1
|
Al-Shaarani AAQA, Pecoraro L. A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication. Front Microbiol 2024; 15:1428415. [PMID: 39364169 PMCID: PMC11446796 DOI: 10.3389/fmicb.2024.1428415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Airborne fungi and bacteria have been extensively studied by researchers due to their significant effects on human health. We provided an overview of the distribution and sources of airborne pathogenic microbes, and a detailed description of the detrimental effects that these microorganisms cause to human health in both outdoor and indoor environments. By analyzing the large body of literature published in this field, we offered valuable insights into how airborne microbes influence our well-being. The findings highlight the harmful consequences associated with the exposure to airborne fungi and bacteria in a variety of natural and human-mediated environments. Certain demographic groups, including children and the elderly, immunocompromised individuals, and various categories of workers are particularly exposed and vulnerable to the detrimental effect on health of air microbial pollution. A number of studies performed up to date consistently identified Alternaria, Cladosporium, Penicillium, Aspergillus, and Fusarium as the predominant fungal genera in various indoor and outdoor environments. Among bacteria, Bacillus, Streptococcus, Micrococcus, Enterococcus, and Pseudomonas emerged as the dominant genera in air samples collected from numerous environments. All these findings contributed to expanding our knowledge on airborne microbe distribution, emphasizing the crucial need for further research and increased public awareness. Collectively, these efforts may play a vital role in safeguarding human health in the face of risks posed by airborne microbial contaminants.
Collapse
Affiliation(s)
- Amran A. Q. A. Al-Shaarani
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Wang S, Qin T, Tu R, Li T, Chen GI, Green DC, Zhang X, Feng J, Liu H, Hu M, Fu Q. Indoor air quality in subway microenvironments: Pollutant characteristics, adverse health impacts, and population inequity. ENVIRONMENT INTERNATIONAL 2024; 190:108873. [PMID: 39024827 DOI: 10.1016/j.envint.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tianchen Qin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Tu
- School of Transportation, Southeast University, Nanjing 210096, China; The Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Nanjing, China.
| | - Tianyuan Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gang I Chen
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - David C Green
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK; NIRH HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Xin Zhang
- School of Transportation, Southeast University, Nanjing 210096, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haobing Liu
- School of Transportation Engineering, Tongji University, Shanghai 201804, China
| | - Ming Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
3
|
Sharma S, Jahanzaib M, Bakht A, Kim MK, Lee H, Park D. The composition of the bacterial communities collected from the PM 10 samples inside the Seoul subway and railway station. Sci Rep 2024; 14:6478. [PMID: 38499557 PMCID: PMC10948816 DOI: 10.1038/s41598-023-49848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 03/20/2024] Open
Abstract
Health implications of indoor air quality (IAQ) have drawn more attention since the COVID epidemic. There are many different kinds of studies done on how IAQ affects people's well-being. There hasn't been much research that looks at the microbiological composition of the aerosol in subway transit systems. In this work, for the first time, we examined the aerosol bacterial abundance, diversity, and composition in the microbiome of the Seoul subway and train stations using DNA isolated from the PM10 samples from each station (three subway and two KTX stations). The average PM10 mass concentration collected on the respective platform was 41.862 µg/m3, with the highest average value of 45.95 µg/m3 and the lowest of 39.25 µg/m3. The bacterial microbiomes mainly constituted bacterial species of soil and environmental origin (e.g., Acinetobacter, Brevundimonas, Lysinibacillus, Clostridiodes) with fewer from human sources (Flaviflexus, Staphylococcus). This study highlights the relationship between microbiome diversity and PM10 mass concentration contributed by outdoor air and commuters in South Korea's subway and train stations. This study gives insights into the microbiome diversity, the source, and the susceptibility of public transports in disease spreading.
Collapse
Affiliation(s)
- Shambhavi Sharma
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea
- Transportation System Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Muhammad Jahanzaib
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea
- Transportation System Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ahtesham Bakht
- Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Min-Kyung Kim
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea
| | - Hyunsoo Lee
- Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Duckshin Park
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea.
- Transportation System Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Yang J, Fan X, Zhang H, Zheng W, Ye T. A review on characteristics and mitigation strategies of indoor air quality in underground subway stations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161781. [PMID: 36708828 DOI: 10.1016/j.scitotenv.2023.161781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Due to the rapidly increasing ridership and the relatively enclosed underground space, the indoor air quality (IAQ) in underground subway stations (USSs) has attracted more public attention. The air pollutants in USSs, such as particulate matter (PM), CO2 and volatile organic compounds (VOCs), are hazardous to the health of passengers and staves. Firstly, this paper presents a systematic review on the characteristics and sources of air pollutants in USSs. According to the review work, the concentrations of PM, CO2, VOCs, bacteria and fungi in USSs are 1.1-13.2 times higher than the permissible concentration limits specified by WHO, ASHRAE and US EPA. The PM and VOCs are mainly derived from the internal and outdoor sources. CO2 concentrations are highly correlated with the passenger density and the ventilation rate while the exposure levels of bacteria and fungi depend on the thermal conditions and the settled dust. Then, the online monitoring, fault detection and prediction methods of IAQ are summarized and the advantages and disadvantages of these methods are also discussed. In addition, the available control strategies for improving IAQ in USSs are reviewed, and these strategies are classified and compared from different viewpoints. Lastly, challenges of the IAQ management in the context of the COVID-19 epidemic and several suggestions for underground stations' IAQ management in the future are put forward. This paper is expected to provide a comprehensive guidance for further research and design of the effective prevention measures on air pollutants in USSs so as to achieve more sustainable and healthy underground environment.
Collapse
Affiliation(s)
- Junbin Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xianwang Fan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Huan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China
| | - Wandong Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China.
| | - Tianzhen Ye
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China
| |
Collapse
|
5
|
Wen Y, Leng J, Shen X, Han G, Sun L, Yu F. Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031084. [PMID: 32046319 PMCID: PMC7037944 DOI: 10.3390/ijerph17031084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Environmental health in subway stations, a typical type of urban underground space, is becoming increasingly important. Ventilation is the principal measure for optimizing the complex physical environment in a subway station. This paper narratively reviews the environmental and health effects of subway ventilation and discusses the relevant engineering, environmental, and medical aspects in combination. Ventilation exerts a notable dual effect on environmental health in a subway station. On the one hand, ventilation controls temperature, humidity, and indoor air quality to ensure human comfort and health. On the other hand, ventilation also carries the potential risks of spreading air pollutants or fire smoke through the complex wind environment as well as produces continuous noise. Assessment and management of health risks associated with subway ventilation is essential to attain a healthy subway environment. This, however, requires exposure, threshold data, and thereby necessitates more research into long-term effects, and toxicity as well as epidemiological studies. Additionally, more research is needed to further examine the design and maintenance of ventilation systems. An understanding of the pathogenic mechanisms and aerodynamic characteristics of various pollutants can help formulate ventilation strategies to reduce pollutant concentrations. Moreover, current comprehensive underground space development affords a possibility for creating flexible spaces that optimize ventilation efficiency, acoustic comfort, and space perception.
Collapse
Affiliation(s)
- Yueming Wen
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| | - Jiawei Leng
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
- Correspondence: ; Tel.: +86-025-83790760
| | - Xiaobing Shen
- School of Public Health, Station and Train Health Institute, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210019, Jiangsu, China;
| | - Gang Han
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| | - Lijun Sun
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| | - Fei Yu
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| |
Collapse
|
6
|
Current Status, Challenges and Resilient Response to Air Pollution in Urban Subway. ATMOSPHERE 2019. [DOI: 10.3390/atmos10080472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Subway air pollution mainly refers to inhalable particulate matter (PM) pollution, organic pollution, and microbial pollution. Based on the investigation and calculation of the existing researches, this paper summarizes the sources of air pollutants, chemical compositions, and driving factors of PM variations in subway. It evaluates the toxicity and health risks of pollutants. In this paper, the problems and challenges during the deployment of air pollution governance are discussed. Results show that the global PM compliance rate of subway is about 30%. Subway air pollution is endogenous, which means that pollutants mainly come from mechanical wear and building materials erosions. Particles are mainly metal particles, black carbon, and floating dust. The health risks of some chemical elements in the subway have reached critical levels. The variations of PM concentrations show spatial-temporal characteristics, which are mainly controlled by train age, brakes types, and environmental control systems. The authors then analyze the dynamics of interactions among government, companies and public during the air pollution governance by adding the following questions: (a) who pays the bill; (b) how to evaluate the cost-effectiveness of policies; (c) how the public moves from risk perception to actions; (d) how to develop clean air technology better so as to ultimately incentivize stakeholders and to facilitate the implementation of subway clean air programme in a resilient mode.
Collapse
|
7
|
Abdelfattah A, Sanzani SM, Wisniewski M, Berg G, Cacciola SO, Schena L. Revealing Cues for Fungal Interplay in the Plant-Air Interface in Vineyards. FRONTIERS IN PLANT SCIENCE 2019; 10:922. [PMID: 31404250 PMCID: PMC6670289 DOI: 10.3389/fpls.2019.00922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/01/2019] [Indexed: 05/04/2023]
Abstract
Plant-associated microorganisms play a crucial role in plant health and productivity. Belowground microbial diversity is widely reported as a major factor in determining the composition of the plant microbiome. In contrast, much less is known about the role of the atmosphere in relation to the plant microbiome. The current study examined the hypothesis that the atmospheric microbiome influences the composition of fungal communities of the aboveground organs (flowers, fruit, and leaves) of table grape and vice versa. The atmosphere surrounding grape plantings exhibited a significantly higher level of fungal diversity relative to the nearby plant organs and shared a higher number of phylotypes (5,536 OTUs, 40.3%) with the plant than between organs of the same plant. Using a Bayesian source tracking approach, plant organs were determined to be the major source of the atmospheric fungal community (92%). In contrast, airborne microbiota had only a minor contribution to the grape microbiome, representing the source of 15, 4, and 35% of the fungal communities of leaves, flowers, and fruits, respectively. Moreover, data indicate that plant organs and the surrounding atmosphere shared a fraction of each other's fungal communities, and this shared pool of fungal taxa serves as a two-way reservoir of microorganisms. Microbial association analysis highlighted more positive than negative interactions between fungal phylotypes. Positive interactions were more common within the same environment, while negative interactions appeared to occur more frequently between different environments, i.e., atmosphere, leaf, flower, and fruit. The current study revealed the interplay between the fungal communities of the grape phyllosphere with the surrounding air. Plants were identified as a major source of recruitment for the atmospheric microbiome, while the surrounding atmosphere contributed only a small fraction of the plant fungal community. The results of the study suggested that the plant-air interface modulates the plant recruitment of atmospheric fungi, taking a step forward in understanding the plant holobiont assembly and how the atmosphere surrounding plants plays a role in this process. The impact of plants on the atmospheric microbiota has several biological and epidemiological implications for plants and humans.
Collapse
Affiliation(s)
- Ahmed Abdelfattah
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- *Correspondence: Ahmed Abdelfattah,
| | - Simona M. Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Michael Wisniewski
- U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS), Kearneysville, WV, United States
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Santa O. Cacciola
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Leonardo Schena
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
- Leonardo Schena,
| |
Collapse
|
8
|
Xu B, Hao J. Air quality inside subway metro indoor environment worldwide: A review. ENVIRONMENT INTERNATIONAL 2017; 107:33-46. [PMID: 28651166 DOI: 10.1016/j.envint.2017.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/27/2017] [Accepted: 06/20/2017] [Indexed: 05/20/2023]
Abstract
The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality.
Collapse
Affiliation(s)
- Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Department of Environmental Engineering, Tongji University, Shanghai 200092, China.
| | - Jinliang Hao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Department of Environmental Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Martynenko S, Kondratiuk T, Sukhomlyn M. Mycobiota of anthropogenic and natural underground objects. UKRAINIAN BOTANICAL JOURNAL 2017. [DOI: 10.15407/ukrbotj74.03.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Hwang SH, Jang S, Park WM, Park JB. Concentrations and identification of culturable airborne fungi in underground stations of the Seoul metro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20680-20686. [PMID: 27473614 DOI: 10.1007/s11356-016-7291-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to measure the culturable airborne fungi (CAF) concentrations in the underground subway stations of Seoul, Korea at two time points. This study measured the CAF concentrations in enclosed environments at 16 underground stations of the Seoul Metro in 2006 and 2013 and investigated the effects of various environmental factors, including the presence of platform screen doors, temperature, relative humidity, and number of passengers. CAF concentrations at the stations in 2006 were significantly higher than that at the same stations in 2013 (p < 0.001). Furthermore, there was a significant correlation between CAF concentration and relative humidity (r = 0.311, p < 0.05). Geotrichum and Penicillium were the predominant genera. The CAF concentrations in stations with an operating supply air were significantly higher than that in stations with no supply air (p < 0.001). Therefore, it is recommended that special attention be given to stations with clean supplied air to improve the indoor air quality of these subway stations.
Collapse
Affiliation(s)
- Sung Ho Hwang
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | - Soojin Jang
- Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Wha Me Park
- Institute of Environmental and Industrial Medicine, Hanyang University, Seoul, South Korea
| | - Jae Bum Park
- Department of Occupational and Environmental Medicine, Ajou University, School of Medicine, San 5, Woncheon-dong, Yeongtong-gu, Suwon, South Korea.
| |
Collapse
|
11
|
Effect of efficient supply of pure O2 concentrated by PSA-type O2 separator on improvement of indoor air quality. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-015-0288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Liu H, Yoo C. A robust localized soft sensor for particulate matter modeling in Seoul metro systems. JOURNAL OF HAZARDOUS MATERIALS 2016; 305:209-218. [PMID: 26686480 DOI: 10.1016/j.jhazmat.2015.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Developing accurate soft sensors to predict and monitor the indoor air quality (IAQ) of hazardous pollutants that accumulate in underground metro systems is of key importance. The just-in-time (JIT) learning technique possesses a local feature that can track the variations in the dynamic process more effectively, which is different from the traditional soft sensor modeling methods, such as partial least squares (PLS), which models the process in an offline and global way. In this study, a robust soft sensor that combined the JIT learning technique with a least squares support vector regression (LSSVR) method, named JIT-LSSVR, was derived in order to improve the prediction performance of a PM2.5 soft sensor in a subway station. Additionally, in order to eliminate the adverse effects caused by the outliers in the process variables, an outlier detection step was integrated into the JIT-LSSVR modeling procedure. The performance evaluation results demonstrated that the proposed robust JIT-LSSVR soft sensor has the capability to model nonlinear and dynamic subway systems. The root mean square error of the JIT-LSSVR soft sensor was improved by 55% in comparison with that of the LSSVR soft sensor.
Collapse
Affiliation(s)
- Hongbin Liu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Yongin 446701, South Korea
| | - ChangKyoo Yoo
- Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Yongin 446701, South Korea.
| |
Collapse
|
13
|
Qiao T, Xiu G, Zheng Y, Yang J, Wang L. Characterization of PM and Microclimate in a Shanghai Subway Tunnel, China. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proeng.2015.01.250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol 2014; 80:6760-70. [PMID: 25172855 DOI: 10.1128/aem.02244-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subway systems are indispensable for urban societies, but microbiological characteristics of subway aerosols are relatively unknown. Previous studies investigating microbial compositions in subways employed methodologies that underestimated the diversity of microbial exposure for commuters, with little focus on factors governing subway air microbiology, which may have public health implications. Here, a culture-independent approach unraveling the bacterial diversity within the urban subway network in Hong Kong is presented. Aerosol samples from multiple subway lines and outdoor locations were collected. Targeting the 16S rRNA gene V4 region, extensive taxonomic diversity was found, with the most common bacterial genera in the subway environment among those associated with skin. Overall, subway lines harbored different phylogenetic communities based on α- and β-diversity comparisons, and closer inspection suggests that each community within a line is dependent on architectural characteristics, nearby outdoor microbiomes, and connectedness with other lines. Microbial diversities and assemblages also varied depending on the day sampled, as well as the time of day, and changes in microbial communities between peak and nonpeak commuting hours were attributed largely to increases in skin-associated genera in peak samples. Microbial diversities within the subway were influenced by temperature and relative humidity, while carbon dioxide levels showed a positive correlation with abundances of commuter-associated genera. This Hong Kong data set and communities from previous studies conducted in the United States formed distinct community clusters, indicating that additional work is required to unravel the mechanisms that shape subway microbiomes around the globe.
Collapse
|
15
|
Gaüzère C, Moletta-Denat M, Blanquart H, Ferreira S, Moularat S, Godon JJ, Robine E. Stability of airborne microbes in the Louvre Museum over time. INDOOR AIR 2014; 24:29-40. [PMID: 23710880 DOI: 10.1111/ina.12053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 05/22/2013] [Indexed: 05/10/2023]
Abstract
The microbial content of air has as yet been little described, despite its public health implications, and there remains a lack of environmental microbial data on airborne microflora in enclosed spaces. In this context, the aim of this study was to characterize the diversity and dynamics of airborne microorganisms in the Louvre Museum using high-throughput molecular tools and to underline the microbial signature of indoor air in this human-occupied environment. This microbial community was monitored for 6 month during occupied time. The quantitative results revealed variations in the concentrations of less than one logarithm, with average values of 10(3) and 10(4) Escherichia coli/Aspergillus fumigatus genome equivalent per m(3) for bacteria and fungi, respectively. Our observations highlight the stability of the indoor airborne bacterial diversity over time, while the corresponding eukaryote community was less stable. Bacterial diversity characterized by pyrosequencing 454 showed high diversity dominated by the Proteobacteria which represented 51.1%, 46.9%, and 38.4% of sequences, for each of the three air samples sequenced. A common bacterial diversity was underlined, corresponding to 58.4% of the sequences. The core species were belonging mostly to the Proteobacteria and Actinobacteria, and to the genus Paracoccus spp., Acinetobacter sp., Pseudomonas sp., Enhydrobacter sp., Sphingomonas sp., Staphylococcus sp., and Streptococcus sp.
Collapse
Affiliation(s)
- C Gaüzère
- Université Paris-Est, Centre Scientifique et Technique du Bâtiment (CSTB), Laboratoire de Recherche et d'Innovation pour l'Hygiène des Bâtiments, Marne-la-Vallée Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Appl Environ Microbiol 2013; 79:3485-93. [PMID: 23542619 DOI: 10.1128/aem.00331-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to determine the composition and diversity of microorganisms associated with bioaerosols in a heavily trafficked metropolitan subway environment. We collected bioaerosols by fluid impingement on several New York City subway platforms and associated sites in three sampling sessions over a 1.5-year period. The types and quantities of aerosolized microorganisms were determined by culture-independent phylogenetic analysis of small-subunit rRNA gene sequences by using both Sanger (universal) and pyrosequencing (bacterial) technologies. Overall, the subway bacterial composition was relatively simple; only 26 taxonomic families made up ~75% of the sequences determined. The microbiology was more or less similar throughout the system and with time and was most similar to outdoor air, consistent with highly efficient air mixing in the system. Identifiable bacterial sequences indicated that the subway aerosol assemblage was composed of a mixture of genera and species characteristic of soil, environmental water, and human skin commensal bacteria. Eukaryotic diversity was mainly fungal, dominated by organisms of types associated with wood rot. Human skin bacterial species (at 99% rRNA sequence identity) included the Staphylococcus spp. Staphylococcus epidermidis (the most abundant and prevalent commensal of the human integument), S. hominis, S. cohnii, S. caprae, and S. haemolyticus, all well-documented human commensal bacteria. We encountered no organisms of public health concern. This study is the most extensive culture-independent survey of subway microbiota so far and puts in place pre-event information required for any bioterrorism surveillance activities or monitoring of the microbiological impact of recent subway flooding events.
Collapse
|
17
|
Liu H, Huang M, Kim JT, Yoo C. Adaptive neuro-fuzzy inference system based faulty sensor monitoring of indoor air quality in a subway station. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-012-0197-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Jafta N, Batterman SA, Gqaleni N, Naidoo RN, Robins TG. Characterization of allergens and airborne fungi in low and middle-income homes of primary school children in Durban, South Africa. Am J Ind Med 2012; 55:1110-21. [PMID: 22674665 DOI: 10.1002/ajim.22081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND The South Durban Health Study (SDHS) is a population-based study that examined the relationship between exposure to ambient air pollutants and respiratory disease among school children with high prevalence of asthma who resided in two purposely selected communities in north and south Durban, KwaZulu-Natal, South Africa. METHODS From the SDHS participants, a subgroup of 135 families was selected for investigation of household characteristics potentially related to respiratory health. In these households, a walkthrough investigation was conducted, and settled dust and air samples were collected for allergen and fungal measurements using standardized techniques. RESULTS Asp f1 allergen was detected in all homes, and Bla g1 allergen was detected in half of the homes. House dust allergens, Der f1 and Der p1 exceeded concentrations associated with risk of sensitization and exacerbation of asthma in 3% and 13%, respectively, of the sampled homes, while Bla g1 exceeded guidance values in 13% of the homes. Although airborne fungal concentrations in sleep areas and indoors were lower than outdoor concentrations, they exceeded 1,000 CFU/m(3) in 29% of the homes. Multivariate analyses identified several home characteristics that were predictors of airborne fungal concentrations, including moisture, ventilation, floor type, and bedding type. Airborne fungal concentrations were similar indoors and outdoors, which likely reduced the significance of housing and indoor factors as determinants of indoor concentrations. CONCLUSION Allergen concentrations were highly variable in homes, and a portion of the variability can be attributed to easily recognized conditions.
Collapse
Affiliation(s)
- Nkosana Jafta
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | | | | | | | | |
Collapse
|
19
|
Usuda K, Kono K, Dote T, Watanabe M, Shimizu H, Tanimoto Y, Yamadori E. An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environ Health Prev Med 2012; 12:231-7. [PMID: 21432068 DOI: 10.1007/bf02898029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 08/24/2007] [Indexed: 11/24/2022] Open
Abstract
The biological, medical and environmental roles of trace elements have attracted considerable attention over the years. In spite of their relevance in nutritional, occupational and toxicological aspects, there is still a lack of consistent and reliable measurement techniques and reliable information on reference values. In this review our understandings of the urinary profilings of boron, lithium and strontium are summarized and fundamental results obtained in our laboratory are discussed.Over the past decade we have successfully used inductively coupled plasma emission spectrometry for the determination of reference values for urinary concentrations of boron, lithium and strontium. Taking into account the short biological half-life of these elements and the fact that their major excretion route is via the kidney, urine was considered to be a suitable material for monitoring of exposure to these elements. We confirmed that urinary concentrations of boron, lithium and strontium follow a lognormal distribution. The geometric mean reference values and 95% confidence intervals were 798 μg/l (398-1599 μg/l) for boron, 23.5 μg/l (11.0-50.5 μg/l) for lithium and 143.9 μg/l (40.9-505.8 μg/l) for strontium. There were no discrepancies between our values and those previously reported. Our reference values and confidential intervals can be used as guidelines for the health screening of Japanese individuals to evaluate environmental or occupational exposure to these elements.
Collapse
Affiliation(s)
- Kan Usuda
- Division of Preventive and Social Medicine Department of Hygiene and Public Health, Osaka Medical College, 2-7 Daigakumachi, 569-8686, Takatsuki City, Osaka, Japan,
| | | | | | | | | | | | | |
Collapse
|
20
|
Li M, Qi J, Zhang H, Huang S, Li L, Gao D. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3812-3819. [PMID: 21724240 DOI: 10.1016/j.scitotenv.2011.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
Bioaerosol particles in the atmosphere were collected from the coastal region of Qingdao from Jul. 2009 to Jun. 2010. The concentrations of microorganisms (including culturable, nonculturable, terrestrial and marine microorganisms) were measured. Average concentrations of airborne terrestrial bacteria, marine bacteria, terrestrial fungi, marine fungi and total bioaerosol were in the ranges of 33-664 CFU/m(3), 63-815 CFU/m(3), 2-777 CFU/m(3), 66-1128 CFU/m(3) and 85,015-166,094 Cells/m(3), respectively. The nonculturable microbes accounted for 99.13% of the total microbes. In addition, there were more culturable marine microbes than culturable terrestrial microbes, and more airborne fungi than bacteria. The concentration of airborne bacteria showed a skewed distribution pattern, while unimodal size distributions were observed for the concentrations of fungi and total microbes. The airborne microbes mainly existed in >2.1 μm coarse particles. Pearson correlation analysis between the concentrations and meteorological parameters showed that the meteorological parameters had different effects on different kinds of microbes. Sandstorms increased the concentrations of both culturable microbes and total microbes in the bioaerosol.
Collapse
Affiliation(s)
- Mengfei Li
- Laboratory of Marine Environment and Ecology of MOE, Ocean University of China, Qingdao, 266100, China
| | | | | | | | | | | |
Collapse
|
21
|
Kim KY, Kim YS, Kim D, Kim HT. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations. INDUSTRIAL HEALTH 2010; 49:242-248. [PMID: 21173524 DOI: 10.2486/indhealth.ms1199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station.
Collapse
Affiliation(s)
- Ki Youn Kim
- Institute of Industrial and Environmental Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
22
|
Feng Y, Mu C, Zhai J, Li J, Zou T. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:574-582. [PMID: 20692096 DOI: 10.1016/j.jhazmat.2010.07.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
Carbonyl compounds including their concentrations, potential sources, diurnal variations and personal exposure were investigated in six subway stations and in-subway trains in Shanghai in June 2008. The carbonyls were collected onto solid sorbent (Tenax TA) coated with pentafluorophenyl hydrazine (PFPH), followed by solvent extraction and gas chromatography (GC)/mass spectrometry (MS) analysis of the PFPH derivatives. The total carbonyl concentrations of in-subway train were about 1.4-2.5 times lower than in-subway stations. A significant correlation (R>0.5, p<0.01) between the concentrations of the low molecular-weight carbonyl compounds (<C(5)) and ozone was found in the subway stations. The diurnal variations in both the subway station and in-subway train showed that the concentrations of most carbonyls were much higher in the morning rush hour than in other sampling periods. Additionally, pronounced diurnal variations of acetaldehyde concentration before and after the evening peak hour in the subway train suggested that passengers contributed to high acetaldehyde levels. The personal exposure showed that the underground subway stations were important microenvironment for exposure to formaldehyde and acetaldehyde.
Collapse
Affiliation(s)
- Yanli Feng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | | | | | | | | |
Collapse
|
23
|
Kawasaki T, Kyotani T, Ushiogi T, Izumi Y, Lee H, Hayakawa T. Distribution and Identification of Airborne Fungi in Railway Stations in Tokyo, Japan. J Occup Health 2010; 52:186-93. [DOI: 10.1539/joh.o9022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | - Yasuhiko Izumi
- Architecture Laboratory, Railway Technical Research InstituteJapan
| | - Hunjun Lee
- Hygiene and Microbiology Research CenterJapan
| | | |
Collapse
|