1
|
Jakubczyk K, Melkis K, Maciejewska-Markiewicz D, Muzykiewicz-Szymańska A, Nowak A, Skonieczna-Żydecka K. Innovative approaches to enhancing kombucha through flavour additives: a phytochemical and antioxidant analysis. Food Funct 2025. [PMID: 39898619 DOI: 10.1039/d4fo05135a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This study aimed to determine the phytochemical profile (flavonoids, phenolic acids, caffeine, vitamin C, and acetic acid), antioxidant potential (DPPH, ABTS, and FRAP method), total polyphenol (TPC) and flavonoid (TFC) content, as well as pH of eight commercial green tea-based kombuchas. The beverages were enriched with lemongrass; lavender; liquorice and mint; turmeric and lemon; mango; reishi and chaga; mint, rose, and pomegranate. The highest tested properties were found for kombucha with reishi and chaga (FRAP), with mint, rose, and pomegranate (ABTS), as well as with turmeric and lemon (DPPH, TPC, TFC). Among the identified phenolic acids, p-coumaric acid was found in the highest concentration (kombucha with reishi and chaga), while among the flavonoids - rutin (kombucha with liquorice and mint). Kombucha with reishi and chaga was the richest source of vitamin C, caffeine, and acetic acid. The addition of certain plant materials significantly affects the phytonutrient content of green tea-based kombucha.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Ave., 70-111 Szczecin, Poland.
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Ave., 70-111 Szczecin, Poland.
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| |
Collapse
|
2
|
Olas B. Pro-Health Potential of Fruit Vinegars and Oxymels in Various Experimental Models. Int J Mol Sci 2024; 26:7. [PMID: 39795866 PMCID: PMC11720349 DOI: 10.3390/ijms26010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Fruits are excellent sources of substrate for various fermented products, including fruit vinegars, which are typically produced by submerged fermentation. Some evidence suggests that fruit vinegar consumption can alleviate certain disorders, including hyperlipidemia, inflammation, and hyperglycemia. Fruit vinegars also have bacteriostatic and antihypertensive actions. Recent studies also suggest that apple vinegar may offer benefits in treating insulin resistance, osteoporosis, and certain neurological diseases such as Alzheimer's disease; it may also support weight loss. Recent studies in animal and human models have considerably broadened our understanding of the biological properties of not only fruit vinegars but also oxymels, i.e., mixtures of vinegar and honey or sugar. This paper reviews the current state of knowledge regarding vinegars and oxymels, with a special emphasis on their chemical composition and the mechanisms behind their biological activity and pro-health potential. The multidirectional effects of fruit vinegars and oxymels result from the synergy of different chemical compounds, including organic acids (mainly acetic acid), phenolic compounds, vitamins, minerals, and fermentation products. However, more studies are needed to understand the interactions between all the different components, not only the phenolic compounds and organic acids. In addition, more research is needed on their mechanisms of action. Although no serious side effects have been noted to date, further studies with large sample sizes are needed to understand the possible side effects of long-term fruit vinegar and oxymel use.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Pereira CD, Varytskaya H, Łydzińska O, Szkolnicka K, Gomes D, Pires A. Effect of Sheep's Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics. Foods 2024; 13:4132. [PMID: 39767074 PMCID: PMC11675235 DOI: 10.3390/foods13244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Films and coatings based on biopolymers have been extensively studied in recent years since they have less impact on the environment, can be obtained from renewable sources, have good coating and film-forming capacity, are biodegradable and can have interesting nutritional properties. In the present study, sheep's cheese whey powder (SCWP) was used to produce edible cheese coatings. Six types of cheese samples were produced: without coating (CON); treated with natamycin (NAT); with SCWP coating without antimicrobials (WCO); with SCWP coating with a commercial bioprotective culture (WFQ); with SCWP coating with kombucha tea (WKO); and with SCWP coating with oregano essential oil (WEO). At the end of the ripening period, all the cheeses were classified as full-fat and semihard, according to the Portuguese standard. The higher hardness and adhesiveness values of samples CON, WFQ and WKO were in line with the lower moisture in defatted cheese observed in these samples, indicating that future work should address the improvement of water vapor barrier properties of the whey-based coating. The samples treated with natamycin and with oregano essential oil presented significantly lower values for hardness. Differences were also observed on titratable acidity and aw, both between samples and because of ripening time. The color parameters of cheese samples also presented differences, chiefly in the rind, but the highest differences observed resulted from ripening time rather than between samples. In all cases, the counts of lactobacilli and lactococci surpassed log 7 CFU/g by the end of ripening. Regarding yeast and mold counts, the samples CON and WCO presented the highest values by the end of the ripening period (>log 4 CFU/g), while sample NAT presented the lowest value (ca. log 3 CFU/g). Samples WFQ, WKO and WEO presented values which were ca. 0.5 log cycles lower than samples CON and WCO. Hence, the use of SCWP alongside bioprotective culture, kombucha tea or oregano essential oil had a positive impact in the reduction of mold counts on cheese surfaces. Future work should also evaluate the joint use of different antimicrobials.
Collapse
Affiliation(s)
- Carlos D. Pereira
- School of Agriculture, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society—CERNAS, 3045-601 Coimbra, Portugal
| | - Hanna Varytskaya
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI st. No 3, 71-459 Szczecin, Poland (O.Ł.); (K.S.)
| | - Oliwia Łydzińska
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI st. No 3, 71-459 Szczecin, Poland (O.Ł.); (K.S.)
| | - Katarzyna Szkolnicka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI st. No 3, 71-459 Szczecin, Poland (O.Ł.); (K.S.)
| | - David Gomes
- School of Agriculture, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal;
| | - Arona Pires
- Research Centre for Natural Resources, Environment and Society—CERNAS, 3045-601 Coimbra, Portugal
| |
Collapse
|
4
|
Li S, Wang R, Liu R, Wang L, Wang X, Wei J, Yuan Y, Yue T, Cai R, Wang Z. Exploring the dynamic characteristic of typical kombucha induced by symbiotic microbiota succession from four Chinese regions: A comprehensive analytical framework. Food Res Int 2024; 198:115335. [PMID: 39643369 DOI: 10.1016/j.foodres.2024.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
To investigate the microbial diversities and dynamic quality properties of kombucha, the successional changes with different periods from four regions were comprehensively characterized and compared. A total of 197 indigenous yeast and bacterial strains were isolated, involving Gluconobacter, Komagataeibacter, Starmerella and Zygosaccharomyces spp. The successional dynamics of the kombucha communities in different regions were evaluated. The b* values of all kombucha decreased continuously as fermentation progressed. Results indicated that proper fermentation timing significantly influenced nutritional composition and aroma characteristics. A gradual increase in the content of individual monomeric phenols during the middle and late stages of fermentation (days 6-15). Overall, the Shaanxi (SX) region exhibited the highest content of the 10 phenolics detected on day 9, with 273.45 mg/L, followed by the Hunan (HN) region on day 9 (206.49 mg/L). Higher concentrations of bioactive compounds were produced during later stages, which determined the antioxidant properties. A total of 94 volatile compounds were identified and 32 volatiles with relative odor activity value (rOAV) ≥ 0.1. Four regions showed a decreasing trend in the number of aromas in the later stages of fermentation. The predominant compounds were acids, esters and alcohols during the later fermentation stages, which decanal, trans-β-ionone and damascenone serving as characteristic aromas. The partial least-squares regression analysis revealed that apple juice, fruity and sour apple odors showed an intensely positive impact on the overall acceptability of the kombucha.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ruinan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rong Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Prajapati K, Prajapati J, Patel D, Patel R, Varshnei A, Saraf M, Goswami D. Multidisciplinary advances in kombucha fermentation, health efficacy, and market evolution. Arch Microbiol 2024; 206:366. [PMID: 39098983 DOI: 10.1007/s00203-024-04086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Kombucha, a fermented tea beverage, has seen a significant rise in global popularity. This increase is attributed to its reported health benefits and extensive cultural heritage. The comprehensive review examines kombucha through microbiology, biochemistry, and health sciences, highlighting its therapeutic potential and commercial viability. Central to kombucha production is the symbiotic culture of bacteria and yeasts (SCOBY), which regulates a complex fermentation process, resulting in a bioactive-rich elixir. The study examines the microbial dynamics of SCOBY, emphasizing the roles of various microorganisms. It focuses the contributions of acetic acid bacteria, lactic acid bacteria, and osmophilic yeasts, including genera such as Saccharomyces, Schizosaccharomyces, Zygosaccharomyces, Brettanomyces/Dekkera, and Pichia. These microorganisms play crucial roles in producing bioactive compounds, including organic acids, polyphenols, and vitamins. These bioactive compounds confer therapeutic properties to kombucha. These properties include antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, cancer prevention, hepatoprotective, and detoxifying effects. The review also explores the growing market for kombucha, driven by consumer demand for functional beverages and opportunities for innovative product development. It emphasizes the necessity of standardized production to ensure safety and validate health claims. Identifying research gaps, the review highlights the importance of clinical trials to verify therapeutic benefits. Ultimately, this study integrates traditional knowledge with scientific research, providing directions for future studies and commercial expansion, emphasizing the role of kombucha in health and wellness.
Collapse
Affiliation(s)
- Karan Prajapati
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dhaval Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- Department of Research & Development, Latambarcem Brewers Private Limited, Bicholim, Goa, 403503, India
| | - Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anish Varshnei
- Department of Research & Development, Latambarcem Brewers Private Limited, Bicholim, Goa, 403503, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
6
|
Morales D, de la Fuente-Nieto L, Marco P, Tejedor-Calvo E. Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles ( Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles. Foods 2024; 13:2162. [PMID: 38998667 PMCID: PMC11241703 DOI: 10.3390/foods13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
The organoleptic and bioactive properties of truffles place these fungi as interesting materials for use in the of design functional foods based on fruiting bodies outside commercial standards. Moreover, kombucha beverages have become more popular in the Western world, leading to novel drinks using alternative substrates instead of tea leaves. In this work, two truffle species (Tuber melanosporum, TMEL; Tuber aestivum, TAES) and three different symbiotic consortia of bacteria and yeasts (SCOBYs: SC1, SC2, and SC3) were tested. Fermentation (21 days) was monitored in terms of physicochemical (pH, viscosity), biochemical (total carbohydrates, alcohol, soluble proteins, phenolic compounds), and sensory attributes (volatile organic compounds, VOCs). The obtained pH ranges were adequate, alcohol levels were undetectable or very low, and sugar content was lower than in traditional kombuchas or other beverages. In most cases, the usual bottling time could be applied (7-10 days), although longer fermentations are recommended (14 days) to reach higher protein and phenolic compounds contents. Truffle kombuchas produced up to 51 volatile organic compounds (alcohols, acids, esters, ketones, and aldehydes, among others), with TMEL showing a more complex profile than TAES. During the first week, acidic compound production was observed, especially acetic acid. Similar behavior in the VOC profile was reported with different SCOBYs.
Collapse
Affiliation(s)
- Diego Morales
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Laura de la Fuente-Nieto
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Pedro Marco
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
| | - Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Instituto Agroalimentario de Aragón (IA2), University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Njieukam JA, Ciccone M, Gottardi D, Ricci A, Parpinello GP, Siroli L, Lanciotti R, Patrignani F. Microbiological, Functional, and Chemico-Physical Characterization of Artisanal Kombucha: An Interesting Reservoir of Microbial Diversity. Foods 2024; 13:1947. [PMID: 38928888 PMCID: PMC11202501 DOI: 10.3390/foods13121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Kombucha is a trending tea fermented via a complex microflora of yeasts and acetic acid bacteria. It can be a valid low-calorie substitute for soft drinks due to its sour, naturally carbonated, and sweet taste. Despite increased interest, the microflora and functional properties of kombucha have not yet been fully understood. The aim of this work was to characterize, from a microbiological, chemico-physical, and functional point of view, three types of artisanal kombucha obtained by fermenting green tea containing sugar by means of different starter cultures. Metagenomic analysis revealed a predominance of yeasts compared to bacteria, regardless of the sample. In particular, Brettanomyces spp. was found to be the dominant yeast. Moreover, the different types of kombucha had different microbial patterns in terms of acetic acid bacteria and yeasts. Ethanol and acetic acid were the dominant volatile molecules of the kombucha volatilome; the samples differed from each other in terms of their content of alcohols, esters, and acids. All the samples showed a high antioxidant potential linked to the high content of phenols. This study confirmed the positive chemico-physical and functional properties of kombucha and indicated that the microflora responsible for the fermentation process can significantly affect the characteristics of the final product.
Collapse
Affiliation(s)
- Joel Armando Njieukam
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Marianna Ciccone
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Arianna Ricci
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Giuseppina Paola Parpinello
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
8
|
Esatbeyoglu T, Sarikaya Aydin S, Gültekin Subasi B, Erskine E, Gök R, Ibrahim SA, Yilmaz B, Özogul F, Capanoglu E. Additional advances related to the health benefits associated with kombucha consumption. Crit Rev Food Sci Nutr 2024; 64:6102-6119. [PMID: 36660921 DOI: 10.1080/10408398.2022.2163373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Kombucha is a fermented, acidic beverage that dates back thousands of years as a remedy for various health problems in East Asia. Due to its health benefits, kombucha has gained popularity and attracted the attention of both consumers and researchers. The health benefits of kombucha are predominantly attributed to its bioactive compounds that have antioxidant, antimicrobial, probiotic, and other positive effects owing to fermentation. Many factors such as the type of the substrate used, the symbiotic culture of the bacterial yeast composition, and fermentation conditions influence the extent of these properties. This review focuses on recent developments regarding the bioactive constituents of kombucha and its potential health benefits (antimicrobial, antioxidant, antidiabetic, hepatoprotective effects) as well as its impact on multiple sclerosis, nephrotoxicity, gastric ulceration and gut microbiota. Additionally, the composition of kombucha, alternative uses of its biofilm, and potential toxicity are also discussed. Kombucha is a healthy and safe beverage with multiple health benefits that are primarily related to the presence of bacteria, yeasts, and other bioactive constituents. Moreover, kombucha has been suggested as a potential source of probiotics and eco-friendly materials (kombucha-derived bacterial cellulose) for several industries including food and textile.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Secil Sarikaya Aydin
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Büsra Gültekin Subasi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- Hafik Kamer Ornek MYO, Cumhuriyet University, Sivas, Turkey
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Salam A Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Nosratabadi L, Kavousi HR, Hajimohammadi-Farimani R, Balvardi M, Yousefian S. Estamaran date vinegar: chemical and microbial dynamics during fermentation. Braz J Microbiol 2024; 55:1265-1277. [PMID: 38696037 PMCID: PMC11153425 DOI: 10.1007/s42770-024-01354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Vinegar is a fermented food produced by alcoholic and then acetic acid microbial metabolism. Date palm fruit (Phoenix dactylifera L.) is a valuable source for the production of vinegar. Microbial identification has a major role in the improvement and bio-management of the fermentation process of vinegar. Estamaran and Kabkab two varieties of date palm fruit were selected to study the fermentation process. A culture-dependent approach was used to study bacterial dynamics. 16 S rRNA gene was amplified by Polymerase Chain Reaction (PCR), also restriction enzyme analysis with HinfI and TaqI, and sequencing was done. Assessment of microbial flora of date palm fruit during fermentation showed that Fructobacillus tropaeoli, Bacillus sp., Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, and Weissella paramesenteroides existed in the first phase of fermentation. With fermentation progress, microbial diversity decreased so only one species remained. Komagataeibacter xylinus as an acid acetic producer was present in the third phase of fermentation. Based on chemical analysis, the concentration of reducing sugars decreased during fermentation. With decreasing pH, a simultaneous increase in acidity and total phenolic compounds occurred. The trend of changes during Estamaran fermentation was more severe and a vinegar with desirable properties was produced. Therefore, this date variety is recommended for the production of date vinegar.
Collapse
Affiliation(s)
- Leila Nosratabadi
- Faculty of Agriculture, Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid-Reza Kavousi
- Faculty of Agriculture, Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Hajimohammadi-Farimani
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.
- Faculty of Agriculture, Department of Food Science and Technology, Shahid Bahonar University of Kerman, 22 Bahman Blvd., Kerman, P.O. Box 76169-133, Iran.
| | - Mohammad Balvardi
- Faculty of Agriculture, Department of Food Science and Technology, Shahid Bahonar University of Kerman, 22 Bahman Blvd., Kerman, P.O. Box 76169-133, Iran
| | - Shirin Yousefian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
Qin X, Yuan Y, Fei S, Lin X, Shi S, Wang X, Pang Q, Kang J, Li C, Liu S. Exploring the biotic and abiotic drivers influencing nata de coco production by Komagataeibacter nataicola in pre-fermented coconut water. Int J Food Microbiol 2024; 414:110620. [PMID: 38382414 DOI: 10.1016/j.ijfoodmicro.2024.110620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
In China and Southeast Asia, pre-fermented coconut water is commonly used for the production of nata de coco, a jelly-like fermented food that consists of bacterial cellulose (BC). The inherent natural fermentation process of coconut water introduces uncontrollable variables, which can lead to unstable yields during BC production. This study involved the collection of spontaneously pre-fermented coconut water over a five-month production cycle. The aim was to evaluate the microbiota and metabolite profile, as well as determine its impact on BC synthesis by Komagataeibacter nataicola. Significant variations in the microbial community structure and metabolite profile of pre-fermented coconut water were observed across different production months, these variations had significant effects on BC synthesis by K. nataicola. A total of 52 different bacterial genera and 32 different fungal genera were identified as potential biotic factors that can influence BC production. Additionally, several abiotic factors, including lactate (VIP = 4.92), mannitol (VIP = 4.22), ethanol (VIP = 2.67), and ascorbate (VIP = 1.61), were found to be potential driving forces affecting BC synthesis by K. nataicola. Upon further analysis, the correlation network indicated that 14 biotic factors had a significant contribution to BC production in three strains of K. nataicola. These factors included 8 bacterial genera, such as Limosilactobacillus and Lactiplantibacillus, and 6 fungal genera, such as Meyerozyma and Ogataea. The abiotic factors lactate, mannitol, and ethanol showed a positive correlation with the BC yield. This study provides significant insights into controlling the fermentation processes of pre-fermented coconut water in industrial settings.
Collapse
Affiliation(s)
- Xinling Qin
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yaqian Yuan
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuangwen Fei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| | - Shun Shi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangrong Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qing Pang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China.
| |
Collapse
|
11
|
Bernal P. How are microbes helping end hunger? Microb Biotechnol 2024; 17:e14432. [PMID: 38465536 PMCID: PMC10926054 DOI: 10.1111/1751-7915.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
This article explores the potential of microbiology to positively impact all aspects of the food supply chain, improving the quantity, quality, safety, and nutritional value of food products by providing innovative ways of growing, processing, and preserving food and thus contributing to Zero Hunger, one of the Sustainable Development Goals (SDGs) of the United Nations.
Collapse
Affiliation(s)
- Patricia Bernal
- Departamento de Microbiología, Facultad de BiologíaUniversidad de SevillaSevilleSpain
| |
Collapse
|
12
|
Ohwofasa A, Dhami M, Winefield C, On SLW. Elevated abundance of Komagataeibacter results in a lower pH in kombucha production; insights from microbiomic and chemical analyses. Curr Res Food Sci 2024; 8:100694. [PMID: 38420346 PMCID: PMC10900771 DOI: 10.1016/j.crfs.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Kombucha consumption has grown rapidly worldwide in the last decade, with production at both small- and large scales. The complex fermentation process involves both bacterial and yeast species, but little is known regarding the progression of microbial development during production. We explored the microbial diversity of multiple batches across two kombucha types, i. e commercial scale versus laboratory-made (hereafter "home") kombucha brew using metabarcoding to characterize both fungal and bacterial communities. We found the microbial community of the commercial kombucha brew to be more complex than that of the home brew. Furthermore, PERMANOVA uncovered significant compositional differences between the bacterial (F = 2.68, R2 = 0.23, p = 00.001) and fungal (F = 3.18, R2 = 0.26, p = 00.006) communities between batches. For the home brew, both alpha and beta diversity analyses revealed no significant differences between all batches and replicates. When the microbial diversity of the home and commercial kombucha types were directly compared, the former had higher proportions of Ammoniphilus and Komagataeibacter. The commercial kombucha on the other hand were high in Anoxybacillus, Methylobacterium and Sphingomonas. For the fungal communities, the most dominant fungal genera detected in both kombucha types were similar. Linear model revealed significant correlations between some microorganisms and the sugars and organic acids assayed in this study. For example, rising glucose levels correlated with an increase in the relative abundance of Komagataeibacter (F = 7.115, Adj. R2 = 0.44, p = 00.0003). We believe these results contribute towards achieving a better control of the kombucha fermentation process and may assist in targeted product diversification.
Collapse
Affiliation(s)
- Aghogho Ohwofasa
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
13
|
Zhang C, Zhou Z, Guo T, Huang X, Peng C, Lin Z, Chen M, Liu W. CFHTF2 Is Needed for Vegetative Growth, Conidial Morphogenesis and the Osmotic Stress Response in the Tea Plant Anthracnose ( Colletotrichum fructicola). Genes (Basel) 2023; 14:2235. [PMID: 38137057 PMCID: PMC10743015 DOI: 10.3390/genes14122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Tea is an important cash crop worldwide, and its nutritional value has led to its high economic benefits. Tea anthracnose is a common disease of tea plants that seriously affects food safety and yield and has a far-reaching impact on the sustainable development of the tea industry. In this study, phenotypic analysis and pathogenicity analysis were performed on knockout and complement strains of HTF2-the transcriptional regulator of tea anthracnose homeobox-and the pathogenic mechanism of these strains was explored via RNA-seq. The MoHox1 gene sequence of the rice blast fungus was indexed, and the anthracnose genome was searched for CfHTF2. Evolutionary analysis recently reported the affinity of HTF2 for C. fructicola and C. higginsianum. The loss of CfHTF2 slowed the vegetative growth and spore-producing capacity of C. fructicola and weakened its resistance and pathogenesis to adverse conditions. The transcriptome sequencing of wild-type N425 and CfHTF2 deletion mutants was performed, and a total of 3144 differentially expressed genes (DEGs) were obtained, 1594 of which were upregulated and 1550 of which were downregulated. GO and KEGG enrichment analyses of DEGs mainly focused on signaling pathways such as the biosynthesis of secondary metabolites. In conclusion, this study lays a foundation for further study of the pathogenic mechanism of tea anthracnose and provides a molecular basis for the analysis of the pathogenic molecular mechanism of CfHTF2.
Collapse
Affiliation(s)
- Chengkang Zhang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
| | - Ziwen Zhou
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianlong Guo
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Huang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Peng
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Zhideng Lin
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Meixia Chen
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Wei Liu
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| |
Collapse
|
14
|
Isakov VA, Pilipenko VI, Vlasova AV, Kochetkova AA. Evaluation of the Efficacy of Kombucha-Based Drink Enriched with Inulin and Vitamins for the Management of Constipation-Predominant Irritable Bowel Syndrome in Females: A Randomized Pilot Study. Curr Dev Nutr 2023; 7:102037. [PMID: 38149073 PMCID: PMC10750126 DOI: 10.1016/j.cdnut.2023.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023] Open
Abstract
Background Constipation-predominant irritable bowel syndrome (IBS-C) mainly affects females, and dietary interventions for symptom relief often yield poor results because of low patient adherence. The development of functional food products enriched with dietary fibers may increase patients' adherence to a healthy diet and relieve IBS-С symptoms. Objective This proof-of-concept, open-label, randomized controlled pilot study is aimed to evaluate the efficacy of kombucha enriched with inulin and vitamins in females with IBS-C. Methods Forty females with IBS-C were randomly assigned to receive either 220 mL of kombucha enriched with inulin (2.53 g/220 mL) and vitamins (B1 - 0.59 mg, B2 - 0.55 mg, B3 - 5.9 mg, B6 - 0.7 mg, and folic acid - 81.4 μg/220 mL) or water for 10 d. Stool frequency, Bristol stool scale score (BSSS), and abdominal symptoms were evaluated using a 5-point Likert scale on days 5, 9 and 14 of the study. The palatability of the drink was assessed using a visual analog scale. Results After 10 d, the kombucha group showed a significant increase in stool frequency (0.60 ± 0.31-0.85 ± 0.19 times/d; P = 0.004) compared with the control (0.63 ± 0.33 compared with 0.72 ± 0.28; P = 0.6). The mean values of the BSSS increased in the kombucha group (3.0 ± 1.2-4.4 ± 1.0; P = 0.001), whereas they remained unchanged in the control (2.9 ± 1.2 compared with 3.4 ± 1.2; P = 0.6). The kombucha group also experienced a significant decrease in the feeling of incomplete bowel emptying (1.88 ± 0.78 compared with 1.41 ± 0.56 points; P = 0.015), which was not observed in the control group. Conclusions Short-term consumption of kombucha enriched with inulin and vitamins was associated with an increase in stool frequency, an improvement in the BSSS, and a reduction in the feeling of incomplete bowel emptying in females with IBS-C. Further large-scale clinical trials investigating the efficacy of kombucha enriched with inulin and vitamins in patients with IBS-C are warranted to prove the observed effects. Trial registration number This trial was registered at clinicaltrials.gov as NCT05164861 (==https://clinicaltrials.gov/study/NCT05164861?term=NCT05164861&rank=1; registered on 18 December, 2021).
Collapse
Affiliation(s)
- Vasily A Isakov
- Department of Gastroenterology & Hepatology, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Vladimir I Pilipenko
- Department of Gastroenterology & Hepatology, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Alina V Vlasova
- Department of Gastroenterology & Hepatology, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Alla A Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| |
Collapse
|
15
|
Xu W, Zhao Y, Lv Y, Bouphun T, Jia W, Liao S, Zhu M, Zou Y. Variations in microbial diversity and chemical components of raw dark tea under different relative humidity storage conditions. Food Chem X 2023; 19:100863. [PMID: 37780317 PMCID: PMC10534245 DOI: 10.1016/j.fochx.2023.100863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Raw dark tea (RDT) usually needs to be stored for a long time to improve its quality under suitable relative humidity (RH). However, the impact of RH on tea quality is unclear. In this study, we investigated the metabolites and microbial diversity, and evaluated the sensory quality of RDT stored under three RH conditions (1%, 57%, and 88%). UHPLC-Q-TOF-MS analysis identified 144 metabolites, including catechins, flavonols, phenolic acids, amino acids, and organic acids. 57% RH led to higher levels of O-methylated catechin derivatives, polymerized catechins, and flavonols/flavones when compared to 1% and 88% RH. The best score in sensory evaluation was also obtained by 57% RH. Aspergillus, Gluconobacter, Kluyvera, and Pantoea were identified as the core functional microorganisms in RDT under different RH storage conditions. Overall, the findings provided new insights into the variation of microbial communities and chemical components under different RH storage conditions.
Collapse
Affiliation(s)
- Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiqiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yating Lv
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand
| | - Wenbao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Mendelson C, Sparkes S, Merenstein DJ, Christensen C, Sharma V, Desale S, Auchtung JM, Kok CR, Hallen-Adams HE, Hutkins R. Kombucha tea as an anti-hyperglycemic agent in humans with diabetes - a randomized controlled pilot investigation. Front Nutr 2023; 10:1190248. [PMID: 37588049 PMCID: PMC10426908 DOI: 10.3389/fnut.2023.1190248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Kombucha is a popular fermented tea that has attracted considerable attention due, in part, to its suggested health benefits. Previous results from animal models led us to hypothesize kombucha may reduce blood sugar levels in humans with diabetes. The objective of this pilot clinical study was to evaluate kombucha for its anti-hyperglycemic activities in adults with diabetes mellitus type II. Methods The study was organized as a prospective randomized double-blinded crossover study at a single-center urban hospital system. Participants (n = 12) were instructed to consume either a kombucha product or a placebo control (each 240 mL) for 4 weeks. After an 8-week washout period, participants consumed the alternate product. Fasting blood glucose levels were self-determined at baseline and at 1 and 4 weeks during each treatment period. Secondary health outcomes, including overall health, insulin requirement, gut health, skin health, mental health, and vulvovaginal health were measured by questionnaire at the same time points. The kombucha microbiota was assessed by selective culturing and 16S rRNA gene (bacteria) and ITS (fungi) sequencing. Fermentation end products were assessed by HPLC. Statistical significance of changes in fasting blood glucose was determined using paired, two-tailed student's t-tests. Results Kombucha lowered average fasting blood glucose levels at 4 weeks compared to baseline (164 vs. 116 mg/dL, p = 0.035), whereas the placebo did not (162 vs. 141 mg/dL, p = 0.078). The kombucha microbiota, as assessed by cultural enumeration, was mainly comprised of lactic acid bacteria, acetic acid bacteria, and yeast, with each group present at about 106 colony forming units (CFU)/mL. Likewise, 16S rRNA gene sequencing confirmed that lactic acid and acetic acid bacteria were the most abundant bacteria, and ITS sequencing showed Dekkera was the most abundant yeast. The primary fermentation end products were lactic and acetic acids, both less than 1%. Ethanol was present at 1.5%. Discussion Although this pilot study was limited by a small sample size, kombucha was associated with reduced blood glucose levels in humans with diabetes. Larger follow-up studies are warranted. Clinical trial registration ClinicalTrials.gov, identifier NCT04107207.
Collapse
Affiliation(s)
- Chagai Mendelson
- Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Sabrina Sparkes
- Department of Human Science, Georgetown University School of Health, Washington, DC, United States
| | - Daniel J. Merenstein
- Department of Human Science, Georgetown University School of Health, Washington, DC, United States
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Chloe Christensen
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Varun Sharma
- Division of General Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | | | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Car Reen Kok
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Heather E. Hallen-Adams
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
17
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Frolova Y, Vorobyeva V, Vorobyeva I, Sarkisyan V, Malinkin A, Isakov V, Kochetkova A. Development of Fermented Kombucha Tea Beverage Enriched with Inulin and B Vitamins. FERMENTATION-BASEL 2023; 9:552. [DOI: 10.3390/fermentation9060552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Kombucha is a sweet and sour beverage made by fermenting a liquid base with a symbiotic culture of bacteria and yeast. Different tea substrates, carbohydrate sources, and additional ingredients are used to create beverages with different physical and chemical characteristics. The purpose of this work was to create a recipe and technology to study the properties of the beverage based on kombucha with a given chemical composition. The content of added functional ingredients (vitamins and inulin) in quantities comparable with reference daily intake was the specified parameter characterizing the distinctive features of the enriched beverages. For fermentation using symbiotic cultures of bacteria and yeast, a black tea infusion sweetened with sucrose was used as a substrate. The changes in the physicochemical characteristics of the fermented tea beverage base were evaluated. The dynamics of changes in pH, acidity, the content of mono- and disaccharides, ethanol, organic acids, polyphenolic compounds, and volatile organic substances were shown. The fermentation conditions were selected (pH up to 3.3 ± 0.3, at T = 25 ± 1 °C, process duration of 14 days) to obtain the beverage base. Strawberry and lime leaves were used as flavor and aroma ingredients, and vitamins with inulin were used as functional ingredients. Since the use of additional ingredients changed the finished beverage’s organoleptic profile and increased its content of organic acids, the final product’s physical–chemical properties, antioxidant activity, and organoleptic indicators were assessed. The content of B vitamins in the beverages ranges from 29 to 44% of RDI, and 100% of RDI for inulin, which allows it to be attributed to the category of enriched products. The DPPH inhibitory activity of the beverages was 82.0 ± 7%, and the ethanol content did not exceed 0.43%. The beverages contained a variety of organic acids: lactic (43.80 ± 4.82 mg/100 mL), acetic (205.00 ± 16.40 mg/100 mL), tartaric (2.00 ± 0.14 mg/100 mL), citric (65.10 ± 5.86 mg/100 mL), and malic (45.50 ± 6.37 mg/100 mL). The technology was developed using pilot equipment to produce fermented kombucha tea enriched with inulin and B vitamins.
Collapse
Affiliation(s)
- Yuliya Frolova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Valentina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Irina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Varuzhan Sarkisyan
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alexey Malinkin
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Vasily Isakov
- Department of Gastroenterology & Hepatology, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| |
Collapse
|
19
|
Sales AL, Iriondo-DeHond A, DePaula J, Ribeiro M, Ferreira IMPLVO, Miguel MAL, Del Castillo MD, Farah A. Intracellular Antioxidant and Anti-Inflammatory Effects and Bioactive Profiles of Coffee Cascara and Black Tea Kombucha Beverages. Foods 2023; 12:foods12091905. [PMID: 37174444 PMCID: PMC10177953 DOI: 10.3390/foods12091905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a functional beverage obtained through fermentation of sweetened Camellia sinensis infusion by a symbiotic culture of bacteria and yeasts that exerts many beneficial biological effects, mostly related to its antioxidant and anti-inflammatory effects. Alternative raw materials have been used to create new kombucha or kombucha-like products. Coffee is the most important food commodity worldwide and generates large amounts of by-products during harvest and post-harvest processing. The main coffee by-product is the dried fruit skin and pulp, popularly known as cascara. To date, no studies have evaluated the potential bioactivity of coffee cascara kombucha. In this study, we aimed to measure and compare the effects of infusions and kombuchas made with arabica coffee cascaras (n = 2) and black tea leaves (n = 1), fermented for 0, 3, 6, and 9 days on the intracellular production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) in model cells. Oxidative stress was induced in HK-2 cells with indoxyl sulfate (IS) and high glucose (G). Inflammation was induced with lipopolysaccharide (LPS) in RAW 264.7 macrophage. The contents of phenolic compounds, caffeine, and other physicochemical parameters were evaluated. To the best of our knowledge, this is the first study providing information on the bioactive profile and on the potential biological effects of coffee cascara kombucha. Fermentation caused the release of bound phenolic compounds from the infusions, especially total chlorogenic acids, with an average increase from 5.4 to 10.7 mg/100 mL (98%) and 2.6-3.4 mg/100 mL (30%) in coffee cascara and black tea kombucha, respectively, up to day 9. All evaluated beverages reduced (p < 0.0001) similarly the intracellular ROS (41% reduction, on average) and uric acid (10-55%) concentrations in HK-2 model cells, reversing the induced oxidative stress. All beverages also reduced (p < 0.0001, 81-90%) NO formation in LPS-induced macrophages, exhibiting an anti-inflammatory effect. These potential health benefits may be mostly attributed to polyphenols and caffeine, whose contents were comparable in all beverages. Coffee cascara showed similar potential to C. sinensis to produce healthy beverages and support sustainable coffee production.
Collapse
Affiliation(s)
- Amanda L Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Ribeiro
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Marco Antonio L Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro21941-902, Brazil
| | - María Dolores Del Castillo
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
20
|
Anantachoke N, Duangrat R, Sutthiphatkul T, Ochaikul D, Mangmool S. Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods 2023; 12:foods12091818. [PMID: 37174355 PMCID: PMC10178031 DOI: 10.3390/foods12091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a traditional health beverage produced by fermenting sweetened tea with a symbiotic culture of bacteria and yeasts. Consumption of kombucha beverages has been growing and there is kombucha commercially available worldwide as one of the most famous low-alcohol beverages. Kombucha beverages have been claimed to have beneficial effects on human health because they contain a variety of bioactive compounds that possess various functional properties. At present, several kinds of raw material (e.g., milk, fruit, vegetables, and herbs) have been fermented with kombucha consortium and consumed as kombucha beverages. Although several studies have been written regarding the biological activities of kombucha and raw materials, there is however little information available on the characterization of their components as well as the biological activities of fermented kombucha from many raw material mixtures. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In addition, the adverse effects and toxicity of kombucha consumption were also reviewed. In this study, we focused on the main and latest studies of the pharmacological effects of kombucha beverages produced from various kinds of raw materials, including antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, anticancer, antidiabetic, antihypertensive, and antihyperlipidemic effects in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanyarat Sutthiphatkul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangjai Ochaikul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
21
|
Tejedor-Calvo E, Morales D. Chemical and Aromatic Changes during Fermentation of Kombucha Beverages Produced Using Strawberry Tree (Arbutus unedo) Fruits. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The use of alternative ingredients in the production of kombucha has seen a recent increase. Our research aimed to characterize the chemical, nutritional, microbial, and aromatic profiles of kombucha beverages prepared with strawberry tree (Arbutus unedo) fruits fermented with three different SCOBYs for 21 days. The analyses showed similar levels of microbiological groups (aerobic mesophilic microorganisms, lactic acid bacteria, acetic acid bacteria, and yeasts)among the SCOBYs used. The beverages studied displayed a decrease in pH value and carbohydrate content, and protein degradation was also observed as fermentation progressed. However, the increase in total phenolic compounds during the first week proved to be a point of interest. A total of 20 volatile organic compounds were detected, giving different sensory qualities to the beverages: higher ethanol, benzaldehyde-4-ethyl, or acetic acid depending on the SCOBY used. The results obtained indicated that strawberry tree kombucha might be an alternative beverage with notable nutritional and aromatic properties, with fermentation time and SCOBY composition being identified as crucial factors.
Collapse
|
22
|
Vukić V, Vukić D, Pavlić B, Iličić M, Kocić-Tanackov S, Kanurić K, Bjekić M, Zeković Z. Antimicrobial potential of kombucha fresh cheese with the addition of sage ( Salvia officinalis L.) and its preparations. Food Funct 2023; 14:3348-3356. [PMID: 36942549 DOI: 10.1039/d2fo01774a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
One of the main challenges in fresh cheese technology is its rather limited shelf life. Prolongation of the shelf life of fresh cheese has been the focus of numerous research studies and different strategies have been thus used. One of the strategies that could prolong the shelf life of fresh cheese, as well as increase its quality is the application of different starter cultures. As the antimicrobial capacity of sage (Salvia officinalis) has been proven, the possibility of reusing its by-product obtained from a tea factory could be a significant step towards the retention of environmental equilibrium and simultaneous production of food with additional functional value. Therefore, the aim of our research was to examine the antimicrobial potential of kombucha fresh cheese with the addition of ground herbal sage, sage essential oil and sage supercritical fluid extract, and compare it with fresh cheese obtained from a commercial starter culture. In order to examine the antimicrobial activity of kombucha fresh cheese produced with the addition of sage preparations, the produced samples were artificially contaminated with common foodborne contaminants: Listeria monocytogenes, Escherichia coli and Staphylococcus aureus. The obtained results revealed that the addition of sage essential oil and herbal ground sage increased the antimicrobial activity during the 30 days of storage against E. coli in kombucha fresh cheese (decrease of 2.9 and 2.5 log CFU g-1, respectively). Implementation of sage significantly increased the antimicrobial activity of the fresh cheese produced with a commercial XPL-1 starter culture against L. monocytogenes (essential oil - 0.9 log CFU g-1 and ground sage - 1.2 log CFU g-1). In the XPL-1 sample, the growth of S. aureus was inhibited by the addition of ground sage - a decrease of 1.4 log CFU g-1. Analysis of the total phenols revealed their 5-fold higher content in the kombucha fresh cheeses compared to the samples obtained by the XPL-1 starter culture. These results correlate with the higher antimicrobial activity of the kombucha fresh cheese samples compared to the XPL-1 samples. According to our results, industrial waste, obtained as a by-product in sage (Salvia officinalis) filter tea production, can be efficiently used in fresh cheese technology in order to increase the antimicrobial activity against L. monocytogenes, E. coli and S. aureus.
Collapse
Affiliation(s)
- Vladimir Vukić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Dajana Vukić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Mirela Iličić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Sunčica Kocić-Tanackov
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Katarina Kanurić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Maja Bjekić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Zoran Zeković
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
23
|
Charoenrak S, Charumanee S, Sirisa-Ard P, Bovonsombut S, Kumdhitiahutsawakul L, Kiatkarun S, Pathom-Aree W, Chitov T, Bovonsombut S. Nanobacterial Cellulose from Kombucha Fermentation as a Potential Protective Carrier of Lactobacillus plantarum under Simulated Gastrointestinal Tract Conditions. Polymers (Basel) 2023; 15:polym15061356. [PMID: 36987137 PMCID: PMC10054358 DOI: 10.3390/polym15061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Kombucha bacterial cellulose (KBC), a by-product of kombucha fermentation, can be used as a biomaterial for microbial immobilization. In this study, we investigated the properties of KBC produced from green tea kombucha fermentation on days 7, 14, and 30 and its potential as a protective carrier of Lactobacillus plantarum, a representative beneficial bacteria. The highest KBC yield (6.5%) was obtained on day 30. Scanning electron microscopy showed the development and changes in the fibrous structure of the KBC over time. They had crystallinity indices of 90-95%, crystallite sizes of 5.36-5.98 nm, and are identified as type I cellulose according to X-ray diffraction analysis. The 30-day KBC had the highest surface area of 19.91 m2/g, which was measured using the Brunauer-Emmett-Teller method. This was used to immobilize L. plantarum TISTR 541 cells using the adsorption-incubation method, by which 16.20 log CFU/g of immobilized cells was achieved. The amount of immobilized L. plantarum decreased to 7.98 log CFU/g after freeze-drying and to 2.94 log CFU/g after being exposed to simulated gastrointestinal tract conditions (HCl pH 2.0 and 0.3% bile salt), whereas the non-immobilized culture was not detected. This indicated its potential as a protective carrier to deliver beneficial bacteria to the gastrointestinal tract.
Collapse
Affiliation(s)
- Sonthirat Charoenrak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suporn Charumanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panee Sirisa-Ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sittisin Bovonsombut
- Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | | | - Suwalee Kiatkarun
- Amazing Tea Limited Partnership (Tea Gallery Group), Chiang Mai 50000, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thararat Chitov
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sakunnee Bovonsombut
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
25
|
Assessment of Cosmetic and Dermatological Properties and Safety of Use of Model Skin Tonics with Kombucha-Fermented Red Berry Extracts. Int J Mol Sci 2022; 23:ijms232314675. [PMID: 36499003 PMCID: PMC9741178 DOI: 10.3390/ijms232314675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Kombucha is a health-promoting beverage that is produced by fermenting sweetened tea using symbiotic cultures of bacteria belonging to the genus Acetobacter, Gluconobacter, and yeast of the genus Saccharomyces. This study compared the cosmetic and dermatological properties of the extracts of the following redberries: R. rubrum, F. vesca, and R. idaeus, and their ferments, which were obtained by fermentation for 10 and 20 days using tea fungus. For this purpose, the fermented and non-fermented extracts were compared in terms of their chemical composition using the HPLC/ESI-MS chromatographic method, demonstrating the high content of biologically active compounds that were present in the ferments. The antioxidant activity of the tested samples was evaluated using DPPH and ABTS tests, as well as by evaluating the scavenging of the external and intracellular free radicals. The cytotoxicity of the extracts and the ferments, as well as the cosmetic formulations, were also determined by conducting Alamar Blue and Neutral Red tests assessing the cell viability and metabolism using skin cell lines: fibroblasts and keratinocytes. In addition, application tests were conducted showing the positive effects of the model cosmetic tonics on the TEWL, the skin hydration, and the skin pH. The results indicate that both the extracts and the ferments that were obtained from kombucha can be valuable ingredients in cosmetic products.
Collapse
|
26
|
Flyurik E, Ermakova O. Medusomyces gisevii: cultivation, composition, and application. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tea fungus (Medusomyces gisevii) is a natural symbiotic consortium of yeast-like fungi and bacteria. Scientific literature provides a lot of information about the consortium, but it is largely fragmentary. We aimed to review and systematize the information on the research topic.
We studied scientific publications, conference proceedings, intellectual property, regulatory documents, and Internet resources on the M. gisevii consortium using Scopus, Web of Science, e.LIBRARY.RU, and Google Academy. The methods applied included registration, grouping, classification, comparative analysis, and generalization.
We described the origin and composition of tea fungus, specifying the microorganisms that make up its symbiotic community depending on the place of origin. Then, we reviewed the stages of fermentation and cultivation conditions in various nutrient media and presented the composition of the culture liquid. Finally, we analyzed the antimicrobial effect of M. gisevii on a number of microorganisms and delineated some practical uses of the fungus.
The data presented in this article can be used to analyze or develop new methods for the cultivation and application of M. gisevii. We specified some possibilities for using not only the culture liquid but also the fruit body of the fungus in various industries.
Collapse
|
27
|
Reconstruction of Simplified Microbial Consortia to Modulate Sensory Quality of Kombucha Tea. Foods 2022; 11:foods11193045. [PMID: 36230121 PMCID: PMC9563716 DOI: 10.3390/foods11193045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Kombucha is a fermented tea with a long history of production and consumption. It has been gaining popularity thanks to its refreshing taste and assumed beneficial properties. The microbial community responsible for tea fermentation—acetic acid bacteria (AAB), yeasts, and lactic acid bacteria (LAB)—is mainly found embedded in an extracellular cellulosic matrix located at the liquid–air interphase. To optimize the production process and investigate the contribution of individual strains, a collection of 26 unique strains was established from an artisanal-scale kombucha production; it included 13 AAB, 12 yeasts, and one LAB. Among these, distinctive strains, namely Novacetimonas hansenii T7SS-4G1, Brettanomyces bruxellensis T7SB-5W6, and Zygosaccharomyces parabailii T7SS-4W1, were used in mono- and co-culture fermentations. The monocultures highlighted important species-specific differences in the metabolism of sugars and organic acids, while binary co-cultures demonstrated the roles played by bacteria and yeasts in the production of cellulose and typical volatile acidity. Aroma complexity and sensory perception were comparable between reconstructed (with the three strains) and native microbial consortia. This study provided a broad picture of the strains’ metabolic signatures, facilitating the standardization of kombucha production in order to obtain a product with desired characteristics by modulating strains presence or abundance.
Collapse
|