1
|
Martínez A, Molina F, Hernández LM, Ramírez M. Improving wine fermentation efficiency of Torulaspora delbrueckii by increasing the ploidy of yeast inocula. Int J Food Microbiol 2024; 425:110894. [PMID: 39216361 DOI: 10.1016/j.ijfoodmicro.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The life cycle of most non-conventional yeasts, such as Torulaspora delbrueckii (Td), is not as well-understood as that of Saccharomyces cerevisiae (Sc). Td is generally assumed to be haploid, which detracts from some biotechnological properties compared to diploid Sc strains. We analyzed the life cycle of several Td wine strains and found that they were mainly diploid during exponential growth in rich medium. However, most cells became haploid in stationary phase, as observed for Sc haploid heterothallic strains. When transferred and incubated in nutrient-deficient media, these haploid cells became polymorphic, enlarged, and transitioned to diploid or polyploid states. The increased ploidy, that mainly results from supernumerary mitosis without cytokinesis, was followed by sporulation. A similar response was observed in yeasts that remained alive during the second fermentation of base wine for sparkling wine making, or during growth in ethanol-supplemented medium. This response was not observed in the Sc yeast populations under any of the experimental conditions assayed, which suggests that it is a specific adaptation of Td to the stressful fermentation conditions. This response allows Td yeasts to remain alive and metabolically active longer during wine fermentation. Consequently, we designed procedures to increase the cell size and ploidy of haploid Td strains. Td inocula with increased ploidy showed enhanced fermentation efficiency compared to haploid inocula of the same strains.
Collapse
Affiliation(s)
- Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Felipe Molina
- Departamento de Bioquímica, Biología Molecular y Genética (Área de Genética), Universidad de Extremadura, Avda. de Elvas s/n., 06006 Badajoz, Spain
| | - Luis M Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain.
| |
Collapse
|
2
|
Balmaseda A, Rozès N, Bordons A, Reguant C. The use of Torulaspora delbrueckii to improve malolactic fermentation. Microb Biotechnol 2024; 17:e14302. [PMID: 37387409 PMCID: PMC10832531 DOI: 10.1111/1751-7915.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter. Nevertheless, information about the possible effects of T. delbrueckii chemical modulation on subsequent malolactic fermentation is still not fully explained. In general, T. delbrueckii is related to a decrease in toxic compounds that negatively affect Oenococcus oeni and an increase in others that are described as stimulating compounds. In this work, we aimed to compile the changes described in studies using T. delbrueckii in wine that can have a potential effect on O. oeni and highlight those works that directly evaluated O. oeni performance in T. delbrueckii fermented wines.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| |
Collapse
|
3
|
Ruiz-de-Villa C, Poblet M, Cordero-Otero R, Bordons A, Reguant C, Rozès N. Screening of Saccharomyces cerevisiae and Torulaspora delbrueckii strains in relation to their effect on malolactic fermentation. Food Microbiol 2023; 112:104212. [PMID: 36906299 DOI: 10.1016/j.fm.2022.104212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
The use of Torulaspora delbrueckii in the alcoholic fermentation (AF) of grape must is increasingly studied and used in the wine industry. In addition to the organoleptic improvement of wines, the synergy of this yeast species with the lactic acid bacterium Oenococcus oeni is an interesting field of study. In this work, 60 strain combinations were compared: 3 strains of Saccharomyces cerevisiae (Sc) and 4 strains of Torulaspora delbrueckii (Td) in sequential AF, and four strains of O. oeni (Oo) in malolactic fermentation (MLF). The objective was to describe the positive or negative relationships of these strains with the aim of finding the combination that ensures better MLF performance. In addition, a new synthetic grape must has been developed that allows the success of AF and subsequent MLF. Under these conditions, the Sc-K1 strain would be unsuitable for carrying out MLF unless there is prior inoculation with Td-Prelude, Td-Viniferm or Td-Zymaflore always with the Oo-VP41 combination. However, from all the trials performed, it appears that the combinations of sequential AF with Td-Prelude and Sc-QA23 or Sc-CLOS, followed by MLF with Oo-VP41, reflected a positive effect of T. delbrueckii compared to inoculation of Sc alone, such as a reduction in L-malic consumption time. In conclusion, the obtained results highlight the relevance of strain selection and yeast-LAB strain compatibility in wine fermentations. The study also reveals the positive effect on MLF of some T. delbrueckii strains.
Collapse
Affiliation(s)
- Candela Ruiz-de-Villa
- Universitat Rovira i Virgili, Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, c/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Montse Poblet
- Universitat Rovira i Virgili, Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, c/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Ricardo Cordero-Otero
- Universitat Rovira i Virgili, Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, c/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, c/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, c/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Universitat Rovira i Virgili, Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, c/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain.
| |
Collapse
|
4
|
Maicas S, Mateo JJ. The Life of Saccharomyces and Non- Saccharomyces Yeasts in Drinking Wine. Microorganisms 2023; 11:1178. [PMID: 37317152 PMCID: PMC10224428 DOI: 10.3390/microorganisms11051178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Drinking wine is a processed beverage that offers high nutritional and health benefits. It is produced from grape must, which undergoes fermentation by yeasts (and sometimes lactic acid bacteria) to create a product that is highly appreciated by consumers worldwide. However, if only one type of yeast, specifically Saccharomyces cerevisiae, was used in the fermentation process, the resulting wine would lack aroma and flavor and may be rejected by consumers. To produce wine with a desirable taste and aroma, non-Saccharomyces yeasts are necessary. These yeasts contribute volatile aromatic compounds that significantly impact the wine's final taste. They promote the release of primary aromatic compounds through a sequential hydrolysis mechanism involving several glycosidases unique to these yeasts. This review will discuss the unique characteristics of these yeasts (Schizosaccharomyces pombe, Pichia kluyveri, Torulaspora delbrueckii, Wickerhamomyces anomalus, Metschnikowia pulcherrima, Hanseniaspora vineae, Lachancea thermotolerans, Candida stellata, and others) and their impact on wine fermentations and co-fermentations. Their existence and the metabolites they produce enhance the complexity of wine flavor, resulting in a more enjoyable drinking experience.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
5
|
Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Ramírez M. Genetic improvement of non-conventional Torulaspora delbrueckii for traditional sparkling winemaking by mixing for eventual hybridization with Saccharomyces cerevisiae. Front Microbiol 2022; 13:1006978. [PMID: 36274726 PMCID: PMC9583163 DOI: 10.3389/fmicb.2022.1006978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Non-conventional yeasts such as Torulaspora delbrueckii (Td) have been proposed for sparkling winemaking. Unfortunately, this yeast has poor efficiency in completing wine fermentation as compared to Saccharomyces cerevisiae (Sc). New mutants with increased resistance to SO2, ethanol, and high CO2 pressure were previously isolated from spore clones of Td. Although these mutants showed improved capability for base wine fermentation, there is still room for genetic improvement of Td yeasts until the fermentative capacity of Sc is achieved. As an alternative approach, yeast mixture for eventual hybridization of Td with Sc was assayed in this study. The new yeast mixture clones (Sc-mixed Td) showed an intermediate phenotype between both parent yeasts for some relevant biotechnological properties, such as resistance to SO2, ethanol, copper, high CO2 pressure, and high temperature, as well as flocculation potential. These properties varied depending on the specific Sc-mixed Td clone. Several mixture clones showed improved capability for base wine fermentation as compared to the Td parent strain, approaching the fermentation capability of the Sc parent strain. The organoleptic quality of sparkling wine was also improved by using some mixture clones and this improved quality coincided with an increased amount of acetate and ethyl esters. The genetic stability of some Sc-mixed Td clones was good enough for commercial yeast production and winery applications.
Collapse
Affiliation(s)
- Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, Almendralejo, Spain
| | | | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Manuel Ramírez,
| |
Collapse
|
6
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
7
|
Different approaches to supplement polysaccharide-degrading enzymes in vinification: effects on color extraction, phenolic composition, antioxidant activity and sensory profiles of Malbec wines. Food Res Int 2022; 157:111447. [DOI: 10.1016/j.foodres.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
|
8
|
Evaluation of Autochthonous Non-Saccharomyces Yeasts by Sequential Fermentation for Wine Differentiation in Galicia (NW Spain). FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-Saccharomyces yeasts constitute a useful tool in winemaking because they secrete hydrolytic enzymes and produce metabolites that enhance wine quality; in addition, their ability to reduce alcohol content and/or to increase acidity can help to mitigate the effects of climatic change on wines. The purpose of this study was to evaluate the oenological traits of non-Saccharomyces yeast strains autochthonous from Galicia (NW Spain). To do that, we carried out sequential fermentation using 13 different species from the yeast collection of Estación de Viticultura e Enoloxía de Galicia (Evega) and Saccharomyces cerevisiae EC1118. The fermentation kinetics and yeast implantation were monitored using conventional methods and genetic techniques, respectively. The basic chemical parameters of wine were determined using the OIV official methodology, and the fermentative aroma compounds were determined by GC–FID. The results evidenced the limited fermentative power of these yeasts and the differences in their survival after the addition of S. cerevisiae to complete fermentation. Some strains reduced the alcohol and/or increased the total acidity of the wine. The positive effect on sensory wine properties as well as the production of desirable volatile compounds were confirmed for Metschnikowia spp. (Mf278 and Mp176), Lachancea thermotolerans Lt93, and Pichia kluyveri Pkl88. These strains could be used for wine diversification in Galicia.
Collapse
|
9
|
Carboni G, Marova I, Zara G, Zara S, Budroni M, Mannazzu I. Evaluation of Recombinant Kpkt Cytotoxicity on HaCaT Cells: Further Steps towards the Biotechnological Exploitation Yeast Killer Toxins. Foods 2021; 10:foods10030556. [PMID: 33800189 PMCID: PMC8000969 DOI: 10.3390/foods10030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The soil yeast Tetrapisispora phaffii secretes a killer toxin, named Kpkt, that shows β-glucanase activity and is lethal to wine spoilage yeasts belonging to Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. When expressed in Komagataella phaffii, recombinant Kpkt displays a wider spectrum of action as compared to its native counterpart, being active on a vast array of wine yeasts and food-related bacteria. Here, to gather information on recombinant Kpkt cytotoxicity, lyophilized preparations of this toxin (LrKpkt) were obtained and tested on immortalized human keratinocyte HaCaT cells, a model for the stratified squamous epithelium of the oral cavity and esophagus. LrKpkt proved harmless to HaCaT cells at concentrations up to 36 AU/mL, which are largely above those required to kill food-related yeasts and bacteria in vitro (0.25-2 AU/mL). At higher concentrations, it showed a dose dependent effect that was comparable to that of the negative control and therefore could be ascribed to compounds, other than the toxin, occurring in the lyophilized preparations. Considering the dearth of studies regarding the effects of yeast killer toxins on human cell lines, these results represent a first mandatory step towards the evaluation the possible risks associated to human intake. Moreover, in accordance with that observed on Ceratitis capitata and Musca domestica, they support the lack of toxicity of this toxin on non-target eukaryotic models and corroborate the possible exploitation of killer toxins as natural antimicrobials in the food and beverages industries.
Collapse
Affiliation(s)
- Gavino Carboni
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 61200 Brno, Czech Republic
| | - Ivana Marova
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 61200 Brno, Czech Republic
- Correspondence: (I.M.); (I.M.)
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
- Correspondence: (I.M.); (I.M.)
| |
Collapse
|
10
|
Liu X, Xu S, Wang M, Wang L, Liu J. Effect of mixed fermentation with
Pichia fermentans
,
Hanseniaspora uvarum,
and
Wickeramomyces anomala
on the quality of fig (
Ficus carica L
.) wines. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Liu
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Central South University Changsha China
| | - Shijie Xu
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Central South University Changsha China
| | - Mengke Wang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Central South University Changsha China
| | - Lingqi Wang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Central South University Changsha China
| | - Jiajia Liu
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Central South University Changsha China
| |
Collapse
|
11
|
Evaluating the effect of using non-Saccharomyces on Oenococcus oeni and wine malolactic fermentation. Food Res Int 2020; 138:109779. [DOI: 10.1016/j.foodres.2020.109779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/18/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
|
12
|
Balmaseda A, Rozès N, Leal MÁ, Bordons A, Reguant C. Impact of changes in wine composition produced by non-Saccharomyces on malolactic fermentation. Int J Food Microbiol 2020; 337:108954. [PMID: 33202298 DOI: 10.1016/j.ijfoodmicro.2020.108954] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Non-Saccharomyces yeasts have increasingly been used in vinification recently. This is particularly true of Torulaspora delbrueckii and Metschnikowia pulcherrima, which are inoculated before S. cerevisiae, to complete a sequential alcoholic fermentation. This paper aims to study the effects of these two non-Saccharomyces yeasts on malolactic fermentation (MLF) carried out by two strains of Oenococcus oeni, under cellar conditions. Oenological parameters, and volatile and phenolic compounds were analysed in wines. The wines were tasted, and the microorganisms identified. In general, non-Saccharomyces created more MLF friendly conditions, largely because of lower concentrations of SO2 and medium chain fatty acids. The most favourable results were observed in wines inoculated with T. delbrueckii, that seemed to promote the development of O. oeni and improve MLF performance.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Nicolás Rozès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Miguel Ángel Leal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
13
|
Carboni G, Fancello F, Zara G, Zara S, Ruiu L, Marova I, Pinna G, Budroni M, Mannazzu I. Production of a lyophilized ready-to-use yeast killer toxin with possible applications in the wine and food industries. Int J Food Microbiol 2020; 335:108883. [PMID: 32956955 DOI: 10.1016/j.ijfoodmicro.2020.108883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
Kpkt is a yeast killer toxin, naturally produced by Tetrapisispora phaffii, with possible applications in winemaking due to its antimicrobial activity on wine-related yeasts including Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. Here, Kpkt coding gene was expressed in Komagataella phaffii (formerly Pichia pastoris) and the bioreactor production of the recombinant toxin (rKpkt) was obtained. Moreover, to produce a ready-to-use preparation of rKpkt, the cell-free supernatant of the K. phaffii recombinant killer clone was 80-fold concentrated and lyophilized. The resulting preparation could be easily solubilized in sterile distilled water and maintained its killer activity for up to six months at 4 °C. When applied to grape must, it exerted an extensive killer activity on wild wine-related yeasts while proving compatible with the fermentative activity of actively growing Saccharomyces cerevisiae starter strains. Moreover, it displayed a strong microbicidal effect on a variety of bacterial species including lactic acid bacteria and food-borne pathogens. On the contrary it showed no lethal effect on filamentous fungi and on Ceratitis capitata and Musca domestica, two insect species that may serve as non-mammalian model for biomedical research. Based on these results, bioreactor production and lyophilization represent an interesting option for the exploitation of this killer toxin that, due to its spectrum of action, may find application in the control of microbial contaminations in the wine and food industries.
Collapse
Affiliation(s)
- Gavino Carboni
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Francesco Fancello
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Severino Zara
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Luca Ruiu
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Ivana Marova
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 61200, Brno, Czech Republic
| | | | - Marilena Budroni
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| |
Collapse
|
14
|
Velázquez R, Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Hernández LM, Ramírez M. Genetic Improvement of Torulaspora delbrueckii for Wine Fermentation: Eliminating Recessive Growth-Retarding Alleles and Obtaining New Mutants Resistant to SO 2, Ethanol, and High CO 2 Pressure. Microorganisms 2020; 8:E1372. [PMID: 32906752 PMCID: PMC7564342 DOI: 10.3390/microorganisms8091372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/17/2022] Open
Abstract
The use of Torulaspora delbrueckii has been repeatedly proposed to improve a wine's organoleptic quality. This yeast has lower efficiency in completing wine fermentation than Saccharomyces cerevisiae since it has less fermentation capability and greater sensitivity to SO2, ethanol, and CO2 pressure. Therefore, the completion of fermentation is not guaranteed when must or wine is single-inoculated with T. delbrueckii. To solve this problem, new strains of T. delbrueckii with enhanced resistance to winemaking conditions were obtained. A genetic study of four wine T. delbrueckii strains was carried out. Spore clones free of possible recessive growth-retarding alleles were obtained from these yeasts. These spore clones were used to successively isolate mutants resistant to SO2, then those resistant to ethanol, and finally those resistant to high CO2 pressure. Most of these mutants showed better capability for base wine fermentation than the parental strain, and some of them approached the fermentation capability of S. cerevisiae. The genetic stability of the new mutants was good enough to be used in industrial-level production in commercial wineries. Moreover, their ability to ferment sparkling wine could be further improved by the continuous addition of oxygen in the culture adaptation stage prior to base wine inoculation.
Collapse
Affiliation(s)
- Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - María L. Álvarez
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Luis M. Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| |
Collapse
|
15
|
Castrillo D, Rabuñal E, Neira N, Blanco P. Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: impact on aroma and sensory profiles of Treixadura wines. FEMS Yeast Res 2020; 19:5581503. [PMID: 31584676 DOI: 10.1093/femsyr/foz065] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022] Open
Abstract
The effects of climate change on wine include high-alcohol content, low acidity and aroma imbalance. The potential of several non-Saccharomyces wine yeasts to mitigate these effects was evaluated by sequential fermentation of Treixadura grape must. Fermentations with only Saccharomyces cerevisiae ScXG3 and a spontaneous process were used as control assays. All yeast strains were obtained from the yeast collection of Estación de Viticultura e Enoloxía de Galicia (EVEGA), Galicia, Spain. Fermentation kinetics as well as yeast dynamics and implantation ability varied depending on inoculated yeasts. In addition, the results showed significant differences in the chemical composition of wine. Starmerella bacillaris 474 reduced the alcohol content (1.1% vol) and increased the total acidity (1.2 g L-1) and glycerol of wines. Fermentation with Lachancea thermotolerans Lt93 and Torulaspora delbrueckii Td315 also decreased the alcohol content, although to a lesser extent (0.3% and 0.7% vol, respectively); however, their effect on wine acidity was less significant. The wines also differed in their concentration of volatile compounds and sensory characteristics. Thus, wines made with Metschnikowia fructicola Mf278 and S. cerevisiae ScXG3 had higher content of esters, acetates and some acids than other wines, and were most appreciated by tasters due to their fruity character and overall impression.
Collapse
Affiliation(s)
- David Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Eva Rabuñal
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Noemi Neira
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Pilar Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| |
Collapse
|
16
|
Wojdyło A, Samoticha J, Chmielewska J. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. J Food Sci 2020; 85:1070-1081. [PMID: 32125714 DOI: 10.1111/1750-3841.15061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/16/2019] [Accepted: 01/02/2020] [Indexed: 11/30/2022]
Abstract
Wines produced from grapes cultivated in cool climate areas are characterized by high levels of organic acids. One method to correct this is malolactic fermentation (MLF). The aim of this study was to determine the effectiveness of different strains of Oenococcus oeni bacteria (Viniflora CH11, Viniflora CH16, Viniflora CH35, Viniflora Oenos, SIHA LACT Oeno) during the biological acidity reduction process. Red wine from Rondo and Regent cultivars was obtained by ethanol fermentation of the pulp, at 20 °C for 14 days. The profile of organic acids was examined with a particular focus on changes in the content of l-malic and l-lactic acids. Additionally, the impact on profile and quantity of phenolic compounds and antioxidant capacity was measured. The results showed that MLF had a positive influence on content of organic acids through the reduction of l-malic acid content with a simultaneous increase of the amount of l-lactic acid. The best effect was obtained with the CH11 and CH35 bacterial strains. The biological acidity reduction process had no significant (P > 0.05) impact on phenolic content or antioxidant capacity. However, the wine making process (ethanol fermentation, maturation) contributed to the reduction of polyphenols and in consequence lower antioxidant capacity of the final tested wines. PRACTICAL APPLICATION: The present study provides useful information on the impact of different Oenococcus oeni bacterial strains on MLF in red wines, reduction of l-malic to l-lactic acid, and stability of phenolic compounds during MLF and the maturation period. Also, this article provides information about phenolic compounds and antioxidant capacity during malolactic fermentation and maturity of red wines made from hybrids of Vitis vinifera such as Rondo and Regent cultivars.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Dept. of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Justyna Samoticha
- Dept. of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Joanna Chmielewska
- Dept. of Fermentation and Cereal Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| |
Collapse
|
17
|
Ramírez M, López-Piñeiro A, Velázquez R, Muñoz A, Regodón JA. Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Res Int 2020; 129:108845. [DOI: 10.1016/j.foodres.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
|
18
|
Liu S, Laaksonen O, Yang B. Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiol 2019; 80:25-39. [DOI: 10.1016/j.fm.2018.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 01/25/2023]
|
19
|
Tondini F, Lang T, Chen L, Herderich M, Jiranek V. Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. Int J Food Microbiol 2019; 294:42-49. [PMID: 30763906 DOI: 10.1016/j.ijfoodmicro.2019.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Wine fermentations typically involve the yeast Saccharomyces cerevisiae. However, many other yeast species participate to the fermentation process, some with interesting oenological traits. In this study the species Torulaspora delbrueckii, used occasionally in mixed or sequential fermentation with S. cerevisiae to improve wine sensory profile, was investigated to understand the physiological differences between the two. Next generation sequencing was used to characterize the transcriptome of T. delbrueckii and highlight the different genomic response of these yeasts during growth under wine-like conditions. Of particular interest were the basic differences in the glucose fermentation pathway and the formation of aromatic and flavour compounds such as glycerol, esters and acetic acid. Paralog genes were missing in glycolysis and glycerol biosynthesis in T. delbrueckii. Results indicate the tendency of T. delbrueckii to produce less acetic acid relied on a higher expression of alcoholic fermentation related genes, whereas acetate esters were influenced by the absence of esterases, ATF1-2. Additionally, in the Δbap2 S. cerevisiae strain, the final concentration of short branched chain ethyl esters (SBCEEs) was related to branched chain amino acid (BCAA) uptake. In conclusion, different adaption strategies are apparent for T. delbrueckii and S. cerevisiae yeasts, an understanding of which will allow winemakers to make better use of such microbial tools to achieve a desired wine sensory outcome.
Collapse
Affiliation(s)
- Federico Tondini
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia; Australian Research Council Industrial Transformation Training Centre for Innovative Wine Production, Glen Osmond, South Australia 5064, Australia
| | - Tom Lang
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Liang Chen
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Markus Herderich
- Australian Research Council Industrial Transformation Training Centre for Innovative Wine Production, Glen Osmond, South Australia 5064, Australia; The Australian Wine Research Institute, Glen Osmond, South Australia 5064, Australia
| | - Vladimir Jiranek
- Department of Wine & Food Science, University of Adelaide, Glen Osmond, South Australia 5064, Australia; Australian Research Council Industrial Transformation Training Centre for Innovative Wine Production, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
20
|
Valera MJ, Morcillo-Parra MÁ, Zagórska I, Mas A, Beltran G, Torija MJ. Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions. Int J Food Microbiol 2019; 289:174-181. [DOI: 10.1016/j.ijfoodmicro.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023]
|
21
|
Abstract
Torulaspora delbrueckii is probably the non-Saccharomyces yeast that is currently most used for winemaking. Multiple advantages have been claimed for it relative to conventional S. cerevisiae strains. However, many of these claimed advantages are based on results in different research studies that are contradictory or non-reproducible. The easiest way to explain these discrepancies is to attribute them to the possible differences in the behaviour of the different strains of this yeast that have been used in different investigations. There is much less knowledge of the physiology, genetics, and biotechnological properties of this yeast than of the conventional yeast S. cerevisiae. Therefore, it is possible that the different results that have been found in the literature are due to the variable or unpredictable behaviour of T. delbrueckii, which may depend on the environmental conditions during wine fermentation. The present review focusses on the analysis of this variable behaviour of T. delbrueckii in the elaboration of different wine types, with special emphasis on the latest proposals for industrial uses of this yeast.
Collapse
|
22
|
Managing wine quality using Torulaspora delbrueckii and Oenococcus oeni starters in mixed fermentations of a red Barbera wine. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3161-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine. Int J Food Microbiol 2018; 289:134-144. [PMID: 30240984 DOI: 10.1016/j.ijfoodmicro.2018.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022]
Abstract
For still wines, killer strains of Torulaspora delbrueckii can be used instead of non-killer strains to improve this species' domination during must fermentation, with an ensured, reliable impact on the final wine quality. The present work analysed the usefulness of these killer yeasts for sparkling-wine making. After the first fermentation, the foaming capacity of T. delbrueckii base wines was very low compared to Saccharomyces cerevisiae base wines. Significant positive correlations of foaming parameters were found with the amounts of C4-C16 ethyl esters and proteins, and negative with some anti-foaming alcohols produced by each yeast species. There were, however, no evident positive effects of polysaccharides on those parameters. The organoleptic quality of the T. delbrueckii base wines was judged inappropriate for sparkling-wine making, so that the following second-fermentation experiments only used a single assemblage of S. cerevisiae base-wines. While second fermentation was completed with inoculation of S. cerevisiae (both alone and mixed with T. delbrueckii) to yield dry sparkling wines with high CO2 pressure, single inoculation with T. delbrueckii did not complete this fermentation, leaving sweet wines with poor CO2 pressure. Yeast death due to CO2 pressure was much greater in T. delbrueckii than in S. cerevisiae, making any killer effect of S. cerevisiae over T. delbrueckii irrelevant because no autolysed cells were found during the first days of mixed-inoculated second fermentation. Nonetheless, the organoleptic quality of the mixed-inoculated sparkling wines was better than that of wines single-inoculated with S. cerevisiae, and showed no deterioration in foam quality. This seemed mainly to be because T. delbrueckii increased the amounts of ethyl propanoate and some acids (e.g., isobutyric and butanoic), alcohols (e.g., 3‑ethoxy‑1‑propanol), and phenols (e.g., 4‑vinylguaiacol). For these sparkling wines, no significant correlations between foaming parameters and aroma compounds were found, probably because the differences in foaming parameter values among these wines were fairly small. This is unlike the case for the base wines for which there were large differences in these parameters, which facilitated the analysis of the influence of aroma compounds on base-wine foamability.
Collapse
|
24
|
Zhang BQ, Luan Y, Duan CQ, Yan GL. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile. Front Microbiol 2018; 9:606. [PMID: 29674999 PMCID: PMC5895779 DOI: 10.3389/fmicb.2018.00606] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/15/2018] [Indexed: 12/02/2022] Open
Abstract
The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which could provide an alternative way to meet the requirement of wine consumers for diversified aromatic quality.
Collapse
Affiliation(s)
- Bo-Qin Zhang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Yu Luan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Guo-Liang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
25
|
Tempère S, Marchal A, Barbe JC, Bely M, Masneuf-Pomarede I, Marullo P, Albertin W. The complexity of wine: clarifying the role of microorganisms. Appl Microbiol Biotechnol 2018; 102:3995-4007. [PMID: 29552694 DOI: 10.1007/s00253-018-8914-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
The concept of wine complexity has gained considerable interest in recent years, both for wine consumers and wine scientists. As a consequence, some research programs concentrate on the factors that could improve the perceived complexity of a wine. Notably, the possible influence of microbiological factors is particularly investigated. However, wine complexity is a multicomponent concept not easily defined. In this review, we first describe the actual knowledge regarding wine complexity, its perception, and wine chemical composition. In particular, we emphasize that, contrary to expectations, the perception of wine complexity is not related to wine chemical complexity. Then, we review the impact of wine microorganisms on wine complexity, with a specific focus on publications including sensory analyses. While microorganisms definitively can impact wine complexity, the underlying mechanisms and molecules are far from being deciphered. Finally, we discuss some prospective research fields that will help improving our understanding of wine complexity, including perceptive interactions, microbial interactions, and other challenging phenomena.
Collapse
Affiliation(s)
- Sophie Tempère
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Univ. Bordeaux, ISVV, 33140, Villenave d'Ornon, France
| | - Axel Marchal
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Univ. Bordeaux, ISVV, 33140, Villenave d'Ornon, France
| | - Jean-Christophe Barbe
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Univ. Bordeaux, ISVV, 33140, Villenave d'Ornon, France.,Bordeaux Sciences Agro, 33170, Gradignan, France
| | - Marina Bely
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Univ. Bordeaux, ISVV, 33140, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarede
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Univ. Bordeaux, ISVV, 33140, Villenave d'Ornon, France.,Bordeaux Sciences Agro, 33170, Gradignan, France
| | - Philippe Marullo
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Univ. Bordeaux, ISVV, 33140, Villenave d'Ornon, France.,Biolaffort, 33100, Bordeaux, France
| | - Warren Albertin
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Univ. Bordeaux, ISVV, 33140, Villenave d'Ornon, France. .,ENSCBP, Bordeaux INP, 33600, Pessac, France.
| |
Collapse
|
26
|
González-Arenzana L, López-Alfaro I, Garde-Cerdán T, Portu J, López R, Santamaría P. Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation. Int J Food Microbiol 2018; 269:19-26. [DOI: 10.1016/j.ijfoodmicro.2018.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 11/28/2022]
|
27
|
The impact of Torulaspora delbrueckii yeast in winemaking. Appl Microbiol Biotechnol 2018; 102:3081-3094. [PMID: 29492641 DOI: 10.1007/s00253-018-8849-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
Commercial Saccharomyces strains are usually inoculated to ferment alcoholic beverages due to their ability to convert all fermentable sugars into ethanol. However, modern trends in winemaking have turned toward less known, non-Saccharomyces yeast species. These species perform the first stages of natural spontaneous fermentation and play important roles in wine variety. New alcoholic fermentation trends have begun to consider objectives other than alcohol production to improve flavor diversity. This review explores the influence of the most used and commercialized non-Saccharomyces yeast, Torulaspora delbrueckii, on fermentation quality parameters, such as ethanol, glycerol, volatile acidity, volatile profile, succinic acid, mannoproteins, polysaccharides, color, anthocyanins, amino acids, and sensory perception.
Collapse
|
28
|
Simonin S, Alexandre H, Nikolantonaki M, Coelho C, Tourdot-Maréchal R. Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking. Food Res Int 2018; 107:451-461. [PMID: 29580506 DOI: 10.1016/j.foodres.2018.02.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/19/2018] [Accepted: 02/13/2018] [Indexed: 01/06/2023]
Abstract
In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. However, scientific data capable of proving the effectiveness of adding these yeasts on grape must is lacking. This study reports the analysis of antimicrobial and antioxidant effects of one non-Saccharomyces yeast, Torulaspora delbrueckii, inoculated at the beginning of the white winemaking process in two Burgundian wineries as an alternative to sulphiting. The implantation of the T. delbrueckii strain was successful in both wineries and had no impact on fermentation kinetics. Adding T. delbrueckii reduced biodiversity during the pre-fermentation stages compared to sulphited controls and it also effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. T. delbrueckii could protect must and wine from oxidation as demonstrated by the analysis of colour and phenolic compounds. This is the first evidence that early addition of T. delbrueckii during winemaking can be a microbiogical and chemical alternative to sulphites. However, its contribution seems to be matrix dependent.
Collapse
Affiliation(s)
- Scott Simonin
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Maria Nikolantonaki
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Christian Coelho
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| |
Collapse
|
29
|
Lu Y, Voon MKW, Chua JY, Huang D, Lee PR, Liu SQ. The effects of co- and sequential inoculation of Torulaspora delbrueckii and Pichia kluyveri on chemical compositions of durian wine. Appl Microbiol Biotechnol 2017; 101:7853-7863. [PMID: 28942463 DOI: 10.1007/s00253-017-8527-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/04/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
Abstract
This is a first study on using two non-Saccharomyces yeasts, Torulaspora delbrueckii Biodiva and Pichia kluyveri FrootZen to produce durian wine via co-inoculation (Co-I) and sequential inoculation (Seq-I). T. delbrueckii inhibited the growth of P. kluyveri and P. kluyveri also partly retarded the growth of T. delbrueckii in Co-I and Seq-I treatments. Co-I and Seq-I produced similar levels of ethanol to T. delbrueckii Biodiva monoculture. In addition, Seq-I increased malic acid degradation and higher succinic acid production. Compared with T. delbrueckii Biodiva, Co-I produced similar amounts of ethyl esters, higher alcohols and moderately increased levels of ethyl acetate. Seq-I 2th (T. delbrueckii inoculated after 2 days fermentation with P. kluyveri) and Seq-I 5th produced excessive amounts of ethyl acetate (≥ 80 mg/L) but relatively lower levels of higher alcohols. This study suggested that Co-I could complete alcoholic fermentation with more complex aromas and might be novel way for wine making.
Collapse
Affiliation(s)
- Yuyun Lu
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore
| | - Marilyn Kai Wen Voon
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore
| | - Jian-Yong Chua
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore
| | - Dejian Huang
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215123, China
| | - Pin-Rou Lee
- Shiro Corporation Pte Ltd, 1 Senoko Avenue, Singapore, 758297, Singapore
| | - Shao-Quan Liu
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore.
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215123, China.
| |
Collapse
|
30
|
Belda I, Ruiz J, Beisert B, Navascués E, Marquina D, Calderón F, Rauhut D, Benito S, Santos A. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int J Food Microbiol 2017; 257:183-191. [PMID: 28668728 DOI: 10.1016/j.ijfoodmicro.2017.06.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 01/14/2023]
Abstract
In last years, non-Saccharomyces yeasts have emerged as innovative tools to improve wine quality, being able to modify the concentration of sensory-impact compounds. Among them, varietal thiols released by yeasts, play a key role in the distinctive aroma of certain white wines. In this context, Torulaspora delbrueckii is in the spotlight because of its positive contribution to several wine quality parameters. This work studies the physiological properties of an industrial T. delbrueckii strain, for the production of wines with increased thiol concentrations. IRC7 gene, previously described in S. cerevisiae, has been identified in T. delbrueckii, establishing the genetics basis of its thiol-releasing capability. Fermentations involving T. delbrueckii showed improvements on several parameters (such as glycerol content, ethanol index, and major volatile compounds composition), but especially on thiols release. These results confirm the potential of T. delbrueckii on wine improvement, describing new metabolic features regarding the release of cysteinylated aroma precursors.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Beata Beisert
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Eva Navascués
- Agrovin, S.A., Alcázar de San Juan, 13600 Ciudad Real, Spain; Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Calderón
- Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Santiago Benito
- Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
31
|
Belda I, Ruiz J, Alonso A, Marquina D, Santos A. The Biology of Pichia membranifaciens Killer Toxins. Toxins (Basel) 2017; 9:toxins9040112. [PMID: 28333108 PMCID: PMC5408186 DOI: 10.3390/toxins9040112] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.).
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alejandro Alonso
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
32
|
|