayed considerable potential as an intestinal decolonization treatment in a murine model. The study findings demonstrate the potential value of the V. corymbosum extract as an alternative treatment for K. pneumoniae infections.
Collapse
Affiliation(s)
- Eva Gato
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Alicja Rosalowska
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Martínez-Guitián
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Lores
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - German Bou
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain.
| |
Collapse
|
31
|
Antimicrobial and Antivirulence Impacts of Phenolics on Salmonella Enterica Serovar Typhimurium. Antibiotics (Basel) 2020; 9:antibiotics9100668. [PMID: 33022945 PMCID: PMC7600263 DOI: 10.3390/antibiotics9100668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (ST) remains a major infectious agent in the USA, with an increasing antibiotic resistance pattern, which requires the development of novel antimicrobials capable of controlling ST. Polyphenolic compounds found in plant extracts are strong candidates as alternative antimicrobials, particularly phenolic acids such as gallic acid (GA), protocatechuic acid (PA) and vanillic acid (VA). This study evaluates the effectiveness of these compounds in inhibiting ST growth while determining changes to the outer membrane through fluorescent dye uptake and scanning electron microscopy (SEM), in addition to measuring alterations to virulence genes with qRT-PCR. Results showed antimicrobial potential for all compounds, significantly inhibiting the detectable growth of ST. Fluorescent spectrophotometry and microscopy detected an increase in relative fluorescent intensity (RFI) and red-colored bacteria over time, suggesting membrane permeabilization. SEM revealed severe morphological defects at the polar ends of bacteria treated with GA and PA, while VA-treated bacteria were found to be mid-division. Relative gene expression showed significant downregulation in master regulator hilA and invH after GA and PA treatments, while fliC was upregulated in VA. Results suggest that GA, PA and VA have antimicrobial potential that warrants further research into their mechanism of action and the interactions that lead to ST death.
Collapse
|
32
|
Tabashsum Z, Peng M, Alvarado-Martinez Z, Aditya A, Bhatti J, Romo PB, Young A, Biswas D. Competitive reduction of poultry-borne enteric bacterial pathogens in chicken gut with bioactive Lactobacillus casei. Sci Rep 2020; 10:16259. [PMID: 33004922 PMCID: PMC7530658 DOI: 10.1038/s41598-020-73316-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
In this study, the effect of sustainable probiotics on Campylobacter jejuni colonization and gut microbiome composition was evaluated using chicken as a model organism. Chickens were given Lactobacillus casei over-expressing myosin-cross-reactive antigen (LC+mcra). LC+mcra can generate bioactive compounds in larger quantity including conjugated linoleic acid. A total of 120 chickens were used in duplicate trials to investigate the effectiveness of LC+mcra in decreasing C. jejuni colonization by means of kanamycin resistant strain compared to the control group. We observed that LC+mcra can efficiently colonize various parts of the chicken gut and competitively reduce colonization of natural and challenged C. jejuni and natural Salmonella enterica. LC+mcra was found to reduce C. jejuni colonization in cecum, ileum and jejunum, by more than one log CFU/g when compared to the no-probiotic control group. Furthermore, 16S rRNA compositional analysis revealed lower abundance of Proteobacteria, higher abundance of Firmicutes, along with enriched bacterial genus diversity in gut of LC+mcra fed chicken. Decreased contamination of drinking water by C. jejuni and S. enterica was also observed, suggesting a potential function of reducing horizontal transfer of enteric bacteria in poultry. Outcomes of this study reveal high potential of LC+mcra as sustainable approach to decrease colonization of C. jejuni and S. enterica in poultry gut along with other beneficial attributes.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA
| | - Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zabdiel Alvarado-Martinez
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Jacob Bhatti
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA
| | - Paulina Bravo Romo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Alana Young
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA.
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
33
|
Alvarado-Martinez Z, Tabashsum Z, Salaheen S, Mui C, Lebovic A, Gaspard S, Dattilio A, Young A, Kennedy NF, Biswas D. Growth Inhibition and Alternation of Virulence Genes of Salmonella on Produce Products Treated with Polyphenolic Extracts from Berry Pomace. J Food Prot 2020; 83:1463-1471. [PMID: 32299102 DOI: 10.4315/jfp-20-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Organic farming, including integrated crop-livestock farms and backyard farming, is gaining popularity in the United States, and products from these farms are commonly sold at farmers' markets, local stores, and roadside stalls. Because organic farms avoid using antibiotics and chemicals and because they use composted animal waste and nonprofessional harvesting and packaging methods, their products have an increased risk of cross-contamination with zoonotic pathogens. This study sets out to evaluate the efficiency of new postharvest disinfection processes using natural berry pomace extracts (BPEs) as a means to reduce the bacterial load found in two common leafy greens, spinach and celery. Spinach and celery were inoculated with a fixed bacterial load of Salmonella Typhimurium and later were soaked in BPE-supplemented water (wBPE) for increasing periods of time, at two different temperatures (24 and 4°C). The remaining live bacteria were quantified (log CFU per leaf), and numbers were compared with those on vegetables soaked in water alone. The relative expression of virulence genes (hilA1/C1/D1, invA1/C1/E1/F1) of wBPE-treated Salmonella Typhimurium was determined. For spinach, there was a significant (P < 0.05) reduction of Salmonella Typhimurium: 0.2 to 1.2 log CFU/mL and 0.5 to 5 log CFU/mL at 24 and 4°C, respectively. For celery, there was also a significant (P < 0.05) reduction of Salmonella Typhimurium at either 24 or 4°C. The changes in relative expression of virulence genes of Salmonella Typhimurium isolated from spinach and celery varied depending on the treatment conditions but showed a significant down-regulation of inv genes when treated at 24°C for 1,440 min (P < 0.05). After seven uses, the total polyphenolic compounds in wBPE remained at an effective concentration. This research suggests that soaking these vegetables with BPE-containing water at lower temperatures can still reduce the Salmonella Typhimurium load enough to minimize the risk of infection and alter virulence properties. HIGHLIGHTS
Collapse
Affiliation(s)
- Zabdiel Alvarado-Martinez
- Biological Sciences Program, Molecular and Cellular Biology.,(ORCID: https://orcid.org/0000-0002-6581-3139 [Z.A.M.])
| | - Zajeba Tabashsum
- Biological Sciences Program, Molecular and Cellular Biology.,Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | | - Christine Mui
- Biological Sciences Program, Molecular and Cellular Biology
| | - Alex Lebovic
- Biological Sciences Program, Molecular and Cellular Biology
| | | | | | - Alana Young
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Nana-Frekua Kennedy
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program, Molecular and Cellular Biology.,Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.,Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
34
|
Anthocyanins in Blueberries Grown in Hot Climate Exert Strong Antioxidant Activity and May Be Effective against Urinary Tract Bacteria. Antioxidants (Basel) 2020; 9:antiox9060478. [PMID: 32498420 PMCID: PMC7346222 DOI: 10.3390/antiox9060478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023] Open
Abstract
Anthocyanins are extensively studied for their health-related properties, including antibacterial activity against urinary tract infections (UTI). Among common fruits, blueberries, with their remarkable antioxidant capacity, are one of the richest sources. Anthocyanin-rich extracts were obtained from four varieties: Snowchaser, Star, Stella Blue and Cristina Blue, grown in the hot climate of Southern Spain. Their total anthocyanins contents (TAC) were determined spectrophotometrically, and the anthocyanin profile by ultra high performance liquid chromatography—tandem mass spectrometer (UHPLC-MS/MS). Their antioxidant activity was assessed by oxygen radical absorbance capacity (ORAC) assay, while antibacterial activity against strains isolated from UTI patients was assessed in vitro, helping to select the varieties with the highest bioactive potential. Star showed the highest TAC and antioxidant activity (1663 ± 159 mg of cyanidin-3-O-glucoside (cy-3-O-glu) equivalents/100 g fresh weight (FW), 6345 ± 601 μmol Trolox equivalents (TE)/100 g FW, respectively), followed by Cristina Blue, Stella Blue and Snowchaser. As far as we know, this is the first time that cyanidin-3-rutinoside has been identified in blueberries. The extracts inhibited all the tested strains, MICs ranging from 0.4 mg/mL (for Stella Blue extract against UTI P. aeruginosa) to 9.5 mg/mL (for all extracts against UTI K. pneumoniae ssp. pneumoniae). This is the first study that assessed in vitro the antibacterial activity of blueberries against Klebsiella pneumoniae, Providencia stuartii and Micrococcus spp. strains isolated from UTI.
Collapse
|
35
|
Peng M, Tabashsum Z, Anderson M, Truong A, Houser AK, Padilla J, Akmel A, Bhatti J, Rahaman SO, Biswas D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr Rev Food Sci Food Saf 2020; 19:1908-1933. [PMID: 33337097 DOI: 10.1111/1541-4337.12565] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
The bioactive ingredients in commonly consumed foods include, but are not limited to, prebiotics, prebiotic-like components, probiotics, and postbiotics. The bioactive ingredients in functional foods have also been associated with beneficial effects on human health. For example, they aid in shaping of gut microflora and promotion of immunity. These functional components also contribute in preventing serious diseases such as cardiovascular malfunction and tumorigenesis. However, the specific mechanisms of these positive influences on human health are still under investigation. In this review, we aim to emphasize the major contents of probiotics, prebiotics, and prebiotic-like components commonly found in consumable functional foods, and we present an overview of direct and indirect benefits they provide on human health. The major contributors are certain families of metabolites, specifically short-chain fatty acids and polyunsaturated fatty acids produced by probiotics, and prebiotics, or prebiotic-like components such as flavonoids, polyphenols, and vitamins that are found in functional foods. These functional ingredients in foods influence the gut microbiota by stimulating the growth of beneficial microbes and the production of beneficial metabolites that, in turn, have direct benefits to the host, while also providing protection from pathogens and maintaining a balanced gut ecosystem. The complex interactions that arise among functional food ingredients, human physiology, the gut microbiota, and their respective metabolic pathways have been found to minimize several factors that contribute to the incidence of chronic disease, such as inflammation oxidative stress.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Mary Anderson
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Andy Truong
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Ashley K Houser
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Joselyn Padilla
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Ahlam Akmel
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Jacob Bhatti
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Sciences, University of Maryland, College Park, Maryland
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland.,Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland.,Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland
| |
Collapse
|
36
|
Peng M, Tabashsum Z, Patel P, Bernhardt C, Biswas C, Meng J, Biswas D. Prevention of enteric bacterial infections and modulation of gut microbiota with conjugated linoleic acids producing Lactobacillus in mice. Gut Microbes 2020; 11:433-452. [PMID: 31411526 PMCID: PMC7524329 DOI: 10.1080/19490976.2019.1638724] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Probiotics are recognized for outcompeting pathogenic bacteria by competitive receptor-mediated colonization and secretion of functional metabolites which are antimicrobial against certain microbes as well as improving host's gut health and immunity. Recently, we have constructed a bioactive Lactobacillus casei (LC) strain, LC+mcra , by inserting mcra (myosin cross-reactive antigen) gene, which stimulates the conversion of conjugated linoleic acids. In this study, we evaluated the modulation of gut microbiome and protective roles of LC+mcra against pathogenic Salmonella enterica serovar Typhimurium (ST) and enterohemorrhagic E. coli (EHEC) infections in BALB/cJ mice. We observed that LC+mcra colonized efficiently in mice gut intestine and competitively reduced the infection with ST and EHEC in various locations of small and large intestine, specifically cecum, jejunum, and ileum (p < 0.05). Positive modulation of the cecal microbiota, for example, higher relative abundances of Firmicutes, lower relative abundances of Proteobacteria, and increased bacterial species diversity/richness, was detected in ST-challenged mice pretreated with LC+mcra based on 16S metagenomic sequencing. Cytokine gene expression analysis indicated that mice pretreated with LC+mcra associated with attenuated bacterial pathogen-induced gut inflammation. Furthermore, mice fed daily with LC+mcra for one week could protect themselves from the impairments caused by enteric infections with ST or EHEC. These impairments include weight loss, negative hematological changes, intestinal histological alterations, and potential death. This in vivo study suggests that daily consumption of novel conjugated linoleic acids over-producing probiotic effectively improves intestinal microbiota composition and prevents/combats foodborne enteric bacterial infections with pathogenic Salmonella and diarrheagenic E. coli.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA,Biological Sciences Program, University of Maryland, College Park, MD, USA
| | - Zajeba Tabashsum
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Puja Patel
- Biological Sciences Program, University of Maryland, College Park, MD, USA
| | - Cassandra Bernhardt
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Chitrine Biswas
- Biological Sciences Program, University of Maryland, College Park, MD, USA
| | - Jianghong Meng
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA,Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA,Biological Sciences Program, University of Maryland, College Park, MD, USA,Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA,CONTACT Debabrata Biswas Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
37
|
Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Tabashsum Z, Peng M, Bernhardt C, Patel P, Carrion M, Rahaman SO, Biswas D. Limiting the pathogenesis of Salmonella Typhimurium with berry phenolic extracts and linoleic acid overproducing Lactobacillus casei. J Microbiol 2020; 58:489-498. [PMID: 32329017 DOI: 10.1007/s12275-020-9545-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
The growing threat of emergent multidrug-resistant enteric bacterial pathogens, and their adopted virulence properties are directing to find alternative antimicrobials and/or development of dietaries that can improve host gut health and/or defense. Recently, we found that modified Lactobacillus casei (Lc + CLA) with increased production of conjugated linoleic acid has antimicrobial and other beneficial properties. Further, prebiotic alike products such as berry pomace extracts (BPEs), increase the growth of probiotics and inhibit the growth of certain bacterial pathogens. In this study, we evaluated the antibacterial effect of genetically modified Lc + CLA along with BPEs against major enteric pathogen Salmonella enterica serovar Typhimurium (ST). In mixed culture condition, the growth of ST was significantly reduced in the presence of Lc + CLA and/or BPEs. Bacterial cell-free cultural supernatant (CFCS) collected from wild-type Lc or modified Lc + CLA strains also inhibited the growth and survival of ST, and those inhibitory effects were enhanced in the presence of BPEs. We also found that the interaction of the pathogen with cultured host (HD-11 and INT-407) cells were also altered in the presence of either Lc or Lc + CLA strain or their CFCSs significantly. Furthermore, the relative expression of genes related to ST virulence and physicochemical properties of ST was altered by the effect of CFCSs of either Lc or Lc + CLA. These findings indicate that a diet containing synbiotic, specifically linoleic acid, over-produced Lc + CLA and prebiotic product BPEs, might have the potential to be effective in controlling ST growth and pathogenesis.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA
| | - Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Cassendra Bernhardt
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Puja Patel
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA
| | - Michael Carrion
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Debabrata Biswas
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA.
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA.
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA.
| |
Collapse
|
39
|
Hu Y, Wang L, Shao D, Wang Q, Wu Y, Han Y, Shi S. Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth. Front Microbiol 2020; 10:2948. [PMID: 31993028 PMCID: PMC6971172 DOI: 10.3389/fmicb.2019.02948] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023] Open
Abstract
Understanding the differences in microbial communities shaped by different food selective forces, especially during early post-hatch period, is critical to gain insight into how to select, evaluate, and improve antibiotic growth promoters (AGPs) alternatives in food animals. As a model system, commercial diet-administered OAs (DOAs) and water-administered OAs (WOAs) were used separately or in combination as Virginiamycin alternatives for broiler feeding during two growth phases: 1–21 days and 22–42 days. Among these three OA-treated groups, the DOA group was most similar to the AGP group in the composition and the proportion of these dominant bacterial communities at the level of phylum, family, and genus in cecal chyme of broilers. Sub-therapeutic Virginiamycin decreased the richness, homogenization, and species diversity of gut microbiota, especially in the early growth stage from days 1 to 21. Among these three OA supplementation schemes, it was clear that DOA supplementation was more likely to increase or maintain the richness, homogenization, species diversity, and predicted gene functions of cecal microbiota in treated broilers than either no supplementation or AGP supplementation during two experimental stages. The interference of DOA treatment with early colonization of probiotics and pathogens in broiler cecum was the most similar to AGP treatment, and OAs did not cause the occurrence of Virginiamycin-resistant strains of Enterococcus at the end of this trial. In terms of the predicted gene functions of the microbiota, AGP and DOA treatments provided a similar selective force for microbial metabolism functions in the cecum of broiler chickens, especially in the early growth stage. Noticeably, the relative abundance of some microbiome that was modified by Virginiamycin or DOA supplementation was significantly correlated with body weight gain and KEGG pathway analysis-annotated gene functions such as replication and repair, translation, nucleotide metabolism, and so on. With the comprehensive analysis of these results and practical application, shortened DOA supplementation, after optimization of the amount of addition, would be a suitable alternative to sub-therapeutic Virginiamycin. It was suggested that the programed intestinal microecology under such early selection forces and the effective addition time may be the key elements to focus on the designed alternate strategies of AGPs in food animals.
Collapse
Affiliation(s)
- Yan Hu
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Laidi Wang
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Yuanyuan Wu
- Trouw Nutrition R&D, Amersfoort, Netherlands
| | - Yanming Han
- Trouw Nutrition R&D, Amersfoort, Netherlands
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
40
|
Lamas A, Regal P, Vázquez B, Cepeda A, Franco CM. Short Chain Fatty Acids Commonly Produced by Gut Microbiota Influence Salmonella enterica Motility, Biofilm Formation, and Gene Expression. Antibiotics (Basel) 2019; 8:E265. [PMID: 31847278 PMCID: PMC6963744 DOI: 10.3390/antibiotics8040265] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Short chain fatty acids (SCFAs) are commonly produced by healthy gut microbiota and they have a protective role against enteric pathogens. SCFAs also have direct antimicrobial activity against bacterial pathogens by diffusion across the bacterial membrane and reduction of intracellular pH. Due to this antimicrobial activity, SCFAs have promising applications in human health and food safety. In this study, the minimum inhibitory concentrations (MICs) of four SCFAs (acetic acid, butyric acid, propionic acid, and valeric acid) in Salmonella strains isolated from poultry were determined. The effect of subinhibitory concentrations of SCFAs in Salmonella biofilm formation, motility, and gene expression was also evaluated. Butyric acid, propionic acid, and valeric acid showed a MIC of 3750 µg/mL in all strains tested, while the MIC of acetic acid was between 1875 and 3750 µg/mL. Subinhibitory concentrations of SCFAs significantly (p < 0.05) reduced the motility of all Salmonella strains, especially in the presence of acetic acid. Biofilm formation was also significantly (p < 0.05) lower in the presence of SCFAs in some of the Salmonella strains. Salmonella strain. Salmonella Typhimurium T7 showed significant (p < 0.05) upregulation of important virulence genes, such as invA and hilA, especially in the presence of butyric acid. Therefore, SCFAs are promising substances for the inhibition of the growth of foodborne pathogens. However, it is important to avoid the use of subinhibitory concentrations that could increase the virulence of foodborne pathogen Salmonella.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (P.R.); (B.V.); (A.C.); (C.M.F.)
| | | | | | | | | |
Collapse
|
41
|
Sakarikou C, Kostoglou D, Simões M, Giaouris E. Exploitation of plant extracts and phytochemicals against resistant Salmonella spp. in biofilms. Food Res Int 2019; 128:108806. [PMID: 31955766 DOI: 10.1016/j.foodres.2019.108806] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
Salmonella is one of the most frequent causes of foodborne outbreaks throughout the world. In the last years, the resistance of this and other pathogenic bacteria to antimicrobials has become a prime concern towards their successful control. In addition, the tolerance and virulence of pathogenic bacteria, such as Salmonella, are commonly related to their ability to form biofilms, which are sessile structures encountered on various surfaces and whose development is considered as a universal stress response mechanism. Indeed, the ability of Salmonella to form a biofilm seems to significantly contribute to its persistence in food production areas and clinical settings. Plant extracts and phytochemicals appear as promising sources of novel antimicrobials due to their cost-effectiveness, eco-friendliness, great structural diversity, and lower possibility of antimicrobial resistance development in comparison to synthetic chemicals. Research on these agents mainly attributes their antimicrobial activity to a diverse array of secondary metabolites. Bacterial cells are usually killed by the rupture of their cell envelope and in parallel the disruption of their energy metabolism when treated with such molecules, while their use at sub-inhibitory concentrations may also disrupt intracellular communication. The purpose of this article is to review the current available knowledge related to antimicrobial resistance of Salmonella in biofilms, together with the antibiofilm properties of plant extracts and phytochemicals against these detrimental bacteria towards their future application to control these in food production and clinical environments.
Collapse
Affiliation(s)
- Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 and Makrygianni, GR-81 400 Myrina, Lemnos, Greece.
| | - Dimitra Kostoglou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 and Makrygianni, GR-81 400 Myrina, Lemnos, Greece
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto,Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 and Makrygianni, GR-81 400 Myrina, Lemnos, Greece
| |
Collapse
|
42
|
Arteaga V, Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Antimicrobial activity of apitoxin from Apis mellifera in Salmonella enterica strains isolated from poultry and its effects on motility, biofilm formation and gene expression. Microb Pathog 2019; 137:103771. [PMID: 31580958 DOI: 10.1016/j.micpath.2019.103771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
Salmonella is a major global food-borne pathogen. One of the main concerns related to Salmonella and other food-borne pathogens is their capacity to acquire antimicrobial resistance and produce biofilms. Due to the increased resistance to common antimicrobials used to treat livestock animals and human infections, the discovery of new antimicrobial substances is one of the main challenges in microbiological research. An additional challenge is the development of new methods and substances to inhibit and destruct biofilms. We determined the antimicrobial and antibiofilm activities of apitoxin in 16 Salmonella strains isolated from poultry. In addition, the effect of apitoxin on Salmonella motility and the expression of biofilm- and virulence-related genes was evaluated. The minimum inhibitory concentrations (MIC) of apitoxin ranged from 1,024-256 μg/mL, with 512 μg/mL being the most common. Sub-inhibitory concentrations of apitoxin significantly reduced biofilm formation in 14 of the 16 Salmonella strains tested, with significant increases in motility. MIC concentrations of apitoxin destroyed the pre-formed biofilm by 27.66-68.22% (47.00% ± 10.91). The expression of biofilm- and virulence-related genes and small RNAs was differentially regulated according to the strain and the presence of apitoxin. The transcription of the small RNAs dsrA and csrB, related to antimicrobial resistance, was upregulated in the presence of apitoxin. We suggest that apitoxin is a potential antimicrobial substance that could be used in combination with other substances to develop new drugs and sanitizers against food-borne pathogens.
Collapse
Affiliation(s)
- Vicente Arteaga
- Laboratorio de Microbiología Escuela de Ciencias Agrícolas y Ambientales (ECAA), Universidad Católica del Ecuador-Sede Ibarra (PUCESI), Spain
| | - Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Patricia Regal
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Beatriz Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - José Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Carlos Manuel Franco
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
43
|
Antibiofilm activity of coenzyme Q0 against Salmonella Typhimurium and its effect on adhesion-invasion and survival-replication. Appl Microbiol Biotechnol 2019; 103:8545-8557. [PMID: 31468089 DOI: 10.1007/s00253-019-10095-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023]
Abstract
Salmonella Typhimurium, a common Gram-negative foodborne pathogen, threatens public health and hinders the development of the food industry. In this study, we evaluated the antibiofilm activity of coenzyme Q0 (CoQ0) against S. Typhimurium. Besides, the inhibition of the S. Typhimurium's adhesion to and invasion of Caco-2 cells and its survival and replication in RAW 264.7 cells by CoQ0 were also explored. The minimum inhibitory concentrations and minimal bactericidal concentrations of CoQ0 against Salmonella were both 100-400 μg/mL. Salmonella Typhimurium biofilm formation was effectively inhibited by subinhibitory concentrations (SICs) of CoQ0. The CoQ0-affected biofilm morphology was observed with light microscopy and field-emission scanning electron microscopy. CoQ0 at SICs reduced the swimming motility and quorum sensing of S. Typhimurium and repressed the transcription of critical virulence-related genes. CoQ0 at SICs also clearly reduced the adhesion of S. Typhimurium to and its invasion of Caco-2 cells and reduced its survival and replication within RAW 264.7 macrophage cells. These findings suggest that CoQ0 has strong antibiofilm activity and can be used as an anti-infectious agent against Salmonella.
Collapse
|
44
|
Zhao L, Zhao X, Wu J, Lou X, Yang H. Comparison of metabolic response between the planktonic and air-dried Escherichia coli to electrolysed water combined with ultrasound by 1H NMR spectroscopy. Food Res Int 2019; 125:108607. [PMID: 31554111 DOI: 10.1016/j.foodres.2019.108607] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/28/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023]
Abstract
The antimicrobial effects of electrolysed water and ultrasound have been well reported; however, little attention was paid to their effects on the metabolite changes of bacteria in different states. In this study, the metabolomic variations of Escherichia coli ATCC 25922 in planktonic and adherent state (air-dried on stainless steel coupons) after the combination treatment of low-concentration acidic electrolysed water (AEW, free available chlorine (FAC): 4 mg/L) and ultrasound were characterised, by conducting multivariate data analysis based on nuclear magnetic resonance (NMR) spectroscopy. Overall, 43 metabolites were identified in two states of E. coli, including a wide range of amino acids, organic acids, nucleotides and their derivatives. The quantification of whole-cell metabolism in planktonic and air-dried cultures was quite different: air-dried E. coli exhibited more resistance to ultrasound and AEW treatments due to initiating a protective response against oxidative and acid stresses, which was not observed in planktonic E. coli, whose levels of all identified metabolites were decreased significantly after the combined treatment. Further pathway analysis revealed that alanine, aspartate and glutamate metabolism, glycolysis, pyruvate metabolism and tricarboxylic acid (TCA) cycle were changed significantly in planktonic culture, but to a less extent in air-dried culture, in which some shifts in glutamate decarboxylase (GAD) system and some shunts like mixed acid fermentation and pentose phosphate pathway were observed for maintaining metabolic balance. These findings suggest that NMR-based metabolomics strategy is promising in identifying different metabolic shifts in different states of bacteria. They also provide some guidance for food equipment sanitisation, especially for organic food processing.
Collapse
Affiliation(s)
- Lin Zhao
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xue Zhao
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Ji'en Wu
- Setsco Services Pte Ltd, 18 Teban Gardens Crescent, Singapore 608925, Singapore
| | - Xiaowei Lou
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
45
|
Synbiotic-like effect of linoleic acid overproducing Lactobacillus casei with berry phenolic extracts against pathogenesis of enterohemorrhagic Escherichia coli. Gut Pathog 2019; 11:41. [PMID: 31372184 PMCID: PMC6661093 DOI: 10.1186/s13099-019-0320-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/20/2019] [Indexed: 01/08/2023] Open
Abstract
Background Majority of enteric infections are foodborne and antimicrobials including antibiotics have been used for their control and treatment. However, probiotics or prebiotics or their combination offer a potential alternative intervention strategy for improving the host health and preventing foodborne pathogen colonization/infections in reservoir. Further, bioengineered probiotics expressing bioactive products to achieve specific function is highly desirable. Recently, we over-expressed mcra (myosin cross-reactive antigen) gene in Lactobacillus casei (Lc) and developed a bioengineered probiotics Lc + CLA which produce higher amounts of metabolites including conjugated linoleic acid (CLA). Furthermore, we also reported that prebiotic like components such as berry pomace (byproduct) phenolic extracts (BPEs) can enhance the growth of probiotics and improved the beneficial effects of probiotics. In this study, we evaluated the antimicrobial effect of modified Lc + CLA in combination of BPEs on growth, survival and pathogenesis of enterohemorrhagic Escherichia coli (EHEC). Results In mixed culture condition, the growth of EHEC was significantly reduced in the presence Lc + CLA and/or BPEs. Cell-free cultural supernatant (CFCS) collected from Lc or Lc + CLA strain also inhibited the growth and survival of EHEC and the inhibitory effects of CFCSs against EHEC were enhanced in the presence of BPEs in concentration dependent manner. Interaction between EHEC and intestinal epithelial INT-407 cells were also altered significantly in the presence of either Lc or Lc + CLA strain or their CFCSs with or without BPEs. The expression of multiple virulence genes and physicochemical properties of EHEC were also altered when the bacterial cells were pretreated with CFCSs and/or BPEs. Conclusions These results showed that diet containing bioactive Lc + CLA and natural prebiotic like component such as BPEs might be an effective way to prevent foodborne infections with EHEC.
Collapse
|
46
|
Das Q, Lepp D, Yin X, Ross K, McCallum JL, Warriner K, Marcone MF, Diarra MS. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS One 2019; 14:e0219163. [PMID: 31269043 PMCID: PMC6608956 DOI: 10.1371/journal.pone.0219163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars continue to be an important food safety issue worldwide. Cranberry (Vaccinium macrocarpon Ait) fruits possess antimicrobial properties due to their various acids and phenolic compounds; however, the underlying mechanism of actions is poorly understood. We evaluated the effects of cranberry extracts on the growth rate of Salmonella enterica serovars Typhimurium, Enteritidis and Heidelberg and on the transcriptomic profile of Salmonella Enteritidis to gain insight into phenotypic and transcriptional changes induced by cranberry extracts on this pathogen. An ethanolic extract from cranberry pomaces (KCOH) and two of its sub-fractions, anthocyanins (CRFa20) and non-anthocyanin polyphenols (CRFp85), were used. The minimum inhibitory (MICs) and bactericidal (MBCs) concentrations of these fractions against tested pathogens were obtained using the broth micro-dilution method according to the Clinical Laboratory Standard Institute’s guidelines. Transcriptional profiles of S. Enteritidis grown in cation-adjusted Mueller-Hinton broth supplemented with or without 2 or 4 mg/ml of KCOH were compared by RNASeq to reveal gene modulations serving as markers for biological activity. The MIC and MBC values of KCOH were 8 and 16 mg/mL, respectively, against all tested S. enterica isolates. The MIC value was 4 mg/mL for both CRFa20 and CRFp85 sub-fractions, and a reduced MBC value was obtained for CRFp85 (4 mg/ml). Treatment of S. Enteritidis with KCOH revealed a concentration-dependent transcriptional signature. Compared to the control, 2 mg/ml of KCOH exposure resulted in 89 differentially expressed genes (DEGs), of which 53 and 36 were downregulated and upregulated, respectively. The upregulated genes included those involved in citrate metabolism, enterobactin synthesis and transport, and virulence. Exposure to 4 mg/ml KCOH led to the modulated expression of 376 genes, of which 233 were downregulated and 143 upregulated, which is 4.2 times more DEGs than from exposure to 2 mg/ml KCOH. The downregulated genes were related to flagellar motility, Salmonella Pathogenicity Island-1 (SPI-1), cell wall/membrane biogenesis, and transcription. Moreover, genes involved in energy production and conversion, carbohydrate transport and metabolism, and coenzyme transport and metabolism were upregulated during exposure to 4 mg/ml KCOH. Overall, 57 genes were differentially expressed (48 downregulated and 9 upregulated) in response to both concentrations. Both concentrations of KCOH downregulated expression of hilA, which is a major SPI-1 transcriptional regulator. This study provides information on the response of Salmonella exposed to cranberry extracts, which could be used in the control of this important foodborne pathogen.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Ontario, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Kelly Ross
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Jason L. McCallum
- Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Ontario, Canada
| | | | - Moussa S. Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
47
|
Tabashsum Z, Peng M, Kahan E, Rahaman SO, Biswas D. Effect of conjugated linoleic acid overproducing Lactobacillus with berry pomace phenolic extracts on Campylobacter jejuni pathogenesis. Food Funct 2019; 10:296-303. [PMID: 30566169 DOI: 10.1039/c8fo01863d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Campylobacter jejuni (CJ) is one of the predominant causative agents of acute gastroenteritis in the US and other developed countries through the handling of raw chicken or the consumption of undercooked poultry and poultry products. Probiotics and their metabolites such as conjugated linoleic acids (CLAs) play a crucial role in improving host health and act as antimicrobials against enteric pathogens. Furthermore, prebiotics or prebiotic-like components such as bioactive phenolics from berry pomace can stimulate the growth of beneficial microbes including Lactobacillus casei (LC) and its metabolites, and competitively inhibit the growth of enteric bacterial pathogens. In this study, we aimed at enhancing the efficiency of antimicrobial/beneficial activities of LC and the extent of production of bioactive compounds by combining berry pomace phenolic extract (BPPE) and overproducing CLA in L. casei (LC-CLA). Under mixed culture conditions, LC-CLA in the presence of BPPE reduced the growth of CJ by more than 3 log CFU ml-1 within 48 h. The cell-free culture supernatant (CFCS) of LC-CLA in the presence of BPPE also reduced significantly the growth of CJ >3.2 log CFU ml-1 at 24 h. The interactions of CJ with cultured chicken fibroblast cells (DF-1), chicken macrophage (HD-11), and human epithelial cells (HeLa) were altered significantly. Treatments with BPPE and/or CFCS also altered the injured cell number, auto-aggregation capacity and cell surface hydrophobicity of CJ, significantly. Furthermore, combined treatments with BPPE and CFCSs of LC-CLA altered the expression of multiple virulence genes such as ciaB, cdtB, cadF, flaA, and flaB of CJ from 0.45 fold to 6.85 fold. Overall, BPPE enhanced the effect of LC-CLA in the reduction of CJ growth, survival ability, host cell-CJ interactions, and virulence gene expression. This finding indicates that a combination of BPPE and LC-CLA may be able to prevent the colonization of CJ in poultry, reduce the cross-contamination of poultry products and control poultry-borne campylobacteriosis in humans.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA.
| | | | | | | | | |
Collapse
|
48
|
Lamas A, Paz-Mendez AM, Regal P, Vazquez B, Miranda JM, Cepeda A, Franco CM. Food preservatives influence biofilm formation, gene expression and small RNAs in Salmonella enterica. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Peng M, Tabashsum Z, Patel P, Bernhardt C, Biswas D. Linoleic Acids Overproducing Lactobacillus casei Limits Growth, Survival, and Virulence of Salmonella Typhimurium and Enterohaemorrhagic Escherichia coli. Front Microbiol 2018; 9:2663. [PMID: 30443248 PMCID: PMC6223203 DOI: 10.3389/fmicb.2018.02663] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Probiotics, particularly lactic acid bacteria, are biologic agents which limit the growth, virulence, and survival/colonization of various enteric bacterial pathogens and serve as potential alternatives to antibiotics. Mechanisms that contribute to this antimicrobial effect include producing bioactive metabolites/acids, increasing nutrient and receptor-mediated competition, and modulating gut microbiome ecology. However, these functions of common probiotic strains are limited due to the finite quantity of metabolites they produce and their total number in the gut ecosystem. Conjugated linoleic acids (CLAs), critical metabolites of Lactobacillus, have multiple beneficial effects on human health including anti-carcinogenesis, anti-inflammation, anti-oxidation, and anti-pathogenicity. In this study, we aim to overexpress the myosin cross-reactive antigen gene (mcra) in Lactobacillus casei (LC) to enhance the production of CLA and investigate its effectiveness against enteric bacterial pathogens, specifically Salmonella enterica serovar Typhimurium (ST) and enterohaemorrhagic Escherichia coli (EHEC). By inserting mcra in L. casei, we generated LC-CLA and found the total linoleic acid production by an individual bacterial cell was raised by 21-fold. The adherence ability of LC-CLA on human epithelial cells increased significantly and LC-CLA competitively excluded both ST and EHEC in a mixed-culture condition. Furthermore, LC-CLA significantly altered the physicochemical properties, biofilm formation abilities, interactions with host cells of both ST and EHEC, and triggered anti-inflammatory activities of host cells. These findings offer insights on applying a genetically engineered probiotic to control gut intestinal infections caused by ST and EHEC and prevent foodborne enteric illness in human.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States.,Biological Sciences Graduate Program - Molecular and Cellular Biology Concentration, University of Maryland, College Park, College Park, MD, United States
| | - Zajeba Tabashsum
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Puja Patel
- Biological Sciences Graduate Program - Molecular and Cellular Biology Concentration, University of Maryland, College Park, College Park, MD, United States
| | - Cassandra Bernhardt
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States.,Biological Sciences Graduate Program - Molecular and Cellular Biology Concentration, University of Maryland, College Park, College Park, MD, United States.,Center for Food Safety and Security Systems, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
50
|
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Influence of milk, chicken residues and oxygen levels on biofilm formation on stainless steel, gene expression and small RNAs in Salmonella enterica. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|