1
|
Grijsen ML, Nguyen TH, Pinheiro RO, Singh P, Lambert SM, Walker SL, Geluk A. Leprosy. Nat Rev Dis Primers 2024; 10:90. [PMID: 39609422 DOI: 10.1038/s41572-024-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Leprosy, a neglected tropical disease, causes significant morbidity in marginalized communities. Before the COVID-19 pandemic, annual new case detection plateaued for over a decade at ~200,000 new cases. The clinical phenotypes of leprosy strongly parallel host immunity to its causative agents Mycobacterium leprae and Mycobacterium lepromatosis. The resulting spectrum spans from paucibacillary leprosy, characterized by vigorous pro-inflammatory immunity with few bacteria, to multibacillary leprosy, harbouring large numbers of bacteria with high levels of seemingly non-protective, anti-M. leprae antibodies. Leprosy diagnosis remains clinical, leaving asymptomatic individuals with infection undetected. Antimicrobial treatment is effective with recommended multidrug therapy for 6 months for paucibacillary leprosy and 12 months for multibacillary leprosy. The incubation period ranges from 2 to 6 years, although longer periods have been described. Given this lengthy incubation period and dwindling clinical expertise, there is an urgent need to create innovative, low-complexity diagnostic tools for detection of M. leprae infection. Such advancements are vital for enabling swift therapeutic and preventive interventions, ultimately transforming patient outcomes. National health-care programmes should prioritize early case detection and consider post-exposure prophylaxis for individuals in close contact with affected persons. These measures will help interrupt transmission, prevent disease progression, and mitigate the risk of nerve damage and disabilities to achieve the WHO goal 'Towards Zero Leprosy' and reduce the burden of leprosy.
Collapse
Affiliation(s)
- Marlous L Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Thuan H Nguyen
- University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Pushpendra Singh
- Microbial Pathogenesis & Genomics Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Saba M Lambert
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
- Africa Leprosy, Tuberculosis, Rehabilitation and Training (ALERT) Hospital, Addis Ababa, Ethiopia
| | - Stephen L Walker
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
| | - Annemieke Geluk
- Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Mi Z, Wang Z, Wang Y, Xue X, Liao X, Wang C, Sun L, Lin Y, Wang J, Guo D, Liu T, Liu J, Modlin RL, Liu H, Zhang F. Cellular and molecular determinants of bacterial burden in leprosy granulomas revealed by single-cell multimodal omics. EBioMedicine 2024; 108:105342. [PMID: 39321499 PMCID: PMC11462173 DOI: 10.1016/j.ebiom.2024.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Which cell populations that determine the fate of bacteria in infectious granulomas remain unclear. Leprosy, a granulomatous disease with a strong genetic predisposition, caused by Mycobacterium leprae infection, exhibits distinct sub-types with varying bacterial load and is considered an outstanding disease model for studying host-pathogen interactions. METHODS We performed single-cell RNA and immune repertoire sequencing on 11 healthy controls and 20 patients with leprosy, and integrated single-cell data with genome-wide genetic data on leprosy. Multiplex immunohistochemistry, and in vitro and in vivo infection experiments were conducted to confirm the multimodal omics findings. FINDINGS Lepromatous leprosy (L-LEP) granulomas with high bacterial burden were characterised by exhausted CD8+ T cells, and high RGS1 expression in CD8+ T cells was associated with L-LEP. By contrast, tuberculoid leprosy (T-LEP) granulomas with low bacterial burden displayed enrichment in resident memory IFNG+ CD8+ T cells (CD8+ Trm) with high GNLY expression. This enrichment was potentially attributable to the communication between IL1B macrophages and CD8+ Trm via CXCL10-CXCR3 signalling. Additionally, IL1B macrophages in L-LEP exhibited anti-inflammatory phenotype, with high APOE expression contributing to high bacterial burden. Conversely, IL1B macrophages in T-LEP were distinguished by interferon-γ induced GBP family genes. INTERPRETATION The state of IL1B macrophages and functional CD8+ T cells, as well as the relationship between them, is crucial for controlling bacterial persistence within granulomas. These insights may indicate potential targets for host-directed immunotherapy in granulomatous diseases caused by mycobacteria and other intracellular bacteria. FUNDING The Key research and development program of Shandong Province (2021LCZX07), Natural Science Foundation of Shandong Province (ZR2023MH046), Youth Science Foundation Cultivation Funding Plan of Shandong First Medical University (Shandong Academy of Medical Sciences) (202201-123), National Natural Science Foundation of China (82471800, 82230107, 82273545, 82304039), the China Postdoctoral Science Foundation (2023M742162), Shandong Province Taishan Scholar Project (tspd20230608), Joint Innovation Team for Clinical & Basic Research (202410), Central guidance for local scientific and technological development projects of Shandong Province (YDZX2023058).
Collapse
Affiliation(s)
- Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yi Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaotong Xue
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaojie Liao
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Lele Sun
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yingjie Lin
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianwen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Dianhao Guo
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianjun Liu
- Laboratory of Human Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| |
Collapse
|
3
|
Huang CY, Su SB, Chen KT. An update of the diagnosis, treatment, and prevention of leprosy: A narrative review. Medicine (Baltimore) 2024; 103:e39006. [PMID: 39183407 PMCID: PMC11346855 DOI: 10.1097/md.0000000000039006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 06/28/2024] [Indexed: 08/27/2024] Open
Abstract
Leprosy is an infectious disease that remains a public health concern. It is caused by acid-fast Bacillus leprae, which primarily affects the skin and peripheral nerves, potentially leading to long-term disability and stigma. However, current and previous efforts have focused on developing better diagnostic and therapeutic interventions for leprosy, and its prevention needs to be addressed. In this review, we organize the currently published papers and provide updates on the global epidemiology, diagnosis, treatment, and prevention of leprosy. Several online databases, including MEDLINE (National Library of Medicine, Bethesda, MD), PubMed, EMBASE, Web of Science, and Google Scholar, were searched to collect relevant published papers. As a public health issue, the World Health Organization set the goal of leprosy elimination with a prevalence of <1 case per 10,000 people, which was achieved in 2000 and in most countries by 2010, mainly owing to the treatment of leprosy using drugs starting in 1980 and no-cost access for patients since 1995. Although diagnostic and therapeutic techniques have improved, the new occurrence of leprosy remains a critical global disease burden. With continuous technological improvements in diagnosing and treating leprosy, obtaining more relevant healthcare knowledge and preventing leprosy disability are crucial.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Hinders DC, Taal AT, Lisam S, da Rocha AM, Banstola NL, Bhandari P, Saha A, Kishore J, Fernandes VO, Chowdhury AS, van 't Noordende AT, Mieras L, Richardus JH, van Brakel WH. The PEP++ study protocol: a cluster-randomised controlled trial on the effectiveness of an enhanced regimen of post-exposure prophylaxis for close contacts of persons affected by leprosy to prevent disease transmission. BMC Infect Dis 2024; 24:226. [PMID: 38378497 PMCID: PMC10877766 DOI: 10.1186/s12879-024-09125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Leprosy is an infectious disease with a slow decline in global annual caseload in the past two decades. Active case finding and post-exposure prophylaxis (PEP) with a single dose of rifampicin (SDR) are recommended by the World Health Organization as measures for leprosy elimination. However, more potent PEP regimens are needed to increase the effect in groups highest at risk (i.e., household members and blood relatives, especially of multibacillary patients). The PEP++ trial will assess the effectiveness of an enhanced preventive regimen against leprosy in high-endemic districts in India, Brazil, Bangladesh, and Nepal compared with SDR-PEP. METHODS The PEP++ study is a cluster-randomised controlled trial in selected districts of India, Brazil, Bangladesh, and Nepal. Sub-districts will be allocated randomly to the intervention and control arms. Leprosy patients detected from 2015 - 22 living in the districts will be approached to list their close contacts for enrolment in the study. All consenting participants will be screened for signs and symptoms of leprosy and tuberculosis (TB). In the intervention arm, eligible contacts receive the enhanced PEP++ regimen with three doses of rifampicin (150 - 600 mg) and clarithromycin (150 - 500 mg) administered at four-weekly intervals, whereas those in the control arm receive SDR-PEP. Follow-up screening for leprosy will be done for each individual two years after the final dose is administered. Cox' proportion hazards analysis and Poisson regression will be used to compare the incidence rate ratios between the intervention and control areas as the primary study outcome. DISCUSSION Past studies have shown that the level of SDR-PEP effectiveness is not uniform across contexts or in relation to leprosy patients. To address this, a number of recent trials are seeking to strengthen PEP regimens either through the use of new medications or by increasing the dosage of the existing ones. However, few studies focus on the impact of multiple doses of chemoprophylaxis using a combination of antibiotics. The PEP++ trial will investigate effectiveness of both an enhanced regimen and use geospatial analysis for PEP administration in the study communities. TRIAL REGISTRATION NL7022 on the Dutch Trial Register on April 12, 2018. Protocol version 9.0 updated on 18 August 2022 https://www.onderzoekmetmensen.nl/en/trial/23060.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jugal Kishore
- Vardhman Mahavir Medical College/Safdarjung Hospital, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
5
|
Li X, Ma Y, Li G, Jin G, Xu L, Li Y, Wei P, Zhang L. Leprosy: treatment, prevention, immune response and gene function. Front Immunol 2024; 15:1298749. [PMID: 38440733 PMCID: PMC10909994 DOI: 10.3389/fimmu.2024.1298749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Since the leprosy cases have fallen dramatically, the incidence of leprosy has remained stable over the past years, indicating that multidrug therapy seems unable to eradicate leprosy. More seriously, the emergence of rifampicin-resistant strains also affects the effectiveness of treatment. Immunoprophylaxis was mainly carried out through vaccination with the BCG but also included vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection and pathogenesis largely depend on the host's genetic background and immunity, with the onset of the disease being genetically regulated. The immune process heavily influences the clinical course of the disease. However, the impact of immune processes and genetic regulation of leprosy on pathogenesis and immunological levels is largely unknown. Therefore, we summarize the latest research progress in leprosy treatment, prevention, immunity and gene function. The comprehensive research in these areas will help elucidate the pathogenesis of leprosy and provide a basis for developing leprosy elimination strategies.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yun Ma
- Chronic Infectious Disease Control Section, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Guoli Li
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Guangjie Jin
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Li Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Lianhua Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
6
|
Yotsu RR, Bedimo R. Rifapentine in Household Contacts of Patients with Leprosy. N Engl J Med 2023; 389:672-673. [PMID: 37585641 DOI: 10.1056/nejmc2307364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Affiliation(s)
- Rie R Yotsu
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA
| | | |
Collapse
|
7
|
Chen KH, Lin CY, Su SB, Chen KT. Leprosy: A Review of Epidemiology, Clinical Diagnosis, and Management. J Trop Med 2022; 2022:8652062. [PMID: 35832335 PMCID: PMC9273393 DOI: 10.1155/2022/8652062] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 01/03/2023] Open
Abstract
Leprosy is a neglected infectious disease caused by acid-fast bacillus Mycobacterium leprae. It primarily affects the skin and then progresses to a secondary stage, causing peripheral neuropathy with potential long-term disability along with stigma. Leprosy patients account for a significant proportion of the global disease burden. Previous efforts to improve diagnostic and therapeutic techniques have focused on leprosy in adults, whereas childhood leprosy has been relatively neglected. This review aims to update the diagnostic and therapeutic recommendations for adult and childhood leprosy. This review summarizes the clinical, bacteriological, and immunological approaches used in the diagnosis of leprosy. As strategies for the diagnosis and management of leprosy continue to develop better and more advanced knowledge, control and prevention of leprosy are crucial.
Collapse
Affiliation(s)
- Kou-Huang Chen
- School of Mechanical and Electronic Engineering, Sanming University, Sanming, Fujian, China
| | - Cheng-Yao Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
- Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Soto JA, Gálvez NMS, Andrade CA, Ramírez MA, Riedel CA, Kalergis AM, Bueno SM. BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends Immunol 2022; 43:322-335. [PMID: 35074254 DOI: 10.1016/j.it.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis strain used as a vaccine to prevent Mycobacterium tuberculosis (M. tb) infection. Its ability to potentiate the immune response induced by other vaccines and to promote nonspecific immunomodulatory effects has been described. These effects can be triggered by epigenetic reprogramming and metabolic shifts on innate immune cells, a phenomenon known as trained immunity. The induction of trained immunity may contribute to explain why BCG vaccination effectively decreases disease symptoms caused by pathogens different from M. tb. This article explains the importance of BCG immunization and the possible mechanisms associated with the induction of trained immunity, which might be used as a strategy for rapid activation of the immune system against unrelated pathogens.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Nicolás M S Gálvez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Catalina A Andrade
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Mario A Ramírez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Claudia A Riedel
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
9
|
Zhou Z, Pena M, van Hooij A, Pierneef L, de Jong D, Stevenson R, Walley R, Corstjens PLAM, Truman R, Adams L, Geluk A. Detection and Monitoring of Mycobacterium leprae Infection in Nine Banded Armadillos ( Dasypus novemcinctus) Using a Quantitative Rapid Test. Front Microbiol 2021; 12:763289. [PMID: 34777319 PMCID: PMC8581735 DOI: 10.3389/fmicb.2021.763289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae with tropism for skin and peripheral nerves. Incessant transmission in endemic areas is still impeding elimination of leprosy. Although detection of M. leprae infection remains a challenge in asymptomatic individuals, the presence of antibodies specific for phenolglycolipid-I (PGL-I) correlate with bacterial load. Therefore, serosurveillance utilizing field-friendly tests detecting anti-PGL-I antibodies, can be applied to identify those who may transmit bacteria and to study (reduction of) M. leprae transmission. However, serology based on antibody detection cannot discriminate between past and present M. leprae infection in humans, nor can it detect individuals carrying low bacillary loads. In humans, anti-PGL-I IgM levels are long-lasting and usually detected in more individuals than anti-PGL-I IgG levels. Inherent to the characteristically long incubation time of leprosy, IgM/IgG relations (antibody kinetics) in leprosy patients and infected individuals are not completely clear. To investigate the antibody response directly after infection, we have measured antibody levels by ELISA, in longitudinal samples of experimentally M. leprae infected, susceptible nine-banded armadillos (Dasypus novemcinctus). In addition, we assessed the user- and field-friendly, low-cost lateral flow assay (LFA) utilizing upconverting reporter particles (UCP), developed for quantitative detection of human anti-PGL-I IgM (UCP-LFA), to detect treatment- or vaccination-induced changes in viable bacterial load. Our results show that serum levels of anti-PGL-I IgM, and to a lesser extent IgG, significantly increase soon after experimental M. leprae infection in armadillos. In view of leprosy phenotypes in armadillos, this animal model can provide useful insight into antibody kinetics in early infection in the various spectral forms of human leprosy. The UCP-LFA for quantitative detection of anti-PGL-I IgM allows monitoring the efficacy of vaccination and rifampin-treatment in the armadillo leprosy model, thereby providing a convenient tool to evaluate the effects of drugs and vaccines and new diagnostics.
Collapse
Affiliation(s)
- Zijie Zhou
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Pena
- U.S. Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen Disease Programme (NHDP), Baton Rouge, LA, United States
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Louise Pierneef
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle de Jong
- Department Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Roena Stevenson
- U.S. Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen Disease Programme (NHDP), Baton Rouge, LA, United States
| | - Rachel Walley
- U.S. Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen Disease Programme (NHDP), Baton Rouge, LA, United States
| | - Paul L A M Corstjens
- Department Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Richard Truman
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Linda Adams
- U.S. Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen Disease Programme (NHDP), Baton Rouge, LA, United States
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
BCG-induced immunity profiles in household contacts of leprosy patients differentiate between protection and disease. Vaccine 2021; 39:7230-7237. [PMID: 34688497 DOI: 10.1016/j.vaccine.2021.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022]
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae leading to irreversible disabilities along with social exclusion. Leprosy is a spectral disease for which the clinical outcome after M. leprae infection is determined by host factors. The spectrum spans from anti-inflammatory T helper-2 (Th2) immunity concomitant with large numbers of bacteria as well as antibodies against M. leprae antigens in multibacillary (MB) leprosy, to paucibacillary (PB) leprosy characterised by strong pro-inflammatory, Th1 as well as Th17 immunity. Despite decades of availability of adequate antibiotic treatment, transmission of M. leprae is unabated. Since individuals with close and frequent contact with untreated leprosy patients are particularly at risk to develop the disease themselves, prophylactic strategies currently focus on household contacts of newly diagnosed patients. It has been shown that BCG (re)vaccination can reduce the risk of leprosy. However, BCG immunoprophylaxis in contacts of leprosy patients has also been reported to induce PB leprosy, indicating that BCG (re)vaccination may tip the balance between protective immunity and overactivation immunity causing skin/nerve tissue damage. In order to identify who is at risk of developing PB leprosy after BCG vaccination, amongst individuals who are chronically exposed to M. leprae, we analyzed innate and adaptive immune markers in whole blood of household contacts of newly diagnosed leprosy patients in Bangladesh, some of which received BCG vaccination. As controls, individuals from the same area without known contact with leprosy patients were similarly assessed. Our data show the added effect of BCG vaccination on immune markers on top of the effect already induced by M. leprae exposure. Moreover, we identified BCG-induced markers that differentiate between protective and disease prone immunity in those contacts.
Collapse
|
11
|
Pierneef L, van Hooij A, Taal A, Rumbaut R, Nobre ML, van Brakel W, Geluk A. Detection of anti-M. leprae antibodies in children in leprosy-endemic areas: A systematic review. PLoS Negl Trop Dis 2021; 15:e0009667. [PMID: 34449763 PMCID: PMC8428563 DOI: 10.1371/journal.pntd.0009667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leprosy elimination primarily targets transmission of Mycobacterium leprae which is not restricted to patients' households. As interruption of transmission is imminent in many countries, a test to detect infected asymptomatic individuals who can perpetuate transmission is required. Antibodies directed against M. leprae antigens are indicative of M. leprae infection but cannot discriminate between active and past infection. Seroprevalence in young children, however, reflects recent M. leprae infection and may thus be used to monitor transmission in an area. Therefore, this literature review aimed to evaluate what has been reported on serological tests measuring anti-M. leprae antibodies in children without leprosy below the age of 15 in leprosy-endemic areas. METHODS AND FINDINGS A literature search was performed in the databases Pubmed, Infolep, Web of Science and The Virtual Health Library. From the 724 articles identified through the search criteria, 28 full-text articles fulfilled all inclusion criteria. Two additional papers were identified through snowballing, resulting in a total of 30 articles reporting data from ten countries. All serological tests measured antibodies against phenolic glycolipid-I or synthetic derivatives thereof, either quantitatively (ELISA or UCP-LFA) or qualitatively (ML-flow or NDO-LID rapid test). The median seroprevalence in children in endemic areas was 14.9% and was stable over time if disease incidence remained unchanged. Importantly, seroprevalence decreased with age, indicating that children are a suitable group for sensitive assessment of recent M. leprae infection. However, direct comparison between areas, solely based on the data reported in these studies, was impeded by the use of different tests and variable cut-off levels. CONCLUSIONS Quantitative anti-PGL-I serology in young children holds promise as a screening test to assess M. leprae infection and may be applied as a proxy for transmission and thereby as a means to monitor the effect of (prophylactic) interventions on the route to leprosy elimination.
Collapse
Affiliation(s)
- Louise Pierneef
- Dept. Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk van Hooij
- Dept. Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Raisa Rumbaut
- National Leprosy Program, Ministry of Public Health of Cuba, Havana, Cuba
| | - Mauricio Lisboa Nobre
- Giselda Trigueiro Hospital and Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Annemieke Geluk
- Dept. Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Tió-Coma M, Kiełbasa SM, van den Eeden SJF, Mei H, Roy JC, Wallinga J, Khatun M, Soren S, Chowdhury AS, Alam K, van Hooij A, Richardus JH, Geluk A. Blood RNA signature RISK4LEP predicts leprosy years before clinical onset. EBioMedicine 2021; 68:103379. [PMID: 34090257 PMCID: PMC8182229 DOI: 10.1016/j.ebiom.2021.103379] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is often late- or misdiagnosed leading to irreversible disabilities. Blood transcriptomic biomarkers that prospectively predict those who progress to leprosy (progressors) would allow early diagnosis, better treatment outcomes and facilitate interventions aimed at stopping bacterial transmission. To identify potential risk signatures of leprosy, we collected whole blood of household contacts (HC, n=5,352) of leprosy patients, including individuals who were diagnosed with leprosy 4-61 months after sample collection. METHODS We investigated differential gene expression (DGE) by RNA-Seq between progressors before presence of symptoms (n=40) and HC (n=40), as well as longitudinal DGE within each progressor. A prospective leprosy signature was identified using a machine learning approach (Random Forest) and validated using reverse transcription quantitative PCR (RT-qPCR). FINDINGS Although no significant intra-individual longitudinal variation within leprosy progressors was identified, 1,613 genes were differentially expressed in progressors before diagnosis compared to HC. We identified a 13-gene prospective risk signature with an Area Under the Curve (AUC) of 95.2%. Validation of this RNA-Seq signature in an additional set of progressors (n=43) and HC (n=43) by RT-qPCR, resulted in a final 4-gene signature, designated RISK4LEP (MT-ND2, REX1BD, TPGS1, UBC) (AUC=86.4%). INTERPRETATION This study identifies for the first time a prospective transcriptional risk signature in blood predicting development of leprosy 4 to 61 months before clinical diagnosis. Assessment of this signature in contacts of leprosy patients can function as an adjunct diagnostic tool to target implementation of interventions to restrain leprosy development. FUNDING This study was supported by R2STOP Research grant, the Order of Malta-Grants-for-Leprosy-Research, the Q.M. Gastmann-Wichers Foundation and the Leprosy Research Initiative (LRI) together with the Turing Foundation (ILEP# 702.02.73 and # 703.15.07).
Collapse
Affiliation(s)
- Maria Tió-Coma
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan J F van den Eeden
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Chandra Roy
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Jacco Wallinga
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marufa Khatun
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Sontosh Soren
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Abu Sufian Chowdhury
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Khorshed Alam
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Anouk van Hooij
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
13
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
14
|
Leprosy postexposure prophylaxis with single-dose rifampicin: Nepalese dermatologist's dilemma. PLoS Negl Trop Dis 2021; 15:e0009039. [PMID: 33830989 PMCID: PMC8031444 DOI: 10.1371/journal.pntd.0009039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Bulstra CA, Blok DJ, Alam K, Butlin CR, Roy JC, Bowers B, Nicholls P, de Vlas SJ, Richardus JH. Geospatial epidemiology of leprosy in northwest Bangladesh: a 20-year retrospective observational study. Infect Dis Poverty 2021; 10:36. [PMID: 33752751 PMCID: PMC7986508 DOI: 10.1186/s40249-021-00817-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Leprosy is known to be unevenly distributed between and within countries. High risk areas or ‘hotspots’ are potential targets for preventive interventions, but the underlying epidemiologic mechanisms that enable hotspots to emerge, are not yet fully understood. In this study, we identified and characterized leprosy hotspots in Bangladesh, a country with one of the highest leprosy endemicity levels globally. Methods We used data from four high-endemic districts in northwest Bangladesh including 20 623 registered cases between January 2000 and April 2019 (among ~ 7 million population). Incidences per union (smallest administrative unit) were calculated using geospatial population density estimates. A geospatial Poisson model was used to detect incidence hotspots over three (overlapping) 10-year timeframes: 2000–2009, 2005–2014 and 2010–2019. Ordinal regression models were used to assess whether patient characteristics were significantly different for cases outside hotspots, as compared to cases within weak (i.e., relative risk (RR) of one to two), medium (i.e., RR of two to three), and strong (i.e., RR higher than three) hotspots. Results New case detection rates dropped from 44/100 000 in 2000 to 10/100 000 in 2019. Statistically significant hotspots were identified during all timeframes and were often located at areas with high population densities. The RR for leprosy was up to 12 times higher for inhabitants of hotspots than for people living outside hotspots. Within strong hotspots (1930 cases among less than 1% of the population), significantly more child cases (i.e., below 15 years of age) were detected, indicating recent transmission. Cases in hotspots were not significantly more likely to be detected actively. Conclusions Leprosy showed a heterogeneous distribution with clear hotspots in northwest Bangladesh throughout a 20-year period of decreasing incidence. Findings confirm that leprosy hotspots represent areas of higher transmission activity and are not solely the result of active case finding strategies.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s40249-021-00817-4.
Collapse
Affiliation(s)
- Caroline A Bulstra
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany.
| | - David J Blok
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Khorshed Alam
- Rural Health Programme, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - C Ruth Butlin
- The Leprosy Mission England and Wales, Goldhay Way, Orton Goldhay, Peterborough, England
| | - Johan Chandra Roy
- Rural Health Programme, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Bob Bowers
- Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | | | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Hacker MA, Sales AM, Duppre NC, Sarno EN, Moraes MO. Leprosy incidence and risk estimates in a 33-year contact cohort of leprosy patients. Sci Rep 2021; 11:1947. [PMID: 33479421 PMCID: PMC7820484 DOI: 10.1038/s41598-021-81643-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
Reduction in incidence has been associated with the introduction of novel approaches, like chemo/immune-prophylaxis. Incidence determined through follow-up cohort studies can evaluate the implementation of these innovative policies towards control and prevention. We have assessed the incidence in our contacts cohort over past 33 years, considering the effect of demographic and clinical variables. Survival analysis was used to estimate the risk of leprosy. A total of 9024 contacts were evaluated, of which 192 developed leprosy, resulting in an overall incidence of 1.4/1000 person-years. The multivariate analysis showed that the major risk factors were (i) contact from MB index cases and (ii) consanguinity (iii) intra household contact. Lower risk was detected for contacts with BCG scar who were revaccinated. There was a significant decrease in accumulated risk between the 2011-2019 period compared with 1987, probably linked to the improvement in laboratory tools to monitor contacts, thereby providing early diagnosis of contacts at intake and reduction of transmission. Our findings suggest that a combination of contact surveillance and tracing, adequate neurodermatological examination, and availability of molecular tools is highly effective in supporting early diagnosis, while a second dose of the BCG vaccination can exert extra protection.
Collapse
Affiliation(s)
- Mariana Andrea Hacker
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Anna Maria Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Nádia Cristina Duppre
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| |
Collapse
|
17
|
Cost-Effectiveness Analysis of BCG Vaccination against Tuberculosis in Indonesia: A Model-Based Study. Vaccines (Basel) 2020; 8:vaccines8040707. [PMID: 33256143 PMCID: PMC7711585 DOI: 10.3390/vaccines8040707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette–Guerin (BCG), the only available vaccine for tuberculosis (TB), has been applied for decades. The Indonesian government recently introduced a national TB disease control programme that includes several action plans, notably enhanced vaccination coverage, which can be strengthened through underpinning its favourable cost-effectiveness. We designed a Markov model to assess the cost-effectiveness of Indonesia’s current BCG vaccination programme. Incremental cost-effectiveness ratios (ICERs) were evaluated from the perspectives of both society and healthcare. The robustness of the analysis was confirmed through univariate and probabilistic sensitivity analysis (PSA). Using epidemiological data compiled for Indonesia, BCG vaccination at a price US$14 was estimated to be a cost-effective strategy in controlling TB disease. From societal and healthcare perspectives, ICERs were US$104 and US$112 per quality-adjusted life years (QALYs), respectively. The results were robust for variations of most variables in the univariate analysis. Notably, the vaccine’s effectiveness regarding disease protection, vaccination costs, and case detection rates were key drivers for cost-effectiveness. The PSA results indicated that vaccination was cost-effective even at US$175 threshold in 95% of cases, approximating the monthly GDP per capita. Our findings suggest that this strategy was highly cost-effective and merits prioritization and extension within the national TB programme. Our results may be relevant for other high endemic low- and middle-income countries.
Collapse
|
18
|
Schoenmakers A, Mieras L, Budiawan T, van Brakel WH. The State of Affairs in Post-Exposure Leprosy Prevention: A Descriptive Meta-Analysis on Immuno- and Chemo-Prophylaxis. Res Rep Trop Med 2020; 11:97-117. [PMID: 33117053 PMCID: PMC7573302 DOI: 10.2147/rrtm.s190300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Annually, over 200,000 people are diagnosed with leprosy, also called Hansen's disease. This number has been relatively stable over the past years. Progress has been made in the fields of chemoprophylaxis and immunoprophylaxis to prevent leprosy, with a primary focus on close contacts of patients. In this descriptive meta-analysis, we summarize the evidence and identify knowledge gaps regarding post-exposure prophylaxis against leprosy. METHODS A systematic literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was conducted by searching the medical scientific databases Cochrane, Embase, Pubmed/MEDLINE, Research Gate, Scopus and Web of Science on Jan. 22, 2020, using a combination of synonyms for index terms in four languages: "leprosy" and "population" or "contacts" and "prevention" or "prophylaxis." Subsequently, Infolep.org and Google Scholar were searched and the "snowball method" was used to retrieve other potentially relevant literature. The found articles were screened for eligibility using predetermined inclusion and exclusion criteria. RESULTS After deduplication, 1,515 articles were screened, and 125 articles were included in this descriptive meta-analysis. Immunoprophylaxis by bacillus Calmette-Guérin (BCG) vaccination is known to provide protection against leprosy. The protection it offers is higher in household contacts of leprosy patients compared with the general population and is seen to decline over time. Contact follow-up screening is important in the first period after BCG administration, as a substantial number of new leprosy patients presents three months post-vaccination. Evidence for the benefit of re-vaccination is conflicting. The World Health Organization (WHO) included BCG in its Guidelines for the Diagnosis, Treatment and Prevention of Leprosy by stating that BCG at birth should be maintained in at least all leprosy high-burden regions. Literature shows that several vaccination interventions with other immunoprophylactic agents demonstrate similar or slightly less efficacy in leprosy risk reduction compared with BCG. However, most of these studies do not exclusively focus on post-exposure prophylaxis. Two vaccines are considered future candidates for leprosy prophylaxis: Mycobacterium indicus pranii (MiP) and LepVax. For chemoprophylaxis, trials were performed with dapsone/acedapsone, rifampicin, and ROM, a combination of rifampicin, ofloxacin, and minocycline. Single-dose rifampicin is favored as post-exposure prophylaxis, abbreviated as SDR-PEP. It demonstrated a protective effect of 57% in the first two years after administration to contacts of leprosy patients. It is inexpensive, and adverse events are rare. The risk of SDR-PEP inducing rifampicin resistance is considered negligible, but continuous monitoring in accordance with WHO policies should be encouraged. The integration of contact screening and SDR-PEP administration into different leprosy control programs was found to be feasible and well accepted. Since 2018, SDR-PEP is included in the WHO Guidelines for the Diagnosis, Treatment and Prevention of Leprosy. CONCLUSION Progress has been made in the areas of chemoprophylaxis and immunoprophylaxis to prevent leprosy in contacts of patients. Investing in vaccine studies, like LepVax and MiP, and increasing harmonization between tuberculosis (TB) and leprosy research groups is important. SDR-PEP is promising as a chemoprophylactic agent, and further implementation should be promoted. More chemoprophylaxis research is needed on: enhanced medication regimens; interventions in varying (epidemiological) settings, including focal mass drug administration (fMDA); specific approaches per contact type; combinations with screening variations and field-friendly rapid tests, if available in the future; community and health staff education; ongoing antibiotic resistance surveillance; and administering chemoprophylaxis with SDR-PEP prior to BCG administration. Additionally, both leprosy prophylactic drug registration nationally and prophylactic drug availability globally at low or no cost are important for the implementation and further upscaling of preventive measures against leprosy, such as SDR-PEP and new vaccines.
Collapse
|
19
|
Tió-Coma M, Avanzi C, Verhard EM, Pierneef L, van Hooij A, Benjak A, Roy JC, Khatun M, Alam K, Corstjens P, Cole ST, Richardus JH, Geluk A. Genomic Characterization of Mycobacterium leprae to Explore Transmission Patterns Identifies New Subtype in Bangladesh. Front Microbiol 2020; 11:1220. [PMID: 32612587 PMCID: PMC7308449 DOI: 10.3389/fmicb.2020.01220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is an unculturable bacterium with a considerably reduced genome (3.27 Mb) compared to homologues mycobacteria from the same ancestry. In 2001, the genome of M. leprae was first described and subsequently four genotypes (1-4) and 16 subtypes (A-P) were identified providing means to study global transmission patterns for leprosy. In order to understand the role of asymptomatic carriers we investigated M. leprae carriage as well as infection in leprosy patients (n = 60) and healthy household contacts (HHC; n = 250) from Bangladesh using molecular detection of the bacterial element RLEP in nasal swabs (NS) and slit skin smears (SSS). In parallel, to study M. leprae genotype distribution in Bangladesh we explored strain diversity by whole genome sequencing (WGS) and Sanger sequencing. In the studied cohort in Bangladesh, M. leprae DNA was detected in 33.3% of NS and 22.2% of SSS of patients with bacillary index of 0 whilst in HHC 18.0% of NS and 12.3% of SSS were positive. The majority of the M. leprae strains detected in this study belonged to genotype 1D (55%), followed by 1A (31%). Importantly, WGS allowed the identification of a new M. leprae genotype, designated 1B-Bangladesh (14%), which clustered separately between the 1A and 1B strains. Moreover, we established that the genotype previously designated 1C, is not an independent subtype but clusters within the 1D genotype. Intraindividual differences were present between the M. leprae strains obtained including mutations in hypermutated genes, suggesting mixed colonization/infection or in-host evolution. In summary, we observed that M. leprae is present in asymptomatic contacts of leprosy patients fueling the concept that these individuals contribute to the current intensity of transmission. Our data therefore emphasize the importance of sensitive and specific tools allowing post-exposure prophylaxis targeted at M. leprae-infected or -colonized individuals.
Collapse
Affiliation(s)
- Maria Tió-Coma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Charlotte Avanzi
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Els M. Verhard
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Louise Pierneef
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Chandra Roy
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Marufa Khatun
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Khorshed Alam
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Paul Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Lockwood DN, De Barros B, Walker SL. Single-dose rifampicin and BCG to prevent leprosy. Int J Infect Dis 2020; 92:269-270. [DOI: 10.1016/j.ijid.2020.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
|
21
|
Richardus JH, Geluk A. Reply to: Single-dose rifampicin and BCG to prevent leprosy. Int J Infect Dis 2020; 92:271-272. [PMID: 32014601 DOI: 10.1016/j.ijid.2020.01.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022] Open
Affiliation(s)
- Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
22
|
Ignotti E, Steinmann P. Perspectives for leprosy control and elimination. CAD SAUDE PUBLICA 2020; 36:e00170019. [DOI: 10.1590/0102-311x00170019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eliane Ignotti
- Universidade do Estado de Mato Grosso, Brazil; Universidade Federal de Mato Grosso, Brazil
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute, Switzerland; University of Basel, Switzerland
| |
Collapse
|
23
|
Sardana K, Khurana A. Leprosy stigma & the relevance of emergent therapeutic options. Indian J Med Res 2020; 151:1-5. [PMID: 32134008 PMCID: PMC7055175 DOI: 10.4103/ijmr.ijmr_2625_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, New Delhi 110 001, India
| | - Ananta Khurana
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, New Delhi 110 001, India
| |
Collapse
|