1
|
Kim TD, Khanal S, Bäcker LE, Lood C, Kerremans A, Gorivale S, Begyn K, Cambré A, Rajkovic A, Devlieghere F, Heyndrickx M, Michiels C, Duitama J, Aertsen A. Rapid evolutionary tuning of endospore quantity versus quality trade-off via a phase-variable contingency locus. Curr Biol 2024; 34:3077-3085.e5. [PMID: 38925118 DOI: 10.1016/j.cub.2024.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaAOFF) or restore (PdaAON) the pdaA open reading frame. Compared with B. cereus populations in the PdaAON state, populations in the PdaAOFF state produced a lower yield of viable endospores but endowed them with vastly increased UV resistance. Moreover, selection pressures based on either quantity (i.e., yield of viable endospores) or quality (i.e., UV resistance of viable endospores) aspects could readily shift populations between PdaAON and PdaAOFF states, respectively. Bioinformatic analysis also revealed that pdaA homologs within the Bacillus and Clostridium genera are often equipped with several short tandem repeat regions, suggesting a wider implementation of the pdaA-mediated phase variability in other sporeformers as well. These results for the first time reveal (1) pdaA as a phase-variable contingency locus in the adaptive evolution of endospore properties and (2) bet-hedging between what appears to be a quantity versus quality trade-off in endospore crops.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sadhana Khanal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Cédric Lood
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Alison Kerremans
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sayali Gorivale
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marc Heyndrickx
- ILVO-Flanders Research Institute for Agriculture, Fishery and Food, Technology and Food Science, Unit-Food Safety, 9090 Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Chris Michiels
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; Leuven Food Science and Nutritional Research Centre (LeFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Khanal S, Kim TD, Begyn K, Duverger W, Kramer G, Brul S, Rajkovic A, Devlieghere F, Heyndrickx M, Schymkowitz J, Rousseau F, Broussolle V, Michiels C, Aertsen A. Mechanistic insights into the adaptive evolvability of spore heat resistance in Bacillus cereus sensu lato. Int J Food Microbiol 2024; 418:110709. [PMID: 38663147 DOI: 10.1016/j.ijfoodmicro.2024.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 05/27/2024]
Abstract
Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.
Collapse
Affiliation(s)
- Sadhana Khanal
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wouter Duverger
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | | | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium..
| |
Collapse
|
3
|
Idris AL, Li W, Huang F, Lin F, Guan X, Huang T. Impacts of UV radiation on Bacillus biocontrol agents and their resistance mechanisms. World J Microbiol Biotechnol 2024; 40:58. [PMID: 38165488 DOI: 10.1007/s11274-023-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Bacillus biocontrol agent(s) BCA(s) such as Bacillus cereus, Bacillus thuringiensis and Bacillus subtilis have been widely applied to control insects' pests of plants and pathogenic microbes, improve plant growth, and facilitate their resistance to environmental stresses. In the last decade, researchers have shown that, the application of Bacillus biocontrol agent(s) BCA(s) optimized agricultural production yield, and reduced disease risks in some crops. However, these bacteria encountered various abiotic stresses, among which ultraviolet (UV) radiation severely decrease their efficiency. Researchers have identified several strategies by which Bacillus biocontrol agents resist the negative effects of UV radiation, including transcriptional response, UV mutagenesis, biochemical and artificial means (addition of protective agents). These strategies are governed by distinct pathways, triggered by UV radiation. Herein, the impact of UV radiation on Bacillus biocontrol agent(s) BCA(s) and their mechanisms of resistance were discussed.
Collapse
Affiliation(s)
- Aisha Lawan Idris
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenting Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fugui Huang
- Fujian Polytechnic of Information Technology, Fuzhou, 350003, China
| | - Fuyong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianpei Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Zhao X, Begyn K, Delongie Y, Rajkovic A, Uyttendaele M. UV-C and wet heat resistance of Bacillus thuringiensis biopesticide endospores compared to foodborne Bacillus cereus endospores. Food Microbiol 2023; 115:104325. [PMID: 37567634 DOI: 10.1016/j.fm.2023.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/13/2023]
Abstract
Bacillus endospores (spores) are generally resistant to environmental and food processing-related stress including thermal and non-thermal processing in the food industry, such as pasteurization, and UV-C inactivation. Bacillus thuringiensis insecticidal crystals and spores as the active substances in commercial biopesticides can also be introduced to vegetable foods and their food processing environment due to pre-harvest treatment of edible crops. The resistance of B. thuringiensis biopesticide spores in comparison to the genetically closely related foodborne B. cereus against heat and UV-C treatment is investigated in this study. The results show that B. thuringiensis biopesticide spores with the commercial granulated product formulation are better protected and as such more resistant to both wet heat (D values at 90 °C: 50.1-79.5 min) and UV-C treatment (D values at 0.6 mW/cm2: 7.5-8.9 min) than the pure spore suspension. The enhanced UV-C resistance properties of B. thuringiensis-formulated spores also indicate that the B. thuringiensis spores in powder or granule formulation applied in the field might not be effectively inactivated by solar radiation (UV-A and UV-B) in a short period. Furthermore, the spores of one emetic B. cereus toxin-producing strain (LFMFP 254; a Belgian outbreak strain) were found more resistant to the wet heat at 90 °C (D90-value = 71.2 min) than other tested pure spore suspensions, although the spores of B. cereus 254 did not show different behavior against UV-C treatment. This result suggests that UV-C treatment can be applied as an effective inactivation method against B. cereus 254 spores.
Collapse
Affiliation(s)
- Xingchen Zhao
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Katrien Begyn
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Yannick Delongie
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Andreja Rajkovic
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Rizzotto F, Marin M, Péchoux C, Auger S, Vidic J. Colorimetric aptasensor for detection of Bacillus cytotoxicus spores in milk and ready-to-use food. Heliyon 2023; 9:e17562. [PMID: 37449120 PMCID: PMC10336431 DOI: 10.1016/j.heliyon.2023.e17562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
The high incidence of foodborne diseases caused by pathogenic bacteria raises concerns worldwide and imposes considerable public healthcare challenges. This is especially observed with dormant spores of Bacilli, which can often survive treatments used by the food industry to kill growing bacteria. The early and rapid detection of bacterial spores is essential to ensure food safety. Commercial availability of such a test will present a high potential for food sector. We present a point-of-need colorimetric assay for detection of Bacillus cytotoxicus spores in food. The detection principle is based on spore-enhanced peroxidase-like catalytic activity of gold nanoparticles. The sensing platform consists of a microtube containing gold nanoparticles (AuNPs), and magnetic particles (MPs), both conjugated with specific aptamer BAS6R that recognize B. cytotoxicus spores. Upon the addition of the sample, spores were determined as present by the enhanced color change of the solution, due to the oxidation of tetramethylbenidine (TMB) with H2O2. The assay was evaluated by the naked eye (on/off) and quantitatively with use of a spectrophotometer. BAS6R@AuNPs aptasensor coupled to BAS6R@MPs proved to be highly sensitive, achieving the naked-eye limit of detection as low as 102 cfu/mL in water and milk, and 104 cfu/mL in mashed potatoes. Moreover, discrimination between spores of B. cytotoxicus and B. subtilis as well as bacterial vegetative cells was achieved in contaminated food samples, providing a good selectivity. This work provides a promising proof of concept for the development of instrument-free, low-cost and rapid assay for Bacillus cytotoxicus spore detection, which is able to compete in sensitivity with conventional costly and time-consuming laboratory analyses.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Marco Marin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Christine Péchoux
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, 78350 Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| |
Collapse
|
6
|
Inagaki H, Goto Y, Sugiyama H, Saito A, Okabayashi T, Watanabe K, Fujimoto S. Usefulness of a new DUV-LED device for the control of infection by Escherichia coli, Staphylococcus aureus, mycobacteria and spore-forming bacteria. Front Public Health 2022; 10:1053729. [PMID: 36544797 PMCID: PMC9760979 DOI: 10.3389/fpubh.2022.1053729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Reliable disinfection and sterilization technologies are needed to deal with the various infectious diseases spreading around the world. Furthermore, bacteria that are difficult to eliminate by ordinary disinfection are also a problem in the medical environment. We examined the germicidal effect of a newly developed deep-ultraviolet light-emitting diode (DUV-LED) prototype device (wavelength of 280 ± 5 nm; power of 0.9 to 1.4 mW/cm2) for floor sterilization against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Mycobacterium gordonae (M. gordonae), and Bacillus subtilis (B. subtilis). This prototype device is equipped with highly practical DUV-LEDs with a high output efficiency and a long life, and was designed with consideration of the irradiation distance and the angle of the DUV-LEDs to provide a uniform irradiation rate. We found a statistically significant reduction of ≥90% in the infectious titers of both E. coli and S. aureus after irradiation for 2 s. Although acid-fast bacilli and spore-type bacilli are generally thought to be resistant to UV light irradiation compared to general bacteria, the acid-fast bacillus M. gordonae was inactivated after irradiation for 10 s, and spore-type cells of the bacillus B. subtilis were inactivated by ≥90% after irradiation for 30 s. We also found that the effects were cumulative when irradiation was performed at intervals. In the future, the usefulness of this device as an infection control measure will be evaluated in daily medical practice.
Collapse
Affiliation(s)
- Hiroko Inagaki
- M&N Collaboration Research Laboratory, Department of Medical Environment Innovation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Goto
- M&N Collaboration Research Laboratory, Department of Medical Environment Innovation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hironobu Sugiyama
- M&N Collaboration Research Laboratory, Department of Medical Environment Innovation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan,Nikkiso Co., Ltd., Tokyo, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | | | - Shouichi Fujimoto
- M&N Collaboration Research Laboratory, Department of Medical Environment Innovation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan,*Correspondence: Shouichi Fujimoto
| |
Collapse
|
7
|
Lv R, Liu D, Zhou J. Bacterial spore inactivation by non-thermal technologies: resistance and inactivation mechanisms. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Sun R, Vermeulen A, Wieme AD, Vandamme P, Devlieghere F. Identification and characterization of acid-tolerant spore-forming spoilage bacteria from acidified and low-acid pasteurized sauces. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Kim TD, Begyn K, Khanal S, Taghlaoui F, Heyndrickx M, Rajkovic A, Devlieghere F, Michiels C, Aertsen A. Bacillus weihenstephanensis can readily evolve for increased endospore heat resistance without compromising its thermotype. Int J Food Microbiol 2021; 341:109072. [PMID: 33524880 DOI: 10.1016/j.ijfoodmicro.2021.109072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/21/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Proper elimination of bacterial endospores in foods and food processing environment is challenging because of their extreme resistance to various stresses. Often, sporicidal treatments prove insufficient to eradicate the contaminating endospore population as a whole, and might therefore serve as a selection pressure for enhanced endospore resistance. In the sporeforming Bacillus cereus group, Bacillus weihenstephanensis is an important food spoilage organism and potential cereulide producing pathogen, due to its psychrotolerant growth ability at 7 °C. Although the endospores of B. weihenstephanensis are generally less heat resistant compared to their mesophilic or thermotolerant relatives, our data now show that non-emetic B. weihenstephanensis strain LMG 18989T can readily and reproducibly evolve to acquire much enhanced endospore heat resistance. In fact, one of the B. weihenstephanensis mutants from directed evolution by wet heat in this study yielded endospores displaying a > 4-fold increase in D-value at 91 °C compared to the parental strain. Moreover, these mutant endospores retained their superior heat resistance even when sporulation was performed at 10 °C. Interestingly, increased endospore heat resistance did not negatively affect the vegetative growth capacities of the evolved mutants at lower (7 °C) and upper (37 °C) growth temperature boundaries, indicating that the correlation between cardinal growth temperatures and endospore heat resistance which is observed among bacterial sporeformers is not necessarily causal.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sadhana Khanal
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Fatima Taghlaoui
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|