1
|
Murashiki TC, Mazhandu AJ, Zinyama-Gutsire RBL, Mutingwende I, Mazengera LR, Duri K. Biomonitoring and determinants of mycotoxin exposures from pregnancy until post-lactation in HIV-infected and HIV-uninfected women from Harare, Zimbabwe. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024:1-23. [PMID: 39284005 DOI: 10.1080/19440049.2024.2402553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024]
Abstract
The human immunodeficiency virus (HIV) heavily affects women from resource-limited settings who are vulnerable to potentially harmful mycotoxins including aflatoxin B1 (AFB1), fumonisin B1 (FB1) and ochratoxin A (OTA). We aimed to conduct biomonitoring and ascertain the determinants of maternal mycotoxin exposure in pregnancy, lactation and post-lactation periods. We conducted a retrospective longitudinal study in HIV-infected and HIV-uninfected women from Harare, Zimbabwe. 175 and 125 random urine samples in pregnancy and 24 months after delivery (post-lactation) respectively were analysed for aflatoxin M1 (AFM1) and FB1 by ELISA. 6 weeks after delivery (lactation), 226 and 262 breast milk (BM) samples were analysed for AFM1 and OTA respectively by ELISA. The association of demographics and food consumption with mycotoxins was evaluated using multivariable logistic regression. In HIV-infected, urinary AFM1 was detected in 46/94 (Median: 0.05; Range: 0.04-0.46 ng mL-1) in pregnancy and 47/66 (Median: 0.05; Range: 0.04-1.01 ng mL-1) post-lactation. Urinary FB1 was detected in 86/94 (Median: 1.39; Range: 0.17-6.02 ng mL-1) in pregnancy and 56/66 (Median: 0.72; Range: 0.20-3.81 ng mL-1) post-lactation. BM AFM1 was detected in 28/110 (Median: 7.24; Range: 5.96-29.80 pg mL-1) and OTA in 11/129 (Median: 0.20; Range: 0.14-0.65 ng mL-1). In HIV-uninfected, urinary AFM1 was detected in 48/81 (Median: 0.05; Range: 0.04-1.06 ng mL-1) in pregnancy and 41/59 (Median: 0.05; Range: 0.04-0.52 ng mL-1) post-lactation. Urinary FB1 was detected in 74/81 (Median: 1.15; Range: 0.17-6.16 ng mL-1) in pregnancy and 55/59 (Median: 0.96; Range: 0.20-2.82 ng mL-1) post-lactation. BM AFM1 was detected in 38/116 (Median: 7.70; Range: 6.07-31.75 pg mL-1) and OTA in 4/133 (Median: 0.24; Range: 0.18-0.83 ng mL-1). Location, wealth, and peanut butter consumption were determinants of AFB1 exposure. HIV infection, BMI, location, rainy season, unemployment, and age were determinants of FB1 exposure. Women especially those pregnant and/or HIV-infected are at risk of adverse effects of mycotoxins.
Collapse
Affiliation(s)
- Tatenda Clive Murashiki
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo B L Zinyama-Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Isaac Mutingwende
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
2
|
Kavroumatzi CK, Boutsika A, Ortega P, Zambounis A, Tsitsigiannis DI. Unlocking the Transcriptional Reprogramming Repertoire between Variety-Dependent Responses of Grapevine Berries to Infection by Aspergillus carbonarius. PLANTS (BASEL, SWITZERLAND) 2024; 13:2043. [PMID: 39124161 PMCID: PMC11314482 DOI: 10.3390/plants13152043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Aspergillus carbonarius causes severe decays on berries in vineyards and is among the main fungal species responsible for grape contamination by ochratoxin A (OTA), which is the foremost mycotoxin produced by this fungus. The main goal of this study was to investigate at the transcriptome level the comparative profiles between two table grape varieties (Victoria and Fraoula, the white and red variety, respectively) after their inoculation with a virulent OTA-producing A. carbonarius strain. The two varieties revealed quite different transcriptomic signatures and the expression profiles of the differential expressed genes (DEGs) highlighted distinct and variety-specific responses during the infection period. The significant enrichment of pathways related to the modulation of transcriptional dynamics towards the activation of defence responses, the triggering of the metabolic shunt for the biosynthesis of secondary metabolites, mainly phenylpropanoids, and the upregulation of DEGs encoding phytoalexins, transcription factors, and genes involved in plant-pathogen interaction and immune signaling transduction was revealed in an early time point in Fraoula, whereas, in Victoria, any transcriptional reprogramming was observed after a delay. However, both varieties, to some extent, also showed common expression dynamics for specific DEG families, such as those encoding for laccases and stilbene synthases. Jasmonate (JA) may play a critical modulator role in the defence machinery as various JA-biosynthetic DEGs were upregulated. Along with the broader modulation of the transcriptome that was observed in white grape, expression profiles of specific A. carbonarius genes related to pathogenesis, fungal sporulation, and conidiation highlight the higher susceptibility of Victoria. Furthermore, the A. carbonarius transcriptional patterns directly associated with the regulation of the pathogen OTA-biosynthesis gene cluster were more highly induced in Victoria than in Fraoula. The latter was less contaminated by OTA and showed substantially lower sporulation. These findings contribute to uncovering the interplay beyond this plant-microbe interaction.
Collapse
Affiliation(s)
- Charikleia K. Kavroumatzi
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (C.K.K.); (P.O.)
- Hellenic Agricultural Organization—DIMITRA (ELGO—DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.B.); (A.Z.)
| | - Anastasia Boutsika
- Hellenic Agricultural Organization—DIMITRA (ELGO—DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.B.); (A.Z.)
| | - Paula Ortega
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (C.K.K.); (P.O.)
- Department of Agro-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, 08860 Castelldefels, Spain
| | - Antonios Zambounis
- Hellenic Agricultural Organization—DIMITRA (ELGO—DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.B.); (A.Z.)
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (C.K.K.); (P.O.)
| |
Collapse
|
3
|
Zjalic S, Markov K, Loncar J, Jakopovic Z, Beccaccioli M, Reverberi M. Biocontrol of Occurrence Ochratoxin A in Wine: A Review. Toxins (Basel) 2024; 16:277. [PMID: 38922171 PMCID: PMC11209579 DOI: 10.3390/toxins16060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.
Collapse
Affiliation(s)
- Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Jelena Loncar
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Zeljko Jakopovic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
4
|
Singh P, Jaime R, Puckett RD, Lake J, Papagelis A, Gabri VM, Michailides TJ. Ochratoxin A Contamination of California Pistachios and Identification of Causal Agents. PLANT DISEASE 2024; 108:1591-1601. [PMID: 38115568 DOI: 10.1094/pdis-06-23-1233-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by Aspergillus and Penicillium spp., which contaminates many crops, including pistachios. Pistachios contaminated with OTA may be subjected to border rejections resulting in significant economic losses to the United States agricultural revenues. The current study examined prevalence of OTA in California-grown pistachios and identified its causal agents. OTA was detected in 20% of samples from 2018 to 2021 (n = 809), with 18% of samples exceeding the European Union regulatory limit of 5 μg/kg. Fungi potentially responsible for OTA contamination were isolated from leaves, nuts, and soil collected from 14 pistachio orchards across California. A total of 1,882 isolates of Aspergillus section Nigri and 85 isolates of section Circumdati were recovered. Within section Nigri, 216 (11.5%) isolates were identified as potential OTA producers using a boscalid-resistance assay. Phylogenetic analyses of partial gene sequences for β-tubulin and calmodulin genes resolved section Circumdati into four species: A. ochraceus (33%), A. melleus (28%), A. bridgeri (21%), and A. westerdijkiae (19%). A. westerdijkiae produced the highest levels of OTA in inoculated pistachios (47 μg/g), followed by A. ochraceus (9.6 μg/g) and A. melleus (3.3 μg/g). A. bridgeri did not produce OTA. OTA production by section Circumdati was optimal from 20 to 30°C. All 216 boscalid-resistant isolates from section Nigri were identified as A. tubingensis, and representative isolates (n = 130) produced 3.8 μg/kg OTA in inoculated pistachios. This is the first detailed report on OTA contamination and causal fungi in California pistachios and will be helpful in devising effective management strategies.
Collapse
Affiliation(s)
- Pummi Singh
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Ramon Jaime
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Ryan D Puckett
- University of California Agricultural and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - John Lake
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Apostolos Papagelis
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Victor M Gabri
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Themis J Michailides
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
5
|
Tópor A, Veras FF, Cacciatore FA, Silveira RD, da Silva Malheiros P, Welke JE. Carvacrol nanocapsules as a new antifungal strategy: Characterization and evaluation against fungi important for grape quality and to control the synthesis of ochratoxins. Int J Food Microbiol 2024; 416:110659. [PMID: 38461732 DOI: 10.1016/j.ijfoodmicro.2024.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Fungi are a problem for viticulture as they can lead to deterioration of grapes and mycotoxins production. Despite the widespread use of synthetic fungicides to control fungi, their impact on the agricultural ecosystem and human health demand safer and eco-friendly alternatives. This study aimed to produce, characterize and assess the antifungal activity of carvacrol loaded in nanocapsules of Eudragit® and chia mucilage as strategy for controlling Botrytis cinerea, Aspergillus flavus, Aspergillus carbonarius, and Aspergillus niger. Eudragit® and chia mucilage were suitable wall materials, as both favored the encapsulation of carvacrol into nanometric diameter particles. Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested a successful incorporation of carvacrol into both nanocapsules, which was confirmed by presenting a good encapsulation efficiency and loading capacity. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses revealed adequate thermal resistance. All fungi were sensible to carvacrol treatments and B. cinerea was the most sensitive compared to the Aspergillus species. Lower concentrations of encapsulated carvacrol than the unencapsulated form were required to inhibit fungi in the in vitro and grape assays. Additionally, lower levels of carvacrol (unencapsulated or encapsulated) were used to inhibit fungal growth and ochratoxin synthesis on undamaged grapes in comparison to those superficially damaged, highlighting the importance of management practices designed to preserve berry integrity during cultivation, storage or commercialization. When sublethal doses of carvacrol were used, the growth of A. niger and A. carbonarius was suppressed by at least 45 %, and ochratoxins were not found. The nanoencapsulation of carvacrol using Eudragit® and chia mucilage has proven to be an alternative to mitigate the problems with fungi and mycotoxins faced by the grape and wine sector.
Collapse
Affiliation(s)
- Athos Tópor
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Flávio Fonseca Veras
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Fabiola Ayres Cacciatore
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Rafaela Diogo Silveira
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Patrícia da Silva Malheiros
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Caetano ARS, Cardoso MDG, de Oliveira JE, Batista LR, Alves E, Natarelli CVL, Campolina GA, Ferreira VRF, Nelson DL. Antifungal activity of poly(lactic acid) nanofibers containing the essential oil from Corymbia citriodora Hook or the monoterpenes β-citronellol and citronellal against mycotoxigenic fungi. FEMS Microbiol Lett 2024; 371:fnae083. [PMID: 39380138 DOI: 10.1093/femsle/fnae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024] Open
Abstract
Food contamination by mycotoxigenic fungi is one of the principal factors that cause food loss and economic losses in the food industry. The objective of this work was to incorporate the essential oil from Corymbia citriodora Hook and its constituents citronellal and β-citronellol into poly(lactic acid) nanofibers; to characterize the nanofibers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimetry; to evaluate the antifungal activity by the fumigation method; to evaluate the antimycotoxigenic activity against Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus flavus, and Aspergillus parasiticus; and to evaluate the morphology of these microorganisms. All the nanofibers had a regular, smooth, and continuous morphology. FTIR analyses confirmed that the active ingredients were incorporated into the polymer matrix. All samples exhibited antifungal and ochratoxigenic inhibitory activities of up to 100% and 99%, respectively, with the best results observed for (PLA + 30 wt% β-citronellol) nanofibers and (PLA + 30 wt% citronellal) nanofibers. However, 100% inhibition of the production of aflatoxin B1 and B2 was not observed. The images obtained by SEM indicated that the nanofibers caused damage to the hyphae, caused a decrease in the production of spores, and caused deformation, rupture, and non-formation of the conid head, might be an alternative for the control of mycotoxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Luiz Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, 37200-900 MG, Brazil
| | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, 37200-900 MG, Brazil
| | - Caio Vinicius Lima Natarelli
- Materials Science and Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 SP, Brazil
| | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, 39100-000 MG, Brazil
| |
Collapse
|
7
|
Giorni P, Zhang L, Bavaresco L, Lucini L, Battilani P. Metabolomics Insight into the Variety-Mediated Responses to Aspergillus carbonarius Infection in Grapevine Berries. ACS OMEGA 2023; 8:32352-32364. [PMID: 37720731 PMCID: PMC10500680 DOI: 10.1021/acsomega.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 09/19/2023]
Abstract
Limited knowledge regarding the susceptibility of grape varieties to ochratoxin A (OTA)-producing fungi is available to date. This study aimed to investigate the susceptibility of different grape varieties to Aspergillus carbonarius concerning OTA contamination and modulation at the metabolome level. Six grape varieties were selected, sampled at early veraison and ripening, artificially inoculated with A. carbonarius, and incubated at two temperature regimes. Significant differences were observed across cultivars, with Barbera showing the highest incidence of moldy berries (around 30%), while Malvasia and Ortrugo showed the lowest incidence (about 2%). OTA contamination was the lowest in Ortrugo and Malvasia, and the highest in Croatina, although it was not significantly different from Barbera, Merlot, and Sauvignon Blanc. Fungal development and mycotoxin production changed with grape variety; the sugar content in berries could also have played a role. Unsupervised multivariate statistical analysis from metabolomic fingerprints highlighted cultivar-specific responses, although a more generalized response was observed by supervised OPLS-DA modeling. An accumulation of nitrogen-containing compounds (alkaloids and glucosinolates), phenylpropanoids, and terpenoids, in addition to phytoalexins, was observed in all samples. A broader modulation of the metabolome was observed in white grapes, which were less contaminated by OTA. Jasmonates and oxylipins were identified as critical upstream modulators in metabolomic profiles. A direct correlation between the plant defense machinery and OTA was not observed, but the information was acquired and can contribute to optimizing preventive actions.
Collapse
Affiliation(s)
- Paola Giorni
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Bavaresco
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
8
|
Felšöciová S, Sabo J, Čmiková N, Kowalczewski PŁ, Kačániová M. Mycobiota in Slovak wine grapes: A case study from the small Carpathians wine region. Open Life Sci 2023; 18:20220676. [PMID: 37711215 PMCID: PMC10499011 DOI: 10.1515/biol-2022-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023] Open
Abstract
The microbiological characteristics of the grapes are made up of a wide variety of microorganisms, including filamentous fungi. Their presence in grapes is traditionally associated with deterioration in quality. The health of the grapes is very important for obtaining quality wine. The objective of this study was to investigate the diversity of mycobiota on the surface and inside of different grapevine varieties at harvest time in the temperate climate of Slovakia and to identify potentially pathogenic isolates of Aspergillus and Penicillium producing selected mycotoxins. During the 2021 grape harvest, grapes were collected from the Small Carpathians wine region. Eleven grape samples were analyzed by the plating method and plating method with surface disinfection. Emphasis was placed on Aspergillus and Penicillium species because of their importance in mycotoxin production. Of the 605 fungal strains detected, 11 genera were identified in the exogenous mycobiota. The most common and abundant genera were Alternaria and Botrytis. In the genus Aspergillus, A. section Nigri is the most abundant, while in the genus Penicillium, P. raistrickii reached the highest frequency and abundance. Of the 379 strains detected and identified from the endogenous mycobiota, the most common genera were again Alternaria and Botrytis and the most abundant genus was Botrytis. Penicillium species were detected in 17% of all fungi found, with P. raistrickii dominating. The A. section Nigri reached only 4% of the relative density of all isolates. Potentially toxigenic Aspergillus and Penicillium species were tested for toxinogenity by thin layer chromatography. The most important mycotoxin-producing species found were A. section Nigri but without ochratoxin A production.
Collapse
Affiliation(s)
- Soňa Felšöciová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
| | - Jozef Sabo
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
- Department of Bioenergetics and Food Analysis, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| |
Collapse
|
9
|
Cardoso Gimenes D, Ono MA, de Souza Suguiura IM, Macagnan R, Sartori D, Borsato D, Pelegrinelli Fungaro MH, Ono EYS. Yeasts as sustainable biocontrol agents against ochratoxigenic Aspergillus species and in vitro optimization of ochratoxin A detoxification. J Appl Microbiol 2023; 134:lxad174. [PMID: 37537147 DOI: 10.1093/jambio/lxad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
AIMS The aims of this study were to evaluate the potential of Hanseniaspora opuntiae, Meyerozyma caribbica, and Kluyveromyces marxianus for in vitro biocontrol of Aspergillus ochraceus, A. westerdijkiae, and A. carbonarius growth, the ochratoxin A (OTA) effect on yeast growth, and yeast in vitro OTA detoxification ability using an experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration. METHODS AND RESULTS Predictive models were developed using an incomplete Box-Behnken experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration on OTA detoxification by the yeasts. The yeasts were able to inhibit fungal growth from 13% to 86%. Kluyveromyces marxianus was the most efficient in inhibiting the three Aspergillus species. Furthermore, high OTA levels (100 ng ml-1) did not affect yeast growth over 72 h incubation. The models showed that the maximum OTA detoxification under optimum conditions was 86.8% (H. opuntiae), 79.3% (M. caribbica), and 73.7% (K. marxianus), with no significant difference (P > 0.05) between the values predicted and the results obtained experimentally. CONCLUSION The yeasts showed potential for biocontrol of ochratoxigenic fungi and OTA detoxification, and the models developed are important tools for predicting the best conditions for the application of these yeasts as detoxification agents.
Collapse
Affiliation(s)
- Danielle Cardoso Gimenes
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Mario Augusto Ono
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | | | - Rafaela Macagnan
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Daniele Sartori
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Dionisio Borsato
- Department of Chemistry, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | | | - Elisabete Yurie Sataque Ono
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| |
Collapse
|
10
|
Cai X, Li B, Li X, Dang H, Wang D, Pei Z, Feng X, Ren X, Kong Q. Characteristic Structures of Different Stilbenes Distinguish the Impact on Ochratoxin A Biosynthesis Intermediate Pathway and Metabolites of Aspergillus carbonarius. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7996-8007. [PMID: 37192315 DOI: 10.1021/acs.jafc.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper, we accurately pinpointed the inhibition sites of ochratoxin A (OTA) synthesis pathway in Aspergillus carbonarius acted by stilbenes from the perspective of oxidative stress and comprehensively explored the relationship between the physical and chemical properties of natural polyphenolic substances and their biochemical properties of antitoxin. To facilitate the application of ultra-high-performance liquid chromatography and triple quadrupole mass spectrometry for real-time tracking of pathway intermediate metabolite content, the synergistic effect of Cu2+-stilbenes self-assembled carriers was utilized. Cu2+ increased the generation of reactive oxygen species to accumulate mycotoxin content, while stilbenes had the inhibitory effect. The impact of the m-methoxy structure of pterostilbene on A. carbonarius was found to be superior to that of resorcinol and catechol. The m-methoxy structure of pterostilbene acted on the key regulator Yap1, downregulated the expression of antioxidant enzymes, and accurately inhibited the halogenation step of the OTA synthesis pathway, thus accumulating the content of OTA precursors. This provided a theoretical basis for the extensive and efficient application of a wide range of natural polyphenolic substances for postharvest disease control and quality assurance of grape products.
Collapse
Affiliation(s)
- Xinyu Cai
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Boqiang Li
- Chinese Academy Sciences, Institute of Botany, Key Lab Plant Resources, Beijing 100093, P. R. China
| | - Xue Li
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhifei Pei
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xuan Feng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
11
|
Saricaoglu B, Gültekin Subaşı B, Karbancioglu-Guler F, Lorenzo JM, Capanoglu E. Phenolic compounds as natural microbial toxin detoxifying agents. Toxicon 2023; 222:106989. [PMID: 36509264 DOI: 10.1016/j.toxicon.2022.106989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Despite the abundance of promising studies, developments, and improvements about the elimination of microbial toxins from food matrices, they are still considered as one of the major food safety problems due to the lack of their complete avoidance even today. Every year, many crops and foodstuffs have to be discarded due to unconstrained contamination and/or production of microbial toxins. Furthermore, the difficulty for the detection of toxin presence and determination of its level in foods may lead to acute or chronic health problems in many individuals. On the other hand, phenolic compounds might be considered as microbial toxin detoxification agents because of their inhibition effect on the toxin synthesis of microorganisms or exhibiting protective effects against varying damaging mechanisms caused by toxins. In this study, the effect of phenolic compounds on the synthesis of bacterial toxins and mycotoxins is comprehensively reviewed. The potential curing effect of phenolic compounds against toxin-induced damages has also been discussed. Consequently, phenolic compounds are indicated as promising, and considerable natural preservatives against toxin damages and their detoxification potentials are pronounced.
Collapse
Affiliation(s)
- Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Büşra Gültekin Subaşı
- Hafik Kamer Ornek Vocational School, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Funda Karbancioglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia nº 4, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, 32004 Ourense, Spain
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
12
|
La Placa L, Tsitsigiannis D, Camardo Leggieri M, Battilani P. From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination. Foods 2023; 12:260. [PMID: 36673352 PMCID: PMC9858051 DOI: 10.3390/foods12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.
Collapse
Affiliation(s)
- Laura La Placa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Dimitrios Tsitsigiannis
- Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
13
|
In vitro and in vivo efficacy of poly(lactic acid) nanofiber packaging containing essential oils from Ocimum basilicum L. and Ocimum gratissimum L. against Aspergillus carbonarius and Aspergillus niger in table grapes. Food Chem 2023; 400:134087. [DOI: 10.1016/j.foodchem.2022.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
|
14
|
Giacomini RX, Barnes Rodrigues Cerqueira M, Primel EG, Garda-Buffon J. Monitoring of mycotoxins and pesticides in winemaking. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv20233801010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study monitored concentrations of both pesticides 2,4-dichlorophenoxyacetic acid (2,4-D) and procymidone, and mycotoxin ochratoxin A (OTA) in stages of the winemaking process. Sampling was carried out in the usual vinification process of red wine in a winery between the steps to obtain must and alcoholic fermentation. The highest transference of contaminants in the process occurred in the crushing step to 2,4-D (100%) and maceration to OTA and procymidone (100%). Removal of contaminants in the winemaking process corresponded to 100%, with a half-life (T1/2) longer for procymidone (216.5 h) and shorter for 2,4-D (38.5 h) and OTA (96 h). The processing factors (PFs) (0) for the contaminants, together with the data obtained, characterize winemaking as a process of reducing mycotoxin and pesticides. Results highlight the importance of fermentation to reduce contaminants and that yeasts promote detoxification
Collapse
|
15
|
Aragão MO, Evangelista SR, Passamani FRF, Guimarães JPM, Abreu LR, Batista LR. Fungal community and physicochemical profiles of ripened cheeses from the Canastra of Minas Gerais, Brazil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4685-4694. [PMID: 36276518 PMCID: PMC9579240 DOI: 10.1007/s13197-022-05548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
Canastra's Minas artisanal cheese [QMA (Minas artisanal cheese)] is a protected geographical indication traditional food. The influence of fungi on the cheese ripening process is of great importance. This study aimed to apply culture-dependent and -independent methods to determine the mycobiota of QMA produced in the Canastra region, as well as to determine its physicochemical characteristics. Illumina-based amplicon sequencing and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were the culture-independent methods used. The physicochemical analysis results showed that the QMA has a moisture content ranging 18.4-28.2%, fat content ranging 20.5-40%, sodium chloride percentage of approximately 0.9%, and pH ranging 5.2-5.5. The population of fungi ranged between 6.3 and 8 log colony-forming unit/g. Fusarium spp., Geotrichum candidum, Paecilomyces spp., Trichosporon coremiiforme, Candida catenulata, Aspergillus spp., Trichosporon japonicum, Aspergillus oryzae, Kluyveromyces spp., Torulaspora spp., and Debaryomyces spp. were the most prevalent fungi. The methods used to evaluate the mycobiota provide a better understanding of which species are present in the final product and eventually contribute to the characteristics of QMA. Geotrichum candidum and C. catenulata were identified as promising species for future studies on product quality.
Collapse
Affiliation(s)
- M. O. Aragão
- Food Sciences Department, Federal University of Lavras, P.O. Box: 3037, Lavras, MG 37200-900 Brazil
| | - S. R. Evangelista
- Biology Department, Federal University of Lavras, P.O. Box: 3037, Lavras, MG 37200-900 Brazil
| | - F. R. F. Passamani
- Biology Department, Federal University of Lavras, P.O. Box: 3037, Lavras, MG 37200-900 Brazil
| | - J. P. M. Guimarães
- Food Sciences Department, Federal University of Lavras, P.O. Box: 3037, Lavras, MG 37200-900 Brazil
| | - L. R. Abreu
- Food Sciences Department, Federal University of Lavras, P.O. Box: 3037, Lavras, MG 37200-900 Brazil
| | - L. R. Batista
- Food Sciences Department, Federal University of Lavras, P.O. Box: 3037, Lavras, MG 37200-900 Brazil
| |
Collapse
|
16
|
Detoxification of Ochratoxin A by pulsed light in grape juice and evaluation of its degradation products and safety. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Conventional vs. organic vineyards: Black Aspergilli population structure, mycotoxigenic capacity and mycotoxin contamination assessment in wines, using a new Q-TOF MS-MS detection method. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Zou D, Ji J, Ye Y, Yang Y, Yu J, Wang M, Zheng Y, Sun X. Degradation of Ochratoxin A by a UV-Mutated Aspergillus niger Strain. Toxins (Basel) 2022; 14:toxins14050343. [PMID: 35622590 PMCID: PMC9146908 DOI: 10.3390/toxins14050343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that can contaminate a wide range of crops such as grains and grapes. In this study, a novel fungal mutant strain (FS-UV-21) with a high OTA degradation rate (74.5%) was obtained from Aspergillus niger irradiated with ultraviolet light (15 W for 20 min). The effect of pH, temperature, and inoculation concentration on the degradation of OTA by FS-UV-21 was investigated, and the results revealed that the detoxification effect was optimal (89.4%) at a pH of 8 and a temperature of 30 °C. Ultra-performance liquid chromatography-tandem mass spectrometry was used to characterize the degraded products of OTA, and the main degraded product was ochratoxin α. Triple quadrupole-linear ion trap-mass spectrometry combined with LightSight software was used to analyze the biotransformation pathway of OTA in FS-UV-21, to trace the degraded products, and to identify the main metabolite, P1 (C19H18ClNO6, m/z 404). After the FS-UV-21 strain was treated with OTA, the HepG2 cellular toxicity of the degradation products was significantly reduced. For the real sample, FS-UV-21 was used to remove OTA from wheat bran contaminated by mycotoxins through fermentation, resulting in the degradation of 59.8% of OTA in wheat bran. Therefore, FS-UV-21 can be applied to the degradation of OTA in agricultural products and food.
Collapse
Affiliation(s)
- Dong Zou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Jian Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Meng Wang
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yi Zheng
- Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 214122, China;
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
- Correspondence:
| |
Collapse
|
19
|
Cai X, Qi J, Xu Z, Huang L, Li Y, Ren X, Kong Q. Three stilbenes make difference to the antifungal effects on ochratoxin A and its precursor production of Aspergillus carbonarius. Food Microbiol 2022; 103:103967. [DOI: 10.1016/j.fm.2021.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
|
20
|
Silva JJ, Fungaro MHP, Soto TS, Taniwaki MH, Iamanaka BT. Low-cost, specific PCR assays to identify the main aflatoxigenic species of Aspergillus section Flavi. METHODS IN MICROBIOLOGY 2022; 196:106470. [PMID: 35447279 DOI: 10.1016/j.mimet.2022.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Aflatoxins are fungal metabolites that are present as contaminants in food globally. Most aflatoxigenic species belong to Aspergillus section Flavi, and the main ones are grouped in the A. flavus clade, where many cryptic species that are difficult to discriminate are found. In this study, we investigated inter- and intraspecific diversity of the A. flavus clade to develop low-cost, species-specific PCR assays for identifying aflatoxigenic species. A total of 269 sequences of the second largest subunit of RNA polymerase II (RPB2) locus were retrieved from GenBank, and primer pairs were designed using data mining to identify A. flavus, A. parasiticus, and A. novoparasiticus. Species-specific amplicons of approximately 620, 350, and 860 bp enabled identification of target species as A. flavus, A. parasiticus, and A. novoparasiticus, respectively.
Collapse
Affiliation(s)
- Josué J Silva
- Institute of Food Technology - ITAL, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
21
|
Brandão RM, Batista LR, de Oliveira JE, Ferreira VRF, Lunguinho ADS, Nelson DL, Cardoso MDG. Active packaging of poly(lactic acid) nanofibers and essential oils with antifungal action on table grapes. FEMS Microbiol Lett 2022; 369:6865357. [PMID: 36460045 DOI: 10.1093/femsle/fnac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/23/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
The table grape is a non-climateric fruit that is very susceptible to fungal contamination, in addition to suffering an accelerated loss of quality during storage. The in vitro and in grape antifungal and antiocratoxigenic effects of the essential oils from Alpinia speciosa and Cymbopogon flexuosus against Aspergillus carbonarius and Aspergillus niger were studied. The oils were encapsulated in poly(lactic acid) (PLA) nanofibers as a potential active packaging to be applied to control the degradation of grapes stored during the post-harvest period. Fungal proliferation and ochratoxin A synthesis in A. carbonarius and A. niger decreased in the presence of the active packaging. However, the nanofiber containing the essential oil from C. flexuosus was more efficient in providing a fungicidal effect against A. carbonarius (10% and 20%) and A. niger (20%). In addition, weight loss and color changes were controlled and the parameters of acidity, °Brix, softening and the texture of the grape were maintained. A very small mass loss of the essential oils encapsulated in nanofibers was observed by thermogravimetric analysis, showing that the nanofiber was efficient in enabling the controlled release. The quality and safety of table grapes were maintained for longer periods of storage in the presence of active packaging, so the incorporation of these oils in nanofibers can be a promising way to increase the shelf life of grapes.
Collapse
Affiliation(s)
| | - Luís Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, MG 37200-900, Brazil
| | | | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39803-371, Brazil
| | | |
Collapse
|
22
|
Rezende DADCS, Cardoso MDG, Alves E, Brandão RM, Ferreira VRF, Caetano ARS, Lunguinho ADS, Campolina GA, Nelson DL, Batista LR. Effect of the essential oils of Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. on mycotoxin-producing Aspergillus flavus and Aspergillus ochraceus antifungal properties of essential oils. FEMS Microbiol Lett 2021; 368:6414530. [PMID: 34718530 DOI: 10.1093/femsle/fnab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 11/14/2022] Open
Abstract
Essential oils can be a useful alternative to the use of synthetic fungicides because they have biological potential and are relatively safe for food and agricultural products. The objectives of the present study were to evaluate the antifungal and antimycotoxigenic activities of the essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. against Aspergillus flavus and Aspergillus ochraceus, as well as their effects on ergosterol synthesis and membrane morphology. The antifungal potential was evaluated by mycelial growth analysis and scanning electron microscopy. Fungicidal effects against A. flavus, with MFC of 0.98, 15.62 and 0.98 µL/mL, respectively, were observed for the essential oils from S. montana, M. fragrans and C. flexuosus. Aspergillus ochraceus did not grow in the presence of concentrations of 3.91, 15.62 and 0.98 µL/mL of the essential oils from S. montana, M. fragrans and C. flexuosus, respectively. The essential oils significantly inhibited the production of ochratoxin A by the fungus A. ochraceus. The essential oils also inhibited the production of aflatoxin B1 and aflatoxin B2. The biosynthesis of ergosterol was inhibited by the applied treatments. Biological activity in the fungal cell membrane was observed in the presence of essential oils, given that deleterious effects on the morphologies of the fungi were detected. The essential oils under study are promising as food preservatives because they significantly inhibit toxigenic fungi that contaminate food. In addition, the essential oils hindered the biosynthesis of mycotoxins.
Collapse
Affiliation(s)
| | | | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | | | | | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, 39100-000 MG, Brazil
| | - Luís Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| |
Collapse
|
23
|
Liu G, Liu L, Gong T, Li Y, Chen L, Zhao J. Nicotinic-Acid-Ornamented Tetrameric Rare-Earth-Substituted Phospho(III)tungstates with the Coexistence of Mixed Keggin/Dawson Building Blocks and Its Honeycomb Nanofilm for Detecting Toxins. Inorg Chem 2021; 60:14457-14466. [PMID: 34499476 DOI: 10.1021/acs.inorgchem.1c02248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A fascinating class of nicotinic-acid-ornamented tetrameric rare-earth (RE)-substituted phospho(III)tungstates [NH2(CH3)2]10Na4H8[RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPIIIW9O33)]2·22 H2O [RE = Nd3+ (1-Nd), Tb3+ (2-Tb), Dy3+ (3-Dy), Ho3+ (4-Ho), HNA = nicotinic acid] were isolated through a one-step reaction method of Na2WO4·2H2O, H3PO3, HNA, NH2(CH3)2·HCl, and RE(NO3)·6H2O. Of meticulous concern is that HPO32- was used as a template to construct tetrameric RE-substituted phospho(III)tungstates including mixed heteropolyoxotungstate building blocks. Their hybrid polyoxoanions are composed of two symmetrical [RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPW9O33)]11- units linked by RE-O-W bonds. The symmetrical unit consists of one peculiar heterometal nicotinic-acid-ornamented [RE2(NA)(HNA)(W2O4)]9+ cluster connecting a pentavacant Dawson-like [β-H2P2W13O49]12- and a trivacant Keggin [α-HPW9O33]8- subunits. Furthermore, dimethyldioctadecylammonium chloride (DMDODA·Cl) was used to combine with 1-Nd in the CHCl3-H2O system through electrostatic interactions, leading to the 1-Nd@DMDODA composite material. The honeycomb-patterned film of the 1-Nd @DMDODA composite material was successfully constructed by using the breath figure method on a glassy carbon electrode, which can offer abundant binding sites to Au nanoparticles (nano-Au). Ulteriorly, Au-functionalized 1-Nd@DMDODA-modified electrode was utilized as an electrochemical sensor to detect ochratoxin A, showing a good detection limit of 1.19 pM.
Collapse
Affiliation(s)
- Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
24
|
Ma Y, Li T, Xu X, Ji Y, Jiang X, Shi X, Wang B. Investigation of Volatile Compounds, Microbial Succession, and Their Relation During Spontaneous Fermentation of Petit Manseng. Front Microbiol 2021; 12:717387. [PMID: 34475866 PMCID: PMC8406806 DOI: 10.3389/fmicb.2021.717387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Petit Manseng is widely used for fermenting sweet wine and is popular among younger consumers because of its sweet taste and attractive flavor. To understand the mechanisms underlying spontaneous fermentation of Petit Manseng sweet wine in Xinjiang, the dynamic changes in the microbial population and volatile compounds were investigated through high-throughput sequencing (HTS) and headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) technology, respectively. Moreover, the relationship between the microbial population and volatile compounds was deduced via multivariate data analysis. Candida and Mortierella were dominant genera in Petit Manseng wine during spontaneous fermentation. Many fermentative aroma compounds, including ethyl octanoate, isoamyl acetate, ethyl butyrate, ethyl decanoate, isoamyl alcohol, ethyl laurate, isopropyl acetate, hexanoic acid, and octanoic acid, were noted and found to be responsible for the strong fruity and fatty aroma of Petit Manseng sweet wine. Multivariate data analysis indicated that the predominant microorganisms contributed to the formation of these fermentative aroma compounds. Hannaella and Neomicrosphaeropsis displayed a significantly positive correlation with the 6-methylhept-5-en-2-one produced. The current results provide a reference for producing Petit Manseng sweet wine with desirable characteristics.
Collapse
Affiliation(s)
- Yanqin Ma
- Food College, Shihezi University, Shihezi, China
| | - Tian Li
- Food College, Shihezi University, Shihezi, China
| | - Xiaoyu Xu
- Food College, Shihezi University, Shihezi, China
| | - Yanyu Ji
- Food College, Shihezi University, Shihezi, China
| | - Xia Jiang
- Food College, Shihezi University, Shihezi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
25
|
de Souza T, Evangelista S, Passamani F, Bertechini R, de Abreu L, Batista L. Mycobiota of Minas artisanal cheese: Safety and quality. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Longobardi C, Damiano S, Andretta E, Prisco F, Russo V, Pagnini F, Florio S, Ciarcia R. Curcumin Modulates Nitrosative Stress, Inflammation, and DNA Damage and Protects against Ochratoxin A-Induced Hepatotoxicity and Nephrotoxicity in Rats. Antioxidants (Basel) 2021; 10:antiox10081239. [PMID: 34439487 PMCID: PMC8389288 DOI: 10.3390/antiox10081239] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023] Open
Abstract
Ochratoxin A (OTA) is a fungal toxin of critical concern for food safety both for human health and several animal species, also representing a cancer threat to humans. Curcumin (CURC) is a natural polyphenol that has anti-apoptotic, anti-inflammatory, and antioxidant effects. The aim of this study was to investigate the cytoprotective effect of CURC against OTA-induced nephrotoxicity and hepatotoxicity through the study of the nitrosative stress, pro-inflammatory cytokines, and deoxyribonucleic acid (DNA) damage. Sprague Dawley rats were daily treated with CURC (100 mg/kg b.w.), OTA (0.5 mg/kg b.w), or CURC with OTA by oral gavage for 14 days. Our results demonstrated that OTA exposure was associated with significant increase of pro-inflammatory and DNA oxidative-damage biomarkers. Moreover, OTA induced the inducible nitric oxide synthase, (iNOS) resulting in increased nitric oxide (NO) levels both in kidney and liver. The co-treatment OTA + CURC counteracted the harmful effects of chronic OTA treatment by regulating inflammation, reducing NO levels and oxidative DNA damage in kidney and liver tissues. Histology revealed that OTA + CURC treatment determinates mainly an Iba1+ macrophagic infiltration with fewer CD3+ T-lymphocytes in the tissues. In conclusion, we evidenced that CURC exerted cytoprotective and antioxidant activities against OTA-induced toxicity in rats.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Largo Madonna delle Grazie 1, 80138 Napoli, Italy;
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
- Correspondence: (S.D.); (R.C.); Tel.: +39-081-253-6027 (S.D.); +39-081-253-6051 (R.C.)
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
- Correspondence: (S.D.); (R.C.); Tel.: +39-081-253-6027 (S.D.); +39-081-253-6051 (R.C.)
| |
Collapse
|
27
|
Dutra-Silva L, Pereira GE, Batista LR, Matteoli FP. Fungal diversity and occurrence of mycotoxin producing fungi in tropical vineyards. World J Microbiol Biotechnol 2021; 37:112. [PMID: 34081209 DOI: 10.1007/s11274-021-03081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Grapevine cultivars are distributed worldwide, nevertheless the fermentation of its grape berries renders distinct wine products that are highly associated to the local fungal community. Despite the symbiotic association between wine and the fungal metabolism, impacting both the terroir and mycotoxin production, few studies have explored the vineyard ecosystem fungal community using both molecular marker sequencing and mycotoxin production assessment. In this study, we investigated the fungal community of three grapevine cultivars (Vitis vinifera L.) in two tropical vineyards. Illumina MiSeq sequencing was performed on two biocompartments: grape berries (GB) and grapevine soil (GS); yielding a total of 578,495 fungal internal transcribed spacer 1 reads, which were used for taxonomic classification. GB and GS fungal communities were mainly constituted by Ascomycota phylum. GS harbors a significant richer and more diverse fungal community than GB. Among GB samples, Syrah grape berries exclusively shared fungal community included wine-associated yeasts (e.g. Saccharomycopsis vini) that may play key roles in wine terroir. Mycotoxin production assessment revealed the high potential of Aspergillus section Flavi and Penicillium section Citrina isolates to produce aflatoxin B1-B2 and citrinin, respectively. This is the first study to employ next-generation sequencing to investigate vineyard associated fungal community in Brazil. Our findings provide valuable insights on the available tools for fungal ecology assessment applied to food products emphasizing the coexistence between classical and molecular tools.
Collapse
Affiliation(s)
- Lorena Dutra-Silva
- Department of Food Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Giuliano E Pereira
- Brazilian Agricultural Research Corporation/Embrapa Grape & Wine, Bento Gonçalves, RS, Brazil
| | | | - Filipe P Matteoli
- Department of Soil Science, Luiz de Queiroz College of Agriculture, Piracicaba, SP, Brazil.
| |
Collapse
|
28
|
Veras FF, Dachery B, Manfroi V, Welke JE. Colonization of Aspergillus carbonarius and accumulation of ochratoxin A in Vitis vinifera, Vitis labrusca, and hybrid grapes - research on the most promising alternatives for organic viticulture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2414-2421. [PMID: 33012097 DOI: 10.1002/jsfa.10865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Aspergillus carbonarius has been identified as one of the main fungi that produce ochratoxin A (OTA) in grapes. This nephrotoxic mycotoxin has been legislated against in several countries and is a major concern for viticulture. Knowledge of resistance to, or susceptibility to, colonization by A. carbonarius may be useful in selecting the most promising cultivars for organic agriculture and could help in preventing fungal contamination in vineyards. This study aimed to evaluate the colonization potential and the capacity to produce OTA by A. carbonarius in Vitis vinifera, V. labrusca, and hybrid grapes. The correlation between OTA levels and grape berry characteristics was also analyzed. RESULTS The OTA content was only strongly correlated with the thickness and hardness of the grape skins. The correlation between OTA levels and these parameters was negative (grapes with the least thickness and hardness had the highest OTA levels). Vitis vinifera grapes were more susceptible to A. carbonarius than V. labrusca and hybrid grapes at both 25 and 4 °C. Chardonnay (V. vinifera) grapes showed the highest levels of OTA, followed by Merlot, Cabernet Sauvignon, Tannat, and Moscato Branco. Italia grapes were the exceptions among V. vinifera cultivars, since they showed similar thickness, hardness, and fungal resistance as the V. labrusca and hybrid grapes. CONCLUSION The highest resistance to A. carbonarius was observed in the following grapes: hybrids (BRS Lorena and BRS Violeta), V. labrusca (Isabel and Bordo), and V. vinifera (Italia). These cultivars can be prioritized in the implementation of organic viticulture. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Flávio Fonseca Veras
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Dachery
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vitor Manfroi
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
29
|
Gava A, Emer CD, Ficagna E, Fernandes de Andrade S, Fuentefria AM. Occurrence and impact of fungicides residues on fermentation during wine production- A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:943-961. [PMID: 33784228 DOI: 10.1080/19440049.2021.1894357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Continuous fungicide spraying is required to eliminate fungal pathogens on grapes. However, this practice is associated with several risks, including contamination and environmental imbalance, as well as toxicity to operators and the induction of resistance in pathogens. In addition, a strong correlation has been reported between the presence of fungicides and the occurrence of issues during alcoholic fermentation, resulting in negative impacts on the sensory quality of the final products. Numerous studies have evaluated residue concentrations of phytosanitary products in grapes, juices, and wines, and a significant number of studies have assessed the impact of different agrochemicals on bioprocesses. However, a review compiling the key results of these studies is currently lacking. This review incorporates results obtained in the last decade from research on the presence of fungicide residues, including azoxystrobin, boscalid, captan, copper, fenhexamid, folpet, pyraclostrobin, pyrimethanil and tebuconazole, and their effects on fermentation kinetics. Practical solutions to mitigate these problems, both in vineyards and industry, are also presented and discussed. This review highlights the constant high fungicidal agent concentrations (greater than 1 or 2 mg L-1) used throughout the winemaking process, with the impact of residues being of particular concern, especially with regard to their effect on yeast activity and the fermentation process. Thus, the adoption of methodologies that allow winemakers to control and trace these residues is an important step in avoiding or reducing fermentation problems throughout the winemaking process.[Figure: see text].
Collapse
Affiliation(s)
- Angelo Gava
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cassandro Davi Emer
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Evandro Ficagna
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), Campus Bento Gonçalves, Bento Gonçalves, RS, Brazil
| | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
McCarthy GC, Morgan SC, Martiniuk JT, Newman BL, McCann SE, Measday V, Durall DM. An indigenous Saccharomyces uvarum population with high genetic diversity dominates uninoculated Chardonnay fermentations at a Canadian winery. PLoS One 2021; 16:e0225615. [PMID: 33539404 PMCID: PMC7861373 DOI: 10.1371/journal.pone.0225615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
Saccharomyces cerevisiae is the primary yeast species responsible for most fermentations in winemaking. However, other yeasts, including Saccharomyces uvarum, have occasionally been found conducting commercial fermentations around the world. S. uvarum is typically associated with white wine fermentations in cool-climate wine regions, and has been identified as the dominant yeast in fermentations from France, Hungary, northern Italy, and, recently, Canada. However, little is known about how the origin and genetic diversity of the Canadian S. uvarum population relates to strains from other parts of the world. In this study, a highly diverse S. uvarum population was found dominating uninoculated commercial fermentations of Chardonnay grapes sourced from two different vineyards. Most of the strains identified were found to be genetically distinct from S. uvarum strains isolated globally. Of the 106 strains of S. uvarum identified in this study, four played a dominant role in the fermentations, with some strains predominating in the fermentations from one vineyard over the other. Furthermore, two of these dominant strains were previously identified as dominant strains in uninoculated Chardonnay fermentations at the same winery two years earlier, suggesting the presence of a winery-resident population of indigenous S. uvarum. This research provides valuable insight into the diversity and persistence of non-commercial S. uvarum strains in North America, and a stepping stone for future work into the enological potential of an alternative Saccharomyces yeast species.
Collapse
Affiliation(s)
- Garrett C. McCarthy
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Sydney C. Morgan
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan T. Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brianne L. Newman
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Stephanie E. McCann
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Vivien Measday
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M. Durall
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
31
|
Control of Penicillium glabrum by Indigenous Antagonistic Yeast from Vineyards. Foods 2020; 9:foods9121864. [PMID: 33327475 PMCID: PMC7764915 DOI: 10.3390/foods9121864] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Biocontrol is one of the most promising alternatives to synthetic fungicides for food preservation. Botrytis cinerea, Alternaria alternata, and Aspergillus section Nigri are the most concerning pathogens for grape development. However, frequently, other species, such as Penicillium glabrum in this study, are predominant in spoiled bunches. In this work, 54 native yeasts from vineyards were screened by direct confrontation in potato dextrose agar plates as antagonists against P. glabrum. Isolates of Pichia terricola, Aureobasidium pullulans, and Zygoascus meyerae were selected for their antagonist activity in vitro, plus isolates of Pichia kudriavzevii, Hormonema viticola, and Hanseniaspora uvarum were used as negative controls. However, in vivo, confrontations in wounded grapes showed disagreement with direct confrontation in vitro. P. terricola, P. kudriavzevii, H. viticola, Z. meyerae, and H. uvarum significantly reduced the incidence of P. glabrum on grapes. Nevertheless, P. terricola, H. viticola, and H. uvarum themselves spoiled the wounded grapes. Inhibitions were associated with different mechanisms such as the production of volatile organic compounds (VOCs), lytic enzymes, biofilm formation, and competition for nutrients. The isolates of P. kudriavzevii L18 (a producer of antifungal VOCs which completely inhibited the incidence of P. glabrum) and Z. meyerae L29 (with pectinase, chitinase and β-glucanase activity and biofilm formation which reduced 70% of the incidence of P. glabrum) are proposed as suitable biocontrol agents against P. glabrum.
Collapse
|
32
|
Magistà D, Cozzi G, Gambacorta L, Logrieco AF, Solfrizzo M, Perrone G. Studies on the efficacy of electrolysed oxidising water to control Aspergillus carbonarius and ochratoxin A contamination on grape. Int J Food Microbiol 2020; 338:108996. [PMID: 33279787 DOI: 10.1016/j.ijfoodmicro.2020.108996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) occurrence in grapes is caused by black Aspergilli (Aspergillus carbonarius followed by A. niger) vineyards contamination. It depends on climatic conditions, geographical regions, damage by insects, and grape varieties. Good agricultural practices, pesticides, and fungicides seem adequate to manage the problem during low OTA risk vintages, but the development of new strategies is always encouraged, especially when an extremely favourable condition occurs in the vineyard. Electrolysed oxidising water (EOW) has become an interesting alternative to chemicals in agriculture, mainly during the post-harvest phase. This study tested the fungicidal efficacy of EOW generated by potassium chloride, in vitro, on black Aspergilli conidia, and detached grape berries infected by A. carbonarius. Then, during field trials on Primitivo cv vineyard treated with EOW, A. carbonarius contamination, and OTA levels were compared with Switch® fungicide treatment (0.8 g/l). Black Aspergilli conidia were killed on plate assay after 2 min of treatment by EOW containing >0.4 g/l of active chlorine. EOW (0.6 g/l active chlorine) treatment reduced the rate of A. carbonarius infections in vitro of about 87-92% on detached berries and, more than half in the field trials, although Switch® showed better performance. A significant reduction in the OTA concentration was observed for the EOW and Switch® treatments in vitro (92% and 96%, respectively), while in the field trials, although the average decrease in OTA was recorded in the treated grapes, it was not statistically significant. These results highlighted that EOW could be considered effective, as a substitute for fungicides, to reduce the contamination of A. carbonarius and OTA on grapes.
Collapse
Affiliation(s)
- Donato Magistà
- National Research Council, Institute of Sciences of Food Production, Bari, Italy.
| | - Giuseppe Cozzi
- National Research Council, Institute of Sciences of Food Production, Bari, Italy
| | - Lucia Gambacorta
- National Research Council, Institute of Sciences of Food Production, Bari, Italy
| | - Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production, Bari, Italy
| | - Michele Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Bari, Italy
| | - Giancarlo Perrone
- National Research Council, Institute of Sciences of Food Production, Bari, Italy.
| |
Collapse
|
33
|
Kumar P, Mahato DK, Sharma B, Borah R, Haque S, Mahmud MC, Shah AK, Rawal D, Bora H, Bui S. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon 2020; 187:151-162. [DOI: 10.1016/j.toxicon.2020.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
34
|
Zorraquín I, Sánchez-Hernández E, Ayuda-Durán B, Silva M, González-Paramás AM, Santos-Buelga C, Moreno-Arribas MV, Bartolomé B. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3789-3802. [PMID: 32167171 DOI: 10.1002/jsfa.10378] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Interactions between polyphenols and gut microbiota are indeed a major issue of current interest in food science research. Knowledge in this subject is progressing as the experimental procedures and analysis techniques do. The aim of this article is to critically review the more leading-edge approaches that have been applied so far in the study of the interactions between grape/wine polyphenols and gut microbiota. This is the case of in vitro dynamic gastrointestinal simulation models that try to mitigate the limitations of simple static models (batch culture fermentations). More complex approaches include the experimentation with animals (mice, rats, pigs, lambs and chicks) and nutritional intervention studies in humans. Main advantages and limitations as well as the most relevant findings achieved by each approach in the study of how grape/wine polyphenols can modulate the composition and/or functionality of gut microbiota, are detailed. Also, common findings obtained by the three approaches (in vitro, animal models and human nutritional interventions) such as the fact that the Firmicutes/Bacteroidetes ratio tends to decrease after the feed/intake/consumption of grape/wine polyphenols are highlighted. Additionally, a nematode (Caenorhabditis elegans) model, previously used for investigating the mechanisms of processes such as aging, neurodegeneration, oxidative stress and inflammation, is presented as an emerging approach for the study of polyphenols interacting gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Salamanca, Spain
| | - Mariana Silva
- Institute of Food Science Research (CIAL), Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Chebil S, Rjiba-Bahri W, Oueslati S, Ben Ismail H, Ben-Amar A, Natskoulis P. Ochratoxigenic fungi and Ochratoxin A determination in dried grapes marketed in Tunisia. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01584-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Purpose
With the present work, we aimed to assess the occurrence of ochratoxigenic fungi and Ochratoxin A (OTA) in dried grapes from Tunisia.
Methods
Dried grapes samples (n = 90) were investigated for the presence of ochratoxigenic fungi, which were further characterized at the species level through amplification of the internal transcribed spacer (ITS) region and polymerase chain reaction (PCR) product sequencing. Fungal isolates were tested for their ochratoxigenic potential by high-performance liquid chromatography with fluorescence detection (HPLC-FLD), as well as dried grapes samples after an immunoaffinity column (IAC) clean-up procedure.
Results
Black Aspergilli isolates were the dominant genre among the filamentous fungi found in dried grapes samples and were the only OTA-producing fungi encountered. Aspergillus niger aggregate were the most frequently found isolates reaching 70%, 80%, and 85% in dried grapes samples from regions of Kelibia, Sfax, and Rafraf, respectively, while covered 100% of the relevant mycobiota found in imported samples. Aspergillus carbonarius isolates were found only in Sfax’s and Kelibia’s samples, while uniseriate Aspergilli were found between 7 and 20% in dried grapes from Kelibia, Sfax, and the imported samples. The in vitro OTA production test showed that 88.9% of OTA-producing isolates belonged to A. carbonarius with OTA levels varying from 0.06 to 1.32 μg/g of Czapek Yeast Agar (CYA). The remaining OTA-producing fungi (11.1 %) belonged to A. niger aggregate group having a maximum OTA potential of 2.88 μg/g CYA, and no uniseriate Aspergilli isolate was able to produce OTA. All dried grapes samples were free of OTA presence.
Conclusion
According to the present study’s findings, no OTA contamination was recorded in the investigated samples from Tunisian market. Nevertheless, the presence of strong OTA producers A. carbonarius in samples originated from the two out of three studied Tunisian regions, as well the high incidences of Aspergillus niger aggregate group with an attested potential for OTA production in all samples, necessitates further research on Tunisian dried grapes. Additionally, a continuous analysis of staple food of the Mediterranean diet is imperative to insure the best quality for the consumers and prevent potential health problems.
Collapse
|
37
|
Brandão RM, Ferreira VRF, Batista LR, Alves E, Lira NDA, Bellete BS, Scolforo JRS, Cardoso MDG. Antifungal and antimycotoxigenic effect of the essential oil of
Eremanthus erythropappus
on three different
Aspergillus
species. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Luís Roberto Batista
- Departamento de Ciência dos Alimentos Universidade Federal de Lavras (UFLA) Lavras Brazil
| | - Eduardo Alves
- Departamento de Fitopatologia Universidade Federal de Lavras (UFLA) Lavras Brazil
| | | | | | | | | |
Collapse
|
38
|
Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res Int 2019; 126:108687. [PMID: 31732020 DOI: 10.1016/j.foodres.2019.108687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Aspergillus carbonarius can produce a possibly carcinogenic mycotoxin named ochratoxin A (OTA). The metabolism of this fungus can also impact grape and wine quality as it influences the volatile and phenolic profiles, which are related to aroma and antioxidant activity, respectively. The objective of this study was to evaluate the effect of A. carbonarius on OTA levels and for the first time on volatile profile and antioxidant activity of grapes and their respective wines. Cabernet Sauvignon (CS, red) grapes presented higher susceptibility to A. carbonarius than Moscato Italico (MI, white) grapes and OTA levels in their respective musts were in accordance with this same trend. However, vinification of red grapes resulted in 67% reduction of OTA, while the reduction observed with white wines was 45%. The presence of acids (hexanoic, octanoic, nonanoic and decanoic, fatty odor) was found to be an indicative of the fungus incidence in grapes. These acids were precursors of esters that might impart negative aroma (methyl nonanoate and isoamyl octanoate, fatty odor) or provide desirable fruity characteristics (ethyl hexanoate, ethyl octanoate and methyl octanoate) for wine. In addition, terpenes were detected only in wines produced with grapes (CS and MI) inoculated with A. carbonarius. The presence of A. carbonarius increased the antioxidant activity of CS grapes. For MI grapes and both wines (CS and MI) no differences were verified in the antioxidant activity of the samples affected or not affected by this fungus. Although A. carbonarius occurrence has shown no influence on the antioxidant activity of wines, it produced OTA and has negatively influenced the wine odor profile, due to the production of some volatiles that impart a deleterious effect on wine aroma.
Collapse
|
39
|
|
40
|
Freire L, Furtado MM, Guerreiro TM, da Graça JS, da Silva BS, Oliveira DN, Catharino RR, Sant'Ana AS. The presence of ochratoxin A does not influence Saccharomyces cerevisiae growth kinetics but leads to the formation of modified ochratoxins. Food Chem Toxicol 2019; 133:110756. [PMID: 31408721 DOI: 10.1016/j.fct.2019.110756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023]
Abstract
Yeasts are able to reduce the levels of ochratoxin A in fermentative processes; and, through their enzymatic complex, these micro-organisms are also capable of forming modified mycotoxins. These mycotoxins are often underreported, and may increase health risks after ingestion of contaminated food. In this sense, this study aims to evaluate whether the presence of ochratoxin A influences yeast growth kinetic parameters and to elucidate the formation of modified ochratoxin by Saccharomyces cerevisiae strains during fermentation. Three S. cerevisiae strains (12 M, 01 PP, 41 PP) were exposed to OTA at the concentrations of 10, 20 and 30 μg/L. The Baranyi model was fitted to the growth data (Log CFU/mL), and the identification of modified ochratoxins was performed through High Resolution Mass Spectrometry. The presence of ochratoxin A did not influence the growth of S. cerevisiae strains. Four pathways were proposed for the metabolization of OTA: dechlorination, hydrolysis, hydroxylation, and conjugation. Among the elected targets, the following were identified: ochratoxin α, ochratoxin β, ochratoxin α methyl ester, ochratoxin B methyl ester, ethylamide ochratoxin A, ochratoxin C, hydroxy-ochratoxin A, hydroxy-ochratoxin A methyl ester, and ochratoxin A cellobiose ester. These derivatives formed from yeast metabolism may contribute to the occurrence of underreporting levels of total mycotoxin in fermented products.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marianna M Furtado
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Juliana S da Graça
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Beatriz S da Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Diogo N Oliveira
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
41
|
Morgan SC, McCarthy GC, Watters BS, Tantikachornkiat M, Zigg I, Cliff MA, Durall DM. Effect of sulfite addition and pied de cuve inoculation on the microbial communities and sensory profiles of Chardonnay wines: dominance of indigenous Saccharomyces uvarum at a commercial winery. FEMS Yeast Res 2019; 19:foz049. [PMID: 31344230 PMCID: PMC6666381 DOI: 10.1093/femsyr/foz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
The microbial consortium of wine fermentations is highly dependent upon winemaking decisions made at crush, including the decision to inoculate and the decision to add sulfur dioxide (SO2) to the must. To investigate this, Chardonnay grape juice was subjected to two inoculation treatments (uninoculated and pied de cuve inoculation) as well as two SO2 addition concentrations (0 and 40 mg/L). The bacterial communities, fungal communities and Saccharomyces populations were monitored throughout fermentation using culture-dependent and culture-independent techniques. After fermentation, the wines were evaluated by a panel of experts. When no SO2 was added, the wines underwent alcoholic fermentation and malolactic fermentation simultaneously. Tatumella bacteria were present in significant numbers, but only in the fermentations to which no SO2 was added, and were likely responsible for the malolactic fermentation observed in these treatments. All fermentations were dominated by a genetically diverse indigenous population of Saccharomyces uvarum, the highest diversity of S. uvarum strains to be identified to date; 150 unique strains were identified, with differences in strain composition as a result of SO2 addition. This is the first report of indigenous S. uvarum strains dominating and completing fermentations at a commercial winery in North America.
Collapse
Affiliation(s)
- Sydney C Morgan
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Garrett C McCarthy
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Brittany S Watters
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Mansak Tantikachornkiat
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Ieva Zigg
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Margaret A Cliff
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada, V0H 1Z0
| | - Daniel M Durall
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| |
Collapse
|
42
|
Vargas TDS, Salustriano NDA, Klein B, Romão W, Silva SRCD, Wagner R, Scherer R. Fungicides in red wines produced in South America. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2135-2144. [DOI: 10.1080/19440049.2018.1529439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Thais de Souza Vargas
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Espírito Santo, Brazil
| | | | - Bruna Klein
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Wanderson Romão
- Chemistry Department, Federal Institute of Espírito Santo (IFES), Vila Velha, ES, Brazil
- Chemistry Department, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Espírito Santo, Brazil
| |
Collapse
|
43
|
Freire L, Guerreiro TM, Pia AKR, Lima EO, Oliveira DN, Melo CFOR, Catharino RR, Sant'Ana AS. A quantitative study on growth variability and production of ochratoxin A and its derivatives by A. carbonarius and A. niger in grape-based medium. Sci Rep 2018; 8:14573. [PMID: 30275502 PMCID: PMC6167359 DOI: 10.1038/s41598-018-32907-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
Aspergillus carbonarius and Aspergillus niger are the main responsible fungi for the accumulation of ochratoxin A (OTA) in wine grapes. Some strains are able to convert the parent mycotoxin into other compounds by means of hydrolysis and/or conjugation reactions through their defense mechanisms and enzymatic activity, leading to the formation of a modified mycotoxin. Thus, the variability of growth and metabolite production are inherent to the strain, occurring distinctively even when submitted to similar conditions. In this sense, this contribution aimed at determining the variability in multiplication and production of OTA by strains of A. carbonarius and A. niger isolated from grapes, as well as investigating the formation of modified mycotoxins. Strains were incubated in grape-based medium, and the diameter of the colonies measured daily. The determination of OTA was performed by high-performance liquid chromatography and the identification of modified mycotoxins was carried out using high-resolution mass spectrometry. Variabilities in terms of growth and OTA production were assessed across five different strains. Peak production of OTA was detected on day 15, and a decline on day 21 was observed, indicating that the observed reduction may be associated with the degradation or modification of the OTA over time by the fungus. Ethylamide ochratoxin A, a modified mycotoxin identified in this study, provides evidence that there may be underreporting of total mycotoxin levels in food, increasing uncertainty concerning health risks to the population.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Estela O Lima
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Diogo N Oliveira
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Carlos F O R Melo
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
44
|
Morgan SC, Tantikachornkiat M, Scholl CM, Benson NL, Cliff MA, Durall DM. The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. Int J Food Microbiol 2018; 290:1-14. [PMID: 30278370 DOI: 10.1016/j.ijfoodmicro.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
Abstract
Modern day winemaking often involves the addition of sulfur dioxide (SO2) at crush to act as both an antioxidant and an antimicrobial agent. While the effects of SO2 on microbial communities and particularly on spoilage microorganisms has been well-studied, the advent of culture-independent molecular technologies, such as Illumina sequencing, allows the subject to be re-visited in a new context. High-throughput amplicon sequencing allows for a more thorough evaluation of microbial communities, as thousands of microbial sequences per sample can be identified and even rare microorganisms can be studied. This research investigated whether the addition of different levels of SO2 at crush (0, 20, or 40 mg/L) would affect the composition of fungal and bacterial communities, as well as the sensory attributes of the resulting wines. Samples were taken from uninoculated fermentations of Pinot gris and analyzed via high-throughput amplicon sequencing using the Illumina MiSeq platform. Yeast relative abundance and overall fungal community composition differed among the SO2 additions. Notably, a Hanseniaspora yeast appeared in all treatments and persisted until the end of alcoholic fermentation, although its relative abundance was significantly higher in the fermentations to which low or no SO2 had been added. Two key wine sensory attributes (citrus aroma and pome fruit flavor) differed among the SO2 treatments. This research provides an in-depth look into the fungal and bacterial communities during alcoholic fermentation and gives a better understanding of the microbial community response to SO2 additions during the crush period.
Collapse
Affiliation(s)
- Sydney C Morgan
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| | - Mansak Tantikachornkiat
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Chrystal M Scholl
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Natasha L Benson
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Margaret A Cliff
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia V0H 1Z0, Canada.
| | - Daniel M Durall
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
45
|
Freire L, Guerreiro TM, Caramês ETS, Lopes LS, Orlando EA, Pereira GE, Lima Pallone JA, Catharino RR, Sant'Ana AS. Influence of Maturation Stages in Different Varieties of Wine Grapes ( Vitis vinifera) on the Production of Ochratoxin A and Its Modified Forms by Aspergillus carbonarius and Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8824-8831. [PMID: 30048130 DOI: 10.1021/acs.jafc.8b02251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ochratoxin A is the main contaminant mycotoxin of grapes produced mainly by Aspergillus niger and Aspergillus carbonarius. Besides, it is possible that the formation of modified mycotoxin occurs through the plant defense mechanism or also by fungus actions itself. The objective of this study was to evaluate the influence of grape variety and maturation stage on the formation of OTA and modified mycotoxin. The determination of OTA was performed by high-performance liquid chromatography, and a high-resolution mass spectrometry was used for the detection of modified ochratoxin. A positive correlation was observed between the following grapes physicochemical parameters: pH, total soluble solids, total glycosides in glucose, total anthocyanin, and OTA levels produced by A. niger and A. carbonarius. Therefore, the higher the concentrations of these parameters, the greater the production of mycotoxin in grapes. Among the elected targets, we identified the 14-decarboxy-ochratoxin A in Muscat Italia variety at veraison and 15 days after the beginning of veraison stages; and ethylamide-ochratoxin A as a biomarker in the Syrah variety at the ripeness stage.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences , University of Campinas , Campinas , SP , Brazil
| | - Elem T S Caramês
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Letícia S Lopes
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Eduardo A Orlando
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Giuliano E Pereira
- § Brazilian Agricultural Research Corporation (Semiárido) , Petrolina , PE , Brazil
| | - Juliana A Lima Pallone
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences , University of Campinas , Campinas , SP , Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| |
Collapse
|
46
|
Simultaneous Analysis of 20 Mycotoxins in Grapes and Wines from Hexi Corridor Region (China): Based on a QuEChERS⁻UHPLC⁻MS/MS Method. Molecules 2018; 23:molecules23081926. [PMID: 30072592 PMCID: PMC6222325 DOI: 10.3390/molecules23081926] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of this study is to develop and validate an improved analytical method for the simultaneous quantification of 20 types of mycotoxins in grapes and wines. In this research, the optimization of tandem mass spectrometer (MS/MS) parameter, ultra-high pressure liquid chromatography (UHPLC) separation, and QuEChERS procedure, which includes wine/water ratio, the amount and type of salt, clean-up sorbent, were performed, and the whole separation of mycotoxins was accomplished within 7 min analyzing time. Under optimum conditions, recoveries ranged from 85.6% to 117.8%, while relative standard deviation (RSD) remained between 6.0% and 17.5%. The limit of detection (LOD, 0.06–10 μg/L) and the limit of quantification (LOQ, 0.18–30 μg/L) were lower than those permitted by legislation in food matrices, which demonstrated the high sensitivity and applicability of this efficient method. Finally, 36 grapes and 42 wine samples from the Hexi Corridor region were analyzed. Penicillic acid (PCA), mycophenolic acid (MPA), cyclopiazonic acid (CPA), fumonisin B1 (FB1) and zearalenone (ZEN) were detected in a small number of grape samples with lower concentrations between 0.10 μg/L and 81.26 μg/L. Meanwhile, ochratoxin A (OTA), aflatoxin B2 (AFB2), MPA, CPA, and ZEN were detected in some wine counterparts with concentrations ranged from 0.10 μg/L to 4.62 μg/L. However, the concentrations of the detected mycotoxins were much lower than the maximum legal limits set of other products.
Collapse
|
47
|
Chen W, Li C, Zhang B, Zhou Z, Shen Y, Liao X, Yang J, Wang Y, Li X, Li Y, Shen XL. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front Microbiol 2018; 9:1386. [PMID: 29997599 PMCID: PMC6028724 DOI: 10.3389/fmicb.2018.01386] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a toxic secondary fungal metabolite that widely takes place in various kinds of foodstuffs and feeds. Human beings and animals are inevitably threatened by OTA as a result. Therefore, it is necessary to adopt various measures to detoxify OTA-contaminated foods and feeds. Biological detoxification methods, with better safety, flavor, nutritional quality, organoleptic properties, availability, and cost-effectiveness, are more promising than physical and chemical detoxification methods. The state-of-the-art research advances of OTA biodetoxification by degradation, adsorption, or enzymes are reviewed in the present paper. Researchers have discovered a good deal of microorganisms that could degrade and/or adsorb OTA, including actinobacteria, bacteria, filamentous fungi, and yeast. The degradation of OTA to non-toxic or less toxic OTα via the hydrolysis of the amide bond is the most important OTA biodegradation mechanism. The most important influence factor of OTA adsorption capacity of microorganisms is cell wall components. A large number of microorganisms with good OTA degradation and/or adsorption ability, as well as some OTA degradation enzymes isolated or cloned from microorganisms and animal pancreas, have great application prospects in food and feed industries.
Collapse
Affiliation(s)
- Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Boyang Zhang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zheng Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yingbin Shen
- Department of Food Science and Engineering, School of Science and Engineering, Jinan University, Guangzhou, China
| | - Xin Liao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jieyeqi Yang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yan Wang
- Department of Food Quality and Safety, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, China
| | - Yuzhe Li
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiao L. Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
48
|
Kačániová M, Kántor A, Terentjeva M, Felsöciová S, Ivanišová E, Kluz M, Hanus P, Puchalski C, Kádasi Horáková M, Kačániová M. Microscopic fungi isolated from different Slovak grape varieties. POTRAVINARSTVO 2018. [DOI: 10.5219/893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to isolate and identify microscopic fungi in different grape samples. We collected 13 grapes varienties samples (9 white and 4 red) from local Slovak winemakers in the end of the September 2017. Used 13 grape samples in this study: Alibernet, Irsai Oliver, Dornfelder, Blue Frankish, Feteasca regala, Green Veltliner, Pálava, Mūller Thurgau, Rhinriesling, Cabernet Savignon, Pinot Blanc, Savignon Blanc and Welschriesling. Microscopic fungi in grape samples were detected on Malt extract agar by spread plate method. The number of microscopic fungi ranged from 2.85 log cfu.g-1 in Cabernet Savignon to 4.83 log cfu.g-1 in Feteasca regala. A total of 627 isolates of microscopic fungi were obtained in this study. The most abundant fungi belonged to genera Alternaria and Penicillium (100% frequency). The high frequency was also detected for Aspergillus (76.92%) and Cladosporium (76.92%) but with lesser relative density. Alternaria sp., Aspergillus niger, Aspergillus sp., Botrytis cinerea, Cladosporium sp., Penicillium expansum, Phoma sp., Rhizopus sp. and Trichoderma sp. species were isolated from grape berries.
Collapse
|
49
|
Gonçalves BL, Coppa CFSC, Neeff DVD, Corassin CH, Oliveira CAF. Mycotoxins in fruits and fruit-based products: occurrence and methods for decontamination. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1457056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna Leonel Gonçalves
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - Diane Valganon de Neeff
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Carlos Humberto Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
50
|
Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem Toxicol 2017; 111:189-205. [PMID: 29158197 DOI: 10.1016/j.fct.2017.11.021] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
Modified mycotoxins are metabolites that normally remain undetected during the testing for parent mycotoxin. These modified forms of mycotoxins can be produced by fungi or generated as part of the defense mechanism of the infected plant. In some cases, they are formed during food processing. The various processing steps greatly affect mycotoxin levels present in the final product (free and modified), although the results are still controversial regarding the increase or reduction of these levels, being strongly related to the type of process and the composition of the food in question. Evidence exists that some modified mycotoxins can be converted into the parent mycotoxin during digestion in humans and animals, potentially leading to adverse health effects. Some of these formed compounds can be even more toxic, in case they have higher bioaccessibility and bioavailability than the parent mycotoxin. The modified mycotoxins can occur simultaneously with the free mycotoxin, and, in some cases, the concentration of modified mycotoxins may exceed the level of free mycotoxin in processed foods. Even though toxicological data are scarce, the possibility of modified mycotoxin conversion to its free form may result in a potential risk to human and animal health. This review aims to update information on the formation, detection, occurrence, and toxic effects caused by modified mycotoxin.
Collapse
|