1
|
Liu Z, Ji L, Li Y, Cao X, Shao X, Xia J, Wang Z. Colorimetric aptasensor based on self-screened aptamers and cascaded catalytic reaction for the detection of quarantine plant bacteria. Talanta 2024; 279:126655. [PMID: 39098241 DOI: 10.1016/j.talanta.2024.126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Quarantine plant bacteria (QPB) are significant component of invasive alien species that result in substantial economic losses and serious environmental damage. Herein, a colorimetric aptasensor has been proposed based on the sandwich structure and the cascaded catalytic strategy for on-site detecting Xanthomonas hyacinthi, a type of QPB, in natural environments. The self-screened aptamer obtained through SELEX can bind to specific sites on the surface of viable organism with high affinity and specificity, which guarantees the selectivity of aptasensor. As an important part of the aptasensor, MIL-88-NH2(Fe) not only acts as a multifunctional carrier for both aptamers and glucose oxidase, but also catalyzes enzyme-like reaction because of specific surface area, amino and peroxidase-like activity. The present of Xanthomonas hyacinthi can trigger the formation of a sandwich structure and the occurrence of cascade catalytic reaction, enabling the detection with UV-Vis spectra and naked eyes. The proposed aptasensor presents a low detection limit of 2 cfu/mL and a wide linear range of 10 -107 cfu/mL. Compared to traditional detection methods for QPB, the reasonable design, high selectivity and convenience significantly improve the detection efficiency and contribute to environmental protection.
Collapse
Affiliation(s)
- Zhichao Liu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China; Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Lei Ji
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Yan Li
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China.
| | - Xiuling Shao
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China.
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
2
|
Taha BA, Ahmed NM, Talreja RK, Haider AJ, Al Mashhadany Y, Al-Jubouri Q, Huddin AB, Mokhtar MHH, Rustagi S, Kaushik A, Chaudhary V, Arsad N. Synergizing Nanomaterials and Artificial Intelligence in Advanced Optical Biosensors for Precision Antimicrobial Resistance Diagnosis. ACS Synth Biol 2024; 13:1600-1620. [PMID: 38842483 DOI: 10.1021/acssynbio.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques. Nanoenabled artificial intelligence (AI)-supported smart optical biosensors present a potential solution by facilitating rapid point-of-care AMR detection with real-time, sensitive, and portable capabilities. This Review comprehensively explores various types of optical nanobiosensors, such as surface plasmon resonance sensors, whispering-gallery mode sensors, optical coherence tomography, interference reflection imaging sensors, surface-enhanced Raman spectroscopy, fluorescence spectroscopy, microring resonance sensors, and optical tweezer biosensors, for AMR diagnostics. By harnessing the unique advantages of these nanoenabled smart biosensors, a revolutionary paradigm shift in AMR diagnostics can be achieved, characterized by rapid results, high sensitivity, portability, and integration with Internet-of-Things (IoT) technologies. Moreover, nanoenabled optical biosensors enable personalized monitoring and on-site detection, significantly reducing turnaround time and eliminating the human resources needed for sample preservation and transportation. Their potential for holistic environmental surveillance further enhances monitoring capabilities in diverse settings, leading to improved modern-age healthcare practices and more effective management of antimicrobial treatments. Embracing these advanced diagnostic tools promises to bolster global healthcare capacity to combat AMR and safeguard One Health.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Naser M Ahmed
- Department of Laser and Optoelectronics Engineering, Dijlah University College, 00964 Baghdad, Iraq
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, 00964 Baghdad, Iraq
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq
| | - Qussay Al-Jubouri
- Department of Communication Engineering, University of Technology, 00964 Baghdad, Iraq
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand 248007, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| |
Collapse
|
3
|
Karthikeyan M, Rathinasabapathi P. A Label-Free Colorimetric AuNP-Aptasensor for the Rapid Detection of Vibrio cholerae O139. Cell Mol Bioeng 2024; 17:229-241. [PMID: 39050512 PMCID: PMC11263534 DOI: 10.1007/s12195-024-00804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Waterborne pathogens pose a significant threat to public health, emphasizing the continuous necessity for advancing robust detection techniques, particularly in preventing outbreaks associated with these pathogens. This study focuses on cholera, an infectious disease caused by Vibrio cholerae, serogroups O1 and O139, often transmitted through contaminated water and food, raising significant public health concerns in areas with poor sanitation and limited access to clean water. Methods We developed a colorimetric biosensor using aptamer-functionalized gold nanoparticles to identify Vibrio cholerae O139 and address this issue. The detection mechanism relies on the color change of gold nanoparticles (AuNPs) from red to blue-purple induced by NaCl after the pathogen incubation and aptamer-target binding. Initial steps involved synthesizing and characterizing AuNPs, then exploring the impact of aptamer and NaCl concentrations on AuNP agglomeration. Optimization procedures for aptamer concentration and salt addition identified the optimal conditions for detection as 120 pM aptamers and 1 M NaCl. Results The aptasensor demonstrated a robust linear relationship, detecting V. cholerae concentrations from 103 to 108 CFU/mL, with a limit of detection (LOD) of 587 CFU/mL. Specificity tests and accurate sample analyses confirmed the efficiency of the AuNPs aptasensor, showcasing its reliability and speed compared to traditional culture examination methods. Moreover, we extended the aptasensor to a paper-based sensing platform with similar detection principles. Conclusion The change in color upon target binding was captured with a smartphone and analyzed using image processing software. The paper-based device detected the target in less than 2 min, demonstrating its convenience for on-field applications.
Collapse
Affiliation(s)
- Masilamani Karthikeyan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203 India
| | - Pasupathi Rathinasabapathi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203 India
| |
Collapse
|
4
|
Halmagyi TG, Alsharif NB, Berkal MA, Hempenius MA, Szilagyi I, Vancso GJ, Nardin C. Aptamer Clicked Poly(ferrocenylsilanes) at Au Nanoparticles as Platforms with Multiple Function [†]. Chemistry 2024; 30:e202303979. [PMID: 38206093 DOI: 10.1002/chem.202303979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Aptamers are widely used in biosensing due to their specific sensitivity toward many targets. Thus, gold nanoparticle (AuNP) aptasensors are subject to intense research due to the complementary properties of aptamers as sensing elements and AuNPs as transducers. We present herein a novel method for the functional coupling of thrombin-specific aptamers to AuNPs via an anionic, redox-active poly(ferrocenylsilane) (PFS) polyelectroyte. The polymer acts as a co-reductant and stabilizer for the AuNPs, provides grafting sites for the aptamer, and can be used as a redox sensing element, making the aptamer-PFS-AuNP composite (aptamer-AuNP) a promising model system for future multifunctional sensors. The aptamer-AuNPs exhibit excellent colloidal stability in high ionic strength environments owing to the combined electrosteric stabilizing effects of the aptamer and the PFS. The synthesis of each assembly element is described, and the colloidal stability and redox responsiveness are studied. As an example to illustrate applications, we present results for thrombin sensitivity and specificity using the specific aptamer.
Collapse
Affiliation(s)
- Tibor G Halmagyi
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| | - Nizar B Alsharif
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged H-, 6720, Szeged, Hungary
| | - Mohamed A Berkal
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| | - Mark A Hempenius
- Sustainable Polymer Chemistry, University of Twente NL-, 7522NB, Enschede, the Netherlands
| | - Istvan Szilagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged H-, 6720, Szeged, Hungary
| | - G Julius Vancso
- Sustainable Polymer Chemistry, University of Twente NL-, 7522NB, Enschede, the Netherlands
| | - Corinne Nardin
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| |
Collapse
|
5
|
Duan Y, Liu F, Zhang C, Wang Y, Chen G. Screen and Optimization of an Aptamer for Alexandrium tamarense-A Common Toxin-Producing Harmful Alga. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:935-950. [PMID: 37743437 DOI: 10.1007/s10126-023-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Among all the paralytic shellfish toxins (PSTs)-producing algae, Alexandrium tamarense is one of the most widespread harmful species posing a serious threat to marine resources and human health. Therefore, it is extremely important to establish a rapid and accurate monitoring method for A. tamarense that can provide early warnings of harmful algal blooms (HABs) caused by this alga and limit the contamination due to PSTs. In this study, an ssDNA library was first obtained by whole cell systematic evolution of ligands by exponential enrichment after 18 consecutive rounds of iterative screening. After sequencing in combination with subsequent multiple alignment of sequences and secondary structure simulation, the library could be classified into 2 families, namely, Family1 and Family2, according to sequence similarity. Flow cytometry was used to test the affinity and cross-reactivity of Ata19, Ata6, Ata25 and Ata29 belonging to Family2. Ata19 was selected to be modified by truncation, through which a new resultant aptamer named as Ata19-1-1 was obtained. Ata19-1-1 with a KD of 75.16 ± 11.10 nM displayed a much higher affinity than Ata19. The specificity test showed that Ata19-1-1 has the same discrimination ability as Ata19 and can at least distinguish the target microalga from other microalgae. The observation under a fluorescence microscopy showed that the A. tamarense cells labeled with Ata19-1-1 are exhibiting bright green fluorescence and could be easily identified, factually confirming the binding of the aptamer with target cells. In summary, the aptamer Ata19-1-1 produced in this study may serve as an ideal molecular recognition element for A. tamarense, which has the potential to be developed into a novel detection method for this harmful alga in the future.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
6
|
Wang Y, Wang X, Yan Y, Wang J, Lu Y, Abd El-Aty AM, Wang X. A visual colorimetric assay based on phage T156 and gold nanoparticles for the sensitive detection of Salmonella in lettuce. Anal Chim Acta 2023; 1272:341501. [PMID: 37355333 DOI: 10.1016/j.aca.2023.341501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
In this study, a new technique was developed for visual and precise identification of Salmonella using phage T156-mediated aggregation of gold nanoparticles. The phage binds to gold nanoparticles in a dispersed and stable state under high NaCl concentrations. When Salmonella is introduced, the phage specifically recognizes and adsorbs the targeted bacteria, causing the AuNPs to undergo a discoloration reaction resulting in aggregation, which enables Salmonella visualization. The method has a detection range of 3.8 × 101-3.8 × 109 CFU/mL and a limit of detection of 38 CFU/mL and can produce results in approximately 80 min. The technique was also tested on field samples, including spiked lettuce, and was found to be accurate with a recovery rate of 81.0-119.2% and relative standard deviations ranging from 3.3% to 14.7%. Notably, this technique utilizes phages as recognition elements in colorimetric methods, offering simplicity, speed, and the ability to effectively distinguish between live and dead Salmonella. It demonstrates remarkable sensitivity, specificity, and accuracy. Furthermore, it presents a novel avenue for the rapid detection of other pathogenic bacteria.
Collapse
Affiliation(s)
- Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoran Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey.
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Li Y, Ma X, Zhu W, Huang Q, Liu Y, Pan J, Ying Y, Xu X, Fu Y. Enzymatic Catalysis in Size and Volume Dual-Confined Space of Integrated Nanochannel-Electrodes Chip for Enhanced Impedance Detection of Salmonella. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300900. [PMID: 37096928 DOI: 10.1002/smll.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Nanochannel-based confinement effect is a fascinating signal transduction strategy for high-performance sensing, but only size confinement is focused on while other confinement effects are unexplored. Here, a highly integrated nanochannel-electrodes chip (INEC) is created and a size/volume-dual-confinement enzyme catalysis model for rapid and sensitive bacteria detection is developed. The INEC, by directly sandwiching a nanochannel chip (60 µm in thickness) in nanoporous gold layers, creates a micro-droplet-based confinement electrochemical cell (CEC). The size confinement of nanochannel promotes the urease catalysis efficiency to generate more ions, while the volume confinement of CEC significantly enriches ions by restricting diffusion. As a result, the INEC-based dual-confinement effects benefit a synergetic enhancement of the catalytic signal. A 11-times ion-strength-based impedance response is obtained within just 1 min when compared to the relevant open system. Combining this novel nanoconfinement effects with nanofiltration of INEC, a separation/signal amplification-integrated sensing strategy is further developed for Salmonella typhimurium detection. The biosensor realizes facile, rapid (<20 min), and specific signal readout with a detection limit of 9 CFU mL-1 in culturing solution, superior to most reports. This work may create a new paradigm for studying nanoconfined processes and contribute a new signal transduction technique for trace analysis application.
Collapse
Affiliation(s)
- Yue Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyue Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyue Zhu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Huang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yameng Liu
- Department of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
8
|
Celik C, Kalin G, Cetinkaya Z, Ildiz N, Ocsoy I. Recent Advances in Colorimetric Tests for the Detection of Infectious Diseases and Antimicrobial Resistance. Diagnostics (Basel) 2023; 13:2427. [PMID: 37510171 PMCID: PMC10377832 DOI: 10.3390/diagnostics13142427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Diagnosis of infection-causing microorganisms with sensitive, rapid, selective and economical diagnostic tests is critical to start the right treatment. With these tests, the spread of infections can be prevented. In addition to that, the detection of antimicrobial resistance also makes a significant contribution to public health. In recent years, different types of diagnostic tests have been developed as alternatives to traditional diagnostic tests used in clinics. In particular, colorimetric tests, which minimize the need for an instrument, have advantages owing to their cost effectiveness, rapid response and naked-eye detection and practical use. In this review, we especially focused on pH indicators and nanomaterial-based colorimetric tests in detection of infection-causing microorganisms and antimicrobial resistance.
Collapse
Affiliation(s)
- Cagla Celik
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum 19000, Turkey
| | - Gamze Kalin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | | | - Nilay Ildiz
- Medical Imaging Department, Vocational School of Health Services, Bandırma Onyedi Eylul University, Bandirma 10200, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
9
|
Zhao F, Yan H, Zheng Y, Zu Y, Yang S, Hu H, Shi S, Liang H, Niu X. Joint concanavalin A-aptamer enabled dual recognition for anti-interference visual detection of Salmonella typhimurium in complex food matrices. Food Chem 2023; 426:136581. [PMID: 37311299 DOI: 10.1016/j.foodchem.2023.136581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Given that food poisoning and infectious diseases caused by Salmonella typhimurium (S. typhimurium) draw intensive public health concerns, developing rapid, accurate, and cost-effective approaches to detect the pathogen is of crucial importance. Herein, we proposed a concanavalin A (Con A)-aptamer joint strategy to realize dual recognition for the strongly specific, visual, and highly sensitive determination of S. typhimurium. Compared with currently used single identification strategies, Con A and aptamer could recognize different sites of S. typhimurium to enhance the utilization rate of these sites for better sensing. The developed assay offered specific detection of S. typhimurium against other bacteria in a remarkably wide concentration range of 7.0 × 101 ∼ 7.0 × 109 CFU/mL, along with a detection limit as low as 23 CFU/mL. Real sample analyses of milk and pork demonstrated the excellent reliability and practicability of our assay, providing great potential for food safety analysis.
Collapse
Affiliation(s)
- Fengxia Zhao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hangli Yan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Zheng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yu Zu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengyuan Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hongmei Hu
- Hengyang Center for Disease Control and Prevention, Hengyang 421001, China
| | - Shengyuan Shi
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiangheng Niu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
10
|
Chen W, Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. A review of advances in aptamer-based cell detection technology. Mol Biol Rep 2023; 50:5425-5438. [PMID: 37101007 DOI: 10.1007/s11033-023-08410-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Since cells are the basic structural and functional units of organisms, the detection or quantitation of cells is one of the most common basic problems in life science research. The established cell detection techniques mainly include fluorescent dye labeling, colorimetric assay, and lateral flow assay, all of which employ antibodies as cell recognition elements. However, the widespread application of the established methods generally dependent on antibodies is limited, because the preparation of antibodies is complicated and time-consuming, and unrecoverable denaturation is prone to occur with antibodies. By contrast, aptamers that are generally selected through the systematic evolution of ligands by exponential enrichment can avoid the disadvantages of antibodies due to their controllable synthesis, thermostability, and long shelf life, etc. Accordingly, aptamers may serve as novel molecular recognition elements like antibodies in combination with various techniques for cell detection. This paper reviews the developed aptamer-based cell detection methods, mainly including aptamer-fluorescent labeling, aptamer-isothermal amplification assay, electrochemical aptamer sensor, aptamer-based lateral flow analysis, and aptamer-colorimetric assay. The principles, advantages, progress of application in cell detection and future development trend of these methods were specially discussed. Overall, different assays are suitable for different detection purposes, and the development of more accurate, economical, efficient, and rapid aptamer-based cell detection methods is always on the road in the future. This review is expected to provide a reference for achieving efficient and accurate detection of cells as well as improving the usefulness of aptamers in the field of analytical applications.
Collapse
Affiliation(s)
- Wenrong Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China.
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China.
| |
Collapse
|
11
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
12
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
13
|
Liu M, Geng L, Zhang F, Dou S, Li F, Liu Z, Guo Y, Sun X. Isolation of Bacteria Aptamers with Non-SELEX for the Development of a Highly Sensitive Colorimetric Assay Based on Dual Signal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15990-15998. [PMID: 36508287 DOI: 10.1021/acs.jafc.2c06167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, an aptamer against Escherichia coli is isolated via non-SELEX, which executes efficient selection by employing repetitive cycles of centrifugation-based partitioning, and the binding site of the aptamer on E. coli cell surfaces is inferred to be a membrane protein. Moreover, truncated sequence 2-17-2 with a higher affinity (Kd = 101.76 nM) is employed for highly sensitive colorimetric detection of bacteria based on the dual signal amplification strategy. When targets exist, the release of DNA 1 from the polymer activates a hybridization chain reaction (HCR) between DNA 1 and DNA 2, thereby inducing the aggregation of probe 1. Subsequently, DNA 3 dissociated from probe 1 as a linker DNA further assembles probe 2/3. In this system, two types of DNA@gold nanoparticles (AuNPs) coexist and successively aggregate AuNPs based on divergent triggering mechanisms. Under optimal conditions, the dual signal amplification strategy presents excellent sensitivity (10 CFU mL-1) and specificity, as well as the realization of real sample analysis.
Collapse
Affiliation(s)
- Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Lingjun Geng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Fengjuan Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Falan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Zhanli Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| |
Collapse
|
14
|
Biorecognition elements appended gold nanoparticle biosensors for the detection of food-borne pathogens - A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin. Anal Chim Acta 2022; 1230:340377. [DOI: 10.1016/j.aca.2022.340377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
16
|
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. MICROMACHINES 2022; 13:mi13071083. [PMID: 35888900 PMCID: PMC9321031 DOI: 10.3390/mi13071083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvanthapuram, Kerala 695014, India;
| | - Bahaa A. Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, UT 84112, USA
- Correspondence: (S.D.M.); (P.G.)
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Correspondence: (S.D.M.); (P.G.)
| |
Collapse
|
17
|
Daramola OB, Omole RK, Akinwale IV, Otuyelu FO, Akinsanola BA, Fadare TO, George RC, Torimiro N. Bio-Receptors Functionalized Nanoparticles: A Resourceful Sensing and Colorimetric Detection Tool for Pathogenic Bacteria and Microbial Biomolecules. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.885803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pathogenic bacteria and several biomolecules produced by cells and living organisms are common biological components posing a harmful threat to global health. Several studies have devised methods for the detection of varying pathogenic bacteria and biomolecules in different settings such as food, water, soil, among others. Some of the detection studies highlighting target pathogenic bacteria and biomolecules, mechanisms of detection, colorimetric outputs, and detection limits have been summarized in this review. In the last 2 decades, studies have harnessed various nanotechnology-based methods for the detection of pathogenic bacteria and biomolecules with much attention on functionalization techniques. This review considers the detection mechanisms, colorimetric prowess of bio-receptors and compares the reported detection efficiency for some bio-receptor functionalized nanoparticles. Some studies reported visual, rapid, and high-intensity colorimetric detection of pathogenic bacteria and biomolecules at a very low concentration of the analyte. Other studies reported slight colorimetric detection only with a large concentration of an analyte. The effectiveness of bio-receptor functionalized nanoparticles as detection component varies depending on their selectivity, specificity, and the binding interaction exhibited by nanoparticles, bio-receptor, and analytes to form a bio-sensing complex. It is however important to note that the colorimetric properties of some bio-receptor functionalized nanoparticles have shown strong and brilliant potential for real-time and visual-aided diagnostic results, not only to assess food and water quality but also for environmental monitoring of pathogenic bacteria and a wide array of biomolecules.
Collapse
|
18
|
A Novel Fluorescence Aptasensor Based on Magnetic Beads/Gold Nanoparticles/DNA-Stabilized Silver Nanoclusters for Detection of Salmonella Typhimurium. Foods 2022; 11:foods11040595. [PMID: 35206071 PMCID: PMC8871381 DOI: 10.3390/foods11040595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 01/15/2023] Open
Abstract
Salmonella Typhimurium (S. Typhimurium) is a globally distributed foodborne pathogen, which can lead to outbreaks of foodborne infectious diseases. It is essential to guarantee food safety by timely and correct detection of S. Typhimurium. In this investigation, an original fluorescence aptasensor was constructed to detect S. Typhimurium rapidly and sensitively. Through the coupling of magnetic beads, aptamer, and gold nanoparticles (AuNPs), a fluorescence quenching system with a "sandwich structure" was established. The aptamer acted as a link, and its specific binding to S. Typhimurium could release AuNPs from the system. Meanwhile, fluorescent DNA-stabilized silver nanoclusters (DNA-AgNCs) were synthesized. The fluorescence intensity changes caused by the fluorescence resonance energy transfer between DNA-AgNCs and AuNPs were utilized to detect S. Typhimurium. The purposed aptasensor exhibited high selectivity and sensitivity with a linear response to S. Typhimurium, ranging from 3.7 × 102 to 3.7 × 105 cfu/mL. The limit of detection (LOD) was estimated to be 98 cfu/mL within 2 h 10 min. In addition, this method showed excellent application for detection of S. Typhimurium in artificially contaminated milk, with LOD reaching 3.4 × 102 cfu/mL. Therefore, the developed fluorescence aptasensor has great potential to identify S. Typhimurium in foodstuffs.
Collapse
|
19
|
Azzam AM, Shenashen MA, Selim MS, Mostafa B, Tawfik A, El-Safty SA. Vancomycin-Loaded Furriness Amino Magnetic Nanospheres for Rapid Detection of Gram-Positive Water Bacterial Contamination. NANOMATERIALS 2022; 12:nano12030510. [PMID: 35159855 PMCID: PMC8839226 DOI: 10.3390/nano12030510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022]
Abstract
Bacterial pathogens pose high threat to public health worldwide. Different types of nanomaterials have been synthesized for the rapid detection and elimination of pathogens from environmental samples. However, the selectivity of these materials remains challenging, because target bacterial pathogens commonly exist in complex samples at ultralow concentrations. In this study, we fabricated novel furry amino magnetic poly-L-ornithine (PLO)/amine-poly(ethylene glycol) (PEG)-COOH/vancomycin (VCM) (AM-PPV) nanospheres with high-loading VCM for vehicle tracking and the highly efficient capture of pathogens. The magnetic core was coated with organosilica and functionalized with cilia. The core consisted of PEG/PLO loaded with VCM conjugated to Gram-positive bacterial cell membranes, forming hydrogen bonds with terminal peptides. The characterization of AM-PPV nanospheres revealed an average particle size of 56 nm. The field-emission scanning electron microscopy (FE-SEM) micrographs showed well-controlled spherical AM-PPV nanospheres with an average size of 56 nm. The nanospheres were relatively rough and contained an additional 12.4 nm hydrodynamic layer of PLO/PEG/VCM, which provided additional stability in the suspension. The furry AM-PPV nanospheres exhibited a significant capture efficiency (>90%) and a high selectivity for detecting Bacillus cereus (employed as a model for Gram-positive bacteria) within 15 min, even in the presence of other biocompatible pathogens. Moreover, AM-PPV nanospheres rapidly and accurately detected B. cereus at levels less than 10 CFU/mL. The furry nano-design can potentially satisfy the increasing demand for the rapid and sensitive detection of pathogens in clinical and environmental samples.
Collapse
Affiliation(s)
- Ahmed M. Azzam
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza 12411, Egypt;
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
- Correspondence: (M.A.S.); (S.A.E.-S.)
| | - Mohamed S. Selim
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Bayaumy Mostafa
- Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza 12411, Egypt;
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt;
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Correspondence: (M.A.S.); (S.A.E.-S.)
| |
Collapse
|
20
|
Overview of Rapid Detection Methods for Salmonella in Foods: Progress and Challenges. Foods 2021; 10:foods10102402. [PMID: 34681451 PMCID: PMC8535149 DOI: 10.3390/foods10102402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Salmonella contamination in food production and processing is a serious threat to consumer health. More and more rapid detection methods have been proposed to compensate for the inefficiency of traditional bacterial cultures to suppress the high prevalence of Salmonella more efficiently. The contamination of Salmonella in foods can be identified by recognition elements and screened using rapid detection methods with different measurable signals (optical, electrical, etc.). Therefore, the different signal transduction mechanisms and Salmonella recognition elements are the key of the sensitivity, accuracy and specificity for the rapid detection methods. In this review, the bioreceptors for Salmonella were firstly summarized and described, then the current promising Salmonella rapid detection methods in foodstuffs with different signal transduction were objectively summarized and evaluated. Moreover, the challenges faced by these methods in practical monitoring and the development prospect were also emphasized to shed light on a new perspective for the Salmonella rapid detection methods applications.
Collapse
|
21
|
Marin M, Nikolic MV, Vidic J. Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr Rev Food Sci Food Saf 2021; 20:5880-5900. [PMID: 34596343 DOI: 10.1111/1541-4337.12839] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Biosensors need to meet the rising food industry demand for sensitive, selective, safe, and fast food safety quality control. Disposable colorimetric sensors based on gold nanoparticles (AuNPs) and localized surface plasmon resonance are low-cost and easy-to-perform devices intended for rapid point-of-need measurements. Recent studies demonstrate various facile and versatile AuNPs-based analytical platforms for the detection of bacteria and their toxins in milk, meat, and other foods. In this review, we introduce the general characteristics and mechanisms of AuNPs calorimetric biosensors, and highlight optimizations needed to strengthen and improve the quality of devices for their application in food matrices.
Collapse
Affiliation(s)
- Marco Marin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| |
Collapse
|
22
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
23
|
Yang SZ, Liu QA, Liu YL, Weng GJ, Zhu J, Li JJ. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim Acta 2021; 188:258. [PMID: 34268648 DOI: 10.1007/s00604-021-04885-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Pathogenic bacteria have become a huge threat to social health and economy for their frighteningly infectious and lethal capacity. It is quite important to make a diagnosis in advance to prevent infection or allow a rapid treatment after infection. Noble metal nanoparticles, due to their unique physicochemical properties, especially optical properties, have drawn a great attention during the past decades and have been widely applied into all kinds of fields related to human health. By utilizing these noble metal nanoparticles, optical diagnosis platforms towards pathogenic bacteria have emerged continually, providing highly sensitive, selective, and particularly facile detection tools for clinic or point-of-care diagnosis. This review summarizes the recent development in this field. It begins with a brief introduction of pathogenic bacteria and noble metal nanoparticles. And then, optical detection methods are systematically discussed in three distinct aspects. In addition to these proof-of-concept methods, corresponding algorithms and point-of-care detection devices are also described. Finally, the review ends up with subjective views on present limitations and some appropriate advice for future research directions.
Collapse
Affiliation(s)
- Shou-Zhi Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qi-Ao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yan-Ling Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.,Research Institute of Xi'an Jiaotong University, Floor 5, Block A, Jiangning Mansion, No. 328, Wenming Road, Xiaoshan District, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China. .,Research Institute of Xi'an Jiaotong University, Floor 5, Block A, Jiangning Mansion, No. 328, Wenming Road, Xiaoshan District, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
24
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
25
|
Improving the detection limit of Salmonella colorimetry using long ssDNA of asymmetric-PCR and non-functionalized AuNPs. Anal Biochem 2021; 626:114229. [PMID: 33939971 DOI: 10.1016/j.ab.2021.114229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
A colorimetric sensor based on gold nanoparticles (AuNPs) and single-stranded DNA (ssDNA) is a simple and rapid method for detecting foodborne pathogens. However, the colorimetric method employed in previous studies involved short ssDNA (<100 nucleotides), including the aptamer and PCR products, resulting in the high detection limit of this technique. In this study, a colorimetric sensor was developed based on long ssDNA of asymmetric PCR (aPCR) and non-functionalized AuNPs for detecting Salmonella Typhimurium (S. Typhimurium). In the presence of S. Typhimurium, the long ssDNA (547 nt) amplified by aPCR-protected AuNPs from NaCl-induced aggregation, while the solution retained a red color. After optimizing parameters, the limit of detection (LOD) of the colorimetric sensor was 2.56 CFU/mL with high specificity. Recovery studies showed its feasibility for detecting S. Typhimurium (102 CFU/mL, 104 CFU/mL, and 106 CFU/mL) in spiked lettuce samples. This colorimetric sensor provides new opportunities for the highly sensitive detection of bacteria in real food samples.
Collapse
|
26
|
Colorimetric method for Salmonella spp. detection based on peroxidase-like activity of Cu(II)-rGO nanoparticles and PCR. Anal Biochem 2020; 615:114068. [PMID: 33340541 DOI: 10.1016/j.ab.2020.114068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Development of a rapid and sensitive method for Salmonella spp. detection is of great importance for ensuring food product safety due to its low infective dose. In this study, a colorimetric method based on the peroxidase-like activity of Cu(II)-modified reduced graphene oxide nanoparticles (Cu2+-rGO NPs) and PCR was successfully developed to detect Salmonella spp. in milk. Under optimal conditions, the developed colorimetric method exhibited high sensitivity and strong specificity for Salmonella spp. detection. The limit of detection was 0.51 CFU/mL with a linear range from 1.93 × 101 to 1.93 × 105 CFU/mL. A specificity study demonstrated that this method can specifically distinguish Salmonella typhimurium and Salmonella enteritidis from other foodborne pathogens. The application of the proposed method for milk sample detection was also validated, and the recovery rates of S. typhimurium in spiked milk sample ranged from 102.84% to 112.25%. This colorimetric sensor exhibits enormous potential for highly sensitive detection of bacteria in milk sample.
Collapse
|
27
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
28
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
29
|
Yi J, Xiao W, Li G, Wu P, He Y, Chen C, He Y, Ding P, Kai T. The research of aptamer biosensor technologies for detection of microorganism. Appl Microbiol Biotechnol 2020; 104:9877-9890. [PMID: 33047168 DOI: 10.1007/s00253-020-10940-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The activities and transmissions of microorganisms are closely related to human, and all kinds of diseases caused by pathogenic microorganisms have attracted attention in the world and brought many challenges to human health and public health. The traditional microbial detection technologies have characteristics of longer detection cycle and complicated processes, therefore, which can no longer meet the detection requirements in the field of public health. At present, it is the focus to develop and design a novel, rapid, and simple microbial detection method in the field of public health. Herein, this article summarized the development of aptamer biosensor technologies for detection of microorganism in the aspect of bacteria, viruses, and toxins in detail, including optical aptamer sensors such as fluorometry and colorimetry, electrochemical aptamer sensors, and other technologies combined with aptamer. KEY POINTS: • Aptamer biosensor is a good platform for microbial detection. • Aptamer biosensors include optical sensors and electrochemical sensors. • Aptamer sensors have been widely used in the detection of bacteria, viruses, and other microorganisms.
Collapse
Affiliation(s)
- Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.,School of Public Health, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Wen Xiao
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, 410000, Hunan, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541014, Guangxi, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yayuan He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Cuimei Chen
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
30
|
Wonsawat W, Limvongjaroen S, Supromma S, Panphut W, Ruecha N, Ratnarathorn N, Dungchai W. A paper-based conductive immunosensor for the determination of Salmonella Typhimurium. Analyst 2020; 145:4637-4645. [PMID: 32458837 DOI: 10.1039/d0an00515k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report for the first time a highly sensitive and rapid quantitative method for the detection of Salmonella Typhimurium (S. Typhimurium) using a conductive immunosensor on a paper-based device (PAD). S. Typhimurium monoclonal antibodies (MA) were first immobilized on a paper-based device and then captured by S. Typhimurium. After an immunoreaction on the device, the polyclonal antibody-colloidal gold conjugate (PA-AuNPs) was dropped to bind with S. Typhimurium. After a complete sandwich reaction, a dark red color appeared on the paper-based device, which can be observed by the naked eye for a rapid screening test. The electrical conductivity of PA-AuNPs between the screen-printed electrodes on the paper-based device was also measured for an accurate quantitative analysis. The electrical conductivity correlated well with the concentration of S. Typhimurium, which was controlled by the amount of S. Typhimurium attached to the polyclonal antibody-colloidal gold conjugate. The device showed a linear correlation for the concentration of the S. Typhimurium in the range of 10-108 CFU mL-1 in a logarithmic plot, with an R2 value of 0.9882 and a limit of detection (LOD) as low as 10 CFU mL-1. This simple, highly sensitive, and rapid method for the S. Typhimurium detection was successfully performed within 30 min, and it can be developed into small portable measuring devices in order to facilitate preliminary screening tests.
Collapse
Affiliation(s)
- Wanida Wonsawat
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University 1 U-thong, Nok Street, Wachira, Dusit, Bangkok 10300, Thailand
| | | | | | | | | | | | | |
Collapse
|
31
|
Du H, Li Z, Wang Y, Yang Q, Wu W. Nanomaterial-based Optical Biosensors for the Detection of Foodborne Bacteria. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1740733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Han Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
32
|
McConnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115785] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2020; 19:2449-2475. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2019; 150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Detection and identification of special cells via aptamer-based nano-conjugates sensors have been revolutionized over the past few years. These sensing platforms rely on selecting aptamers using systematic evolution of ligands by exponential enrichment (SELEX) in vitro, which allows for sensitive detection of cells. Integration of the aptamer-based sensors (aptasensors) with nanomaterials offers enhanced specificity and sensitivity, which in turn, offers great promise for numerous applications, spanning from bioanalysis to biomedical applications. Accordingly, the demand for using aptamer-conjugated nanomaterials for various applications has progressively increased over the past years. In light of this, this Review seeks to highlight the recent advances in the development of aptamer-conjugated nanomaterials and their utilization for the detection of various pathogens involved in infectious diseases and food contamination.
Collapse
|
35
|
Dehghani Z, Hosseini M, Mohammadnejad J, Ganjali MR. New Colorimetric DNA Sensor for Detection of
Campylobacter jejuni
in Milk Sample Based on Peroxidase‐Like Activity of Gold/Platinium Nanocluster. ChemistrySelect 2019. [DOI: 10.1002/slct.201901815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Dehghani
- Department of Life Science EngineeringFaculty of New Sciences & TechnologiesUniversity of Tehran Tehran Iran
| | - Morteza Hosseini
- Department of Life Science EngineeringFaculty of New Sciences & TechnologiesUniversity of Tehran Tehran Iran
- Department of Pharmaceutical Biomaterials and Medicinal Biomaterials Research CenterFaculty of PharmacyTehran University of Medical Sciences Tehran Iran E-Mail address
| | - Javad Mohammadnejad
- Department of Life Science EngineeringFaculty of New Sciences & TechnologiesUniversity of Tehran Tehran Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in ElectrochemistrySchool of ChemistryCollege of ScienceUniversity of Tehran Tehran Iran
- Biosensor Research CenterEndocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Yi J, Wu P, Li G, Xiao W, Li L, He Y, He Y, Ding P, Chen C. A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Mikrochim Acta 2019; 186:711. [PMID: 31650251 DOI: 10.1007/s00604-019-3827-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/14/2019] [Indexed: 11/27/2022]
Abstract
An aptamer-based assay is described for the determination of Salmonella typhimurium (S. typh). Carboxymethyl chitosan was loaded with amino-modified aptamer against S. typh, and then adsorbed on gold nanoparticles by electrostatic interaction to form a composite that acts as the molecular recognition element. In the presence of S. typh, it will be bound by the aptamer, and this changes the structure of the recognition element. On addition of salt solution, the gold nanoparticles agglomerate so that the color of the solution changes from red to blue. S. typh can be detected via measurement of the absorbance at 550 nm. Absorbance increases linearly with the logarithm of the S. typh concentration in the range from 100 to 109 cfu·mL-1. The limit of detection is 16 cfu·mL-1. The specificity and practicability of the assay were evaluated. The recoveries of S. typh from spiked milk samples are between 92.4 and 97.2%. The analytical results are basically consistent with those of a plate counting method. Graphical abstract Schematic representation of the colorimetric assay for Salmonella typhimuium (S. typh) using carboxymethyl chitosan (CMCS)-aptamer (Apt)-gold nanoparticles (AuNPs) composites.
Collapse
Affiliation(s)
- Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541014, Guangxi, China
| | - Wen Xiao
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, 410000, Hunan, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yayuan He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
37
|
Pissuwan D, Gazzana C, Mongkolsuk S, Cortie MB. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1584. [PMID: 31532914 DOI: 10.1002/wnan.1584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
A late detection of pathogenic microorganisms in food and drinking water has a high potential to cause adverse health impacts in those who have ingested the pathogens. For this reason there is intense interest in developing precise, rapid and sensitive assays that can detect multiple foodborne pathogens. Such assays would be valuable components in the campaign to minimize foodborne illness. Here, we discuss the emerging types of assays based on gold nanoparticles (GNPs) for rapidly diagnosing single or multiple foodborne pathogen infections. Colorimetric and lateral flow assays based on GNPs may be read by the human eye. Refractometric sensors based on a shift in the position of a plasmon resonance absorption peak can be read by the new generation of inexpensive optical spectrometers. Surface-enhanced Raman spectroscopy and the quartz microbalance require slightly more sophisticated equipment but can be very sensitive. A wide range of electrochemical techniques are also under development. Given the range of options provided by GNPs, we confidently expect that some, or all, of these technologies will eventually enter routine use for detecting pathogens in food. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Dakrong Pissuwan
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Nanobiotechnology and Nanobiomaterials Research Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.,School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Camilla Gazzana
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Michael B Cortie
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Falahati M, Attar F, Sharifi M, Saboury AA, Salihi A, Aziz FM, Kostova I, Burda C, Priecel P, Lopez-Sanchez JA, Laurent S, Hooshmand N, El-Sayed MA. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim Biophys Acta Gen Subj 2019; 1864:129435. [PMID: 31526869 DOI: 10.1016/j.bbagen.2019.129435] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings. SCOPE OF REVIEW The chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed. MAJOR CONCLUSIONS AuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods. GENERAL SIGNIFICANCE This review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, Bulgaria
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Jose A Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8 B-6041 Gosselies, Belgium
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
39
|
Wu W, Yu C, Wang Q, Zhao F, He H, Liu C, Yang Q. Research advances of DNA aptasensors for foodborne pathogen detection. Crit Rev Food Sci Nutr 2019; 60:2353-2368. [PMID: 31298036 DOI: 10.1080/10408398.2019.1636763] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers, referring to single-stranded DNA or RNA molecules can specifically recognize and bind to their targets. Based on their excellent specificity, sensitivity, high affinity, and simplicity of modification, aptamers offer great potential for pathogen detection and biomolecular screening. This article reviews aptamer screening technologies and aptamer application technologies, including gold-nanoparticle lateral flow assays, fluorescence assays, electrochemical assays, colorimetric assays, and surface-enhanced Raman assays, in the detection of foodborne pathogens. Although notable progress (more rapid, sensitive, and accurate) has been achieved in the field, challenges and drawbacks in their applications still remain to be overcome.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, School of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hong He
- Clinical Laboratory, Affiliated Hospital to Qingdao University, Qingdao, China
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, School of Materials Science and Engineering, Qingdao University, Qingdao, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
40
|
Bai YL, Shahed-Al-Mahmud M, Selvaprakash K, Lin NT, Chen YC. Tail Fiber Protein-Immobilized Magnetic Nanoparticle-Based Affinity Approaches for Detection of Acinetobacter baumannii. Anal Chem 2019; 91:10335-10342. [DOI: 10.1021/acs.analchem.9b02964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yi-Ling Bai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Md. Shahed-Al-Mahmud
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | | | - Nien-Tsung Lin
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
41
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Feng J, Shen Q, Wu J, Dai Z, Wang Y. Naked-eyes detection of Shigella flexneri in food samples based on a novel gold nanoparticle-based colorimetric aptasensor. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Mobed A, Hasanzadeh M, Aghazadeh M, Saadati A, Hassanpour S, Mokhtarzadeh A. The bioconjugation of DNA with gold nanoparticles towards the spectrophotometric genosensing of pathogenic bacteria. ANALYTICAL METHODS 2019; 11:4289-4298. [DOI: 10.1039/c9ay01339c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The investigation of important bio-molecular events such as expression of special genes has shown promise with the advent of nanotechnology.
Collapse
Affiliation(s)
- Ahmad Mobed
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mohammad Aghazadeh
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Arezoo Saadati
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
44
|
Whang K, Lee JH, Shin Y, Lee W, Kim YW, Kim D, Lee LP, Kang T. Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens. LIGHT, SCIENCE & APPLICATIONS 2018; 7:68. [PMID: 30302239 PMCID: PMC6168555 DOI: 10.1038/s41377-018-0071-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 05/24/2023]
Abstract
A rapid, precise method for identifying waterborne pathogens is critically needed for effective disinfection and better treatment. However, conventional methods, such as culture-based counting, generally suffer from slow detection times and low sensitivities. Here, we developed a rapid detection method for tracing waterborne pathogens by an innovative optofluidic platform, a plasmonic bacteria on a nanoporous mirror, that allows effective hydrodynamic cell trapping, enrichment of pathogens, and optical signal amplifications. We designed and simulated the integrated optofluidic platform to maximize the enrichment of the bacteria and to align bacteria on the nanopores and plasmonic mirror via hydrodynamic cell trapping. Gold nanoparticles are self-assembled to form antenna arrays on the surface of bacteria, such as Escherichia coli and Pseudomonas aeruginosa, by replacing citrate with hydroxylamine hydrochloride in order to amplify the signal of the plasmonic optical array. Owing to the synergistic contributions of focused light via the nanopore geometry, self-assembled nanoplasmonic optical antennas on the surface of bacteria, and plasmonic mirror, we obtain a sensitivity of detecting E. coli as low as 102 cells/ml via surface-enhanced Raman spectroscopy. We believe that our label-free strategy via an integrated optofluidic platform will pave the way for the rapid, precise identification of various pathogens.
Collapse
Affiliation(s)
- Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 Korea
| | - Jong-Hwan Lee
- Berkeley Sensor and Actuator Center, Departments of Bioengineering, Electrical Engineering and Computer Science, Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 Korea
| | - Wooju Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Korea
| | - Young Wan Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Korea
| | - Luke P. Lee
- Berkeley Sensor and Actuator Center, Departments of Bioengineering, Electrical Engineering and Computer Science, Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 Korea
| |
Collapse
|
45
|
Choi Y, Hwang JH, Lee SY. Recent Trends in Nanomaterials-Based Colorimetric Detection of Pathogenic Bacteria and Viruses. SMALL METHODS 2018; 2:1700351. [PMID: 32328530 PMCID: PMC7169612 DOI: 10.1002/smtd.201700351] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 05/15/2023]
Abstract
Rapid, sensitive, selective, convenient, and cost-effective pathogen diagnosis is important to prevent further spread of pandemic diseases, minimize social and economic losses, and to facilitate right clinical therapy. Over the past few years, various sensor-based diagnostic systems outperforming conventional pathogenic diagnostic assays have been developed. Among them, colorimetric biosensors detecting target molecules by the naked eye have attracted much attention due to their simplicity, practicality, and cost-effectiveness. Recently, nanomaterials have been adopted as a versatile signal transduction and amplification tool for rapid and sensitive detection of pathogenic bacteria and viruses. Here, recent trends and advances are reviewed in detecting and diagnosing pathogenic bacteria and viruses using colorimetric biosensors employing various nanomaterials. In addition, it is discussed how nanomaterials and bioreceptors can be better integrated together to develop rapid and sensitive colorimetric detection system in the future.
Collapse
Affiliation(s)
- Yoojin Choi
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Ji Hyeon Hwang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
46
|
Kim SU, Batule BS, Mun H, Shim WB, Kim MG. Ultrasensitive colorimetric detection of Salmonella enterica Typhimurium on lettuce leaves by HRPzyme-Integrated polymerase chain reaction. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
An aptamer-based PCR method coupled with magnetic immunoseparation for sensitive detection of Salmonella Typhimurium in ground turkey. Anal Biochem 2017. [PMID: 28645756 DOI: 10.1016/j.ab.2017.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aptamers are single-stranded oligonucleotide ligands that can bind to targets with high affinity and specificity. They have been widely studied in the field of diagnostics as alternatives to antibodies due to their favorable features such as easy labeling, temperature tolerance, lower cost and recognition of a wide variety of targets. In this study, an aptamer-based PCR method coupled with magnetic immunoseparation was developed to detect S. Typhimurium from ground turkey. Firstly, biotinylated polyclonal anti-S. Typhimurium antibody was immobilized on streptavidin-coated magnetic nanobeads to capture S. Typhimurium. Secondly, the aptamers were added and bound to the surface of S. Typhimurium after blocking the magnetic nanobeads with short ssDNA. Finally, the aptamers were released by heating and amplified by PCR. After optimization, this assay was able to detect 102 CFU/mL of S. Typhimurium in pure culture, and 103 CFU/mL of S. Typhimurium in ground turkey. This study demonstrated the feasibility and application of an aptamer-based PCR method coupled with magnetic immunoseparation for sensitive detection of S. Typhimurium in ground turkey.
Collapse
|
48
|
Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnology 2017; 15:25. [PMID: 28359284 PMCID: PMC5374694 DOI: 10.1186/s12951-017-0260-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
Background Pathogenic bacteria contribute to various globally important diseases, killing millions of people each year. Various fields of medicine currently benefit from or may potentially benefit from the use of nanotechnology applications, in which there is growing interest. Disease-related biomarkers can be rapidly and directly detected by nanostructures, such as nanowires, nanotubes, nanoparticles, cantilevers, microarrays, and nanoarrays, as part of an accurate process characterized by lower sample consumption and considerably higher sensitivity. There is a need for accurate techniques for pathogenic bacteria identification and detection to allow the prevention and management of pathogenic diseases and to assure food safety. Conclusion The focus of this review is on the current nanoparticle-based techniques for pathogenic bacterial identification and detection using these applications.
Collapse
Affiliation(s)
- Teodora Mocan
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, Cluj-Napoca, Romania
| | - Cristian T Matea
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Teodora Pop
- 3rd Gastroenterology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Ofelia Mosteanu
- 3rd Gastroenterology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, Cluj-Napoca, Romania
| | - Cosmin Puia
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Cornel Iancu
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania. .,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania.
| | - Lucian Mocan
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania. .,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania.
| |
Collapse
|