1
|
Troncoso-Bravo T, Ramírez MA, Loaiza RA, Román-Cárdenas C, Papazisis G, Garrido D, González PA, Bueno SM, Kalergis AM. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024; 173:481-496. [PMID: 39161170 DOI: 10.1111/imm.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Collapse
Affiliation(s)
- Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Román-Cárdenas
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Garrido
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Gu X, Pan A, Wu L, Zhang J, Xu Z, Wen T, Wang M, Shi X, Wu L, Qin Y. Multiplexed detection of respiratory pathogens using a portable device combining a CREM strategy. Chem Sci 2024:d4sc05226a. [PMID: 39421201 PMCID: PMC11480825 DOI: 10.1039/d4sc05226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Rapid and precise detection of respiratory pathogens is crucial for clinical diagnosis and treatment of respiratory infections. In this study, the multiplex and visual detection of respiratory pathogens is facilitated by specifically designed engineered CRISPR RNA (en-crRNA) to activate the trans-cleavage activity of Cas12a, along with a homemade portable device. The en-crRNA comprised an original crRNA and a DNA reporter molecule that is labelled with both a fluorophore and a quencher. Moreover, the DNA is partially complementary to the variable region of the original crRNA. The proof of concept was demonstrated by simultaneously identifying distinct respiratory pathogens with a detection limit of 102 copies per μL. The visual discrimination was subsequently achieved using a homemade portable device that was seamlessly integrated with a smartphone. The specificity of the strategy was validated by comparing with qPCR assays for clinical sample detection, demonstrating exceptional accuracy with areas under the ROC curves of 0.98 for all targets. The research provides a promising avenue for the development of rapid, specific, and on-site detection techniques aimed at multiplex identification of respiratory pathogens.
Collapse
Affiliation(s)
- Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
- Xinglin College, Nantong University Qidong Jiangsu 226236 P. R. China
| | - Anli Pan
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Lingwei Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jing Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Zixun Xu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Tao Wen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Miaomiao Wang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Xiuying Shi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University No. 20, Xisi Road Nantong 226001 Jiangsu China
| | - Li Wu
- School of Life Sciences, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University Nantong Jiangsu 226019 P. R. China
| |
Collapse
|
3
|
Wilson R, Kovacs D, Crosby M, Ho A. Global Epidemiology and Seasonality of Human Seasonal Coronaviruses: A Systematic Review. Open Forum Infect Dis 2024; 11:ofae418. [PMID: 39113828 PMCID: PMC11304597 DOI: 10.1093/ofid/ofae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background We characterized the global epidemiology and seasonality of human coronaviruses (HCoVs) OC43, NL63, 229E, and HKU1. Methods In this systematic review, we searched MEDLINE, EMBASE, Web of Science, SCOPUS, CINAHL, and backward citations for studies published until 1 September 2023. We included studies with ≥12 months of consecutive data and tested for ≥1 HCoV species. Case reports, review articles, animal studies, studies focusing on SARS-CoV-1, SARS-CoV-2, and/or Middle East respiratory syndrome, and those including <100 cases were excluded. Study quality and risk of bias were assessed using Joanna Briggs Institute Critical Appraisal Checklist tools. We reported the prevalence of all HCoVs and individual species. Seasonality was reported for studies that included ≥100 HCoVs annually. This study is registered with PROSPERO, CRD42022330902. Results A total of 201 studies (1 819 320 samples) from 68 countries were included. A high proportion were from China (19.4%; n = 39), whereas the Southern Hemisphere was underrepresented. Most were case series (77.1%, n = 155) with samples from secondary care (74.1%, n = 149). Seventeen (8.5%) studies included asymptomatic controls, whereas 76 (37.8%) reported results for all 4 HCoV species. Overall, OC43 was the most prevalent HCoV. Median test positivity of OC43 and NL63 was higher in children, and 229E and HKU1 in adults. Among 18 studies that described seasonality (17 from the Northern Hemisphere), circulation of all HCoVs mostly peaked during cold months. Conclusions In our comprehensive review, few studies reported the prevalence of individual HCoVs or seasonality. Further research on the burden and circulation of HCoVs is needed, particularly from Africa, South Asia, and Central/South America.
Collapse
Affiliation(s)
- Rory Wilson
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dory Kovacs
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mairi Crosby
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Xiao M, Banu A, Jia Y, Chang M, Wang G, An J, Huang Y, Hu X, Tang C, Li Z, Niu Y, Tian X, Deng W, Tang C, Du J, Cui X, Chan JFW, Peng R, Yin F. Circulation pattern and genetic variation of rhinovirus infection among hospitalized children on Hainan Island, before and after the dynamic zero-COVID policy, from 2021 to 2023. J Med Virol 2024; 96:e29755. [PMID: 38922896 DOI: 10.1002/jmv.29755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Throughout the COVID-19 pandemic, rhinovirus (RV) remained notable persistence, maintaining its presence while other seasonal respiratory viruses were largely suppressed by pandemic restrictions during national lockdowns. This research explores the epidemiological dynamics of RV infections among pediatric populations on Hainan Island, China, specifically focusing on the impact before and after the zero-COVID policy was lifted. From January 2021 to December 2023, 19 680 samples were collected from pediatric patients hospitalized with acute lower respiratory tract infections (ARTIs) at the Hainan Maternal and Child Health Hospital. The infection of RV was detected by tNGS. RV species and subtypes were identified in 32 RV-positive samples representing diverse time points by analyzing the VP4/VP2 partial regions. Among the 19 680 pediatric inpatients with ARTIs analyzed, 21.55% were found to be positive for RV infection, with notable peaks observed in April 2021 and November 2022. A gradual annual decline in RV infections was observed, alongside a seasonal pattern of higher prevalence during the colder months. The highest proportion of RV infections was observed in the 0-1-year age group. Phylogenetic analysis on 32 samples indicated a trend from RV-A to RV-C in 2022. This observation suggests potential evolving dynamics within the RV species although further studies are needed due to the limited sample size. The research emphasizes the necessity for ongoing surveillance and targeted management, particularly for populations highly susceptible to severe illnesses caused by RV infections.
Collapse
Affiliation(s)
- Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya, Malaysia
| | - Afreen Banu
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya, Malaysia
| | - Yibo Jia
- Medical Administration Division, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- International School of Public Health and One Health, Hainan Medical College, Haikou, Hainan, China
| | - Meng Chang
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Gaoyu Wang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jing An
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yi Huang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xiaoyuan Hu
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Chuanning Tang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Zihan Li
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yi Niu
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xiuying Tian
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Wanxin Deng
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Cheng Tang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jiang Du
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuji Cui
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Jasper Fuk-Woo Chan
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ruoyan Peng
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Feifei Yin
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
5
|
Nasrallah GK, Ali F, Younes S, Al Khatib HA, Al-Thani AA, Yassine HM. Enhancing the sensitivity of rapid antigen detection test (RADT) of different SARS-CoV-2 variants and lineages using fluorescence-labeled antibodies and a fluorescent meter. Heliyon 2023; 9:e17179. [PMID: 37325455 PMCID: PMC10257515 DOI: 10.1016/j.heliyon.2023.e17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
RT-qPCR is considered the gold standard for diagnosis of COVID-19; however, it is laborious, time-consuming, and expensive. RADTs have evolved recently as relatively inexpensive methods to address these shortcomings, but their performance for detecting different SARS-COV-2 variants remains limited. RADT test performance could be enhanced using different antibody labeling and signal detection techniques. Here, we aimed to evaluate the performance of two antigen RADTs for detecting different SARS-CoV-2 variants: (i) the conventional colorimetric RADT (Ab-conjugated with gold beads); and (ii) the new Finecare™ RADT (Ab-coated fluorescent beads). Finecare™ is a meter used for the detection of a fluorescent signal. 187 frozen nasopharyngeal swabs collected in Universal transport (UTM) that are RT-qPCR positive for different SARS-CoV-2 variants were selected, including Alpha (n = 60), Delta (n = 59), and Omicron variants (n = 108). Sixty flu and 60 RSV-positive samples were included as negative controls (total sample number = 347). The conventional RADT showed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 62.4% (95%CI: 54-70), 100% (95%CI: 97-100), 100% (95%CI: 100-100), and 58% (95%CI: 49-67), respectively. These measurements were enhanced using the Finecare™ RADT: sensitivity, specificity, PPV, and NPV were 92.6% (95%CI: 89.08-92.3), 96% (95%CI: 96-99.61), 98% (95%CI: 89-92.3), and 85% (95%CI: 96-99.6) respectively. The sensitivity of both RADTs could be greatly underestimated because nasopharyngeal swab samples collected UTM and stored at -80 °C were used. Despite that, our results indicate that the Finecare™ RADT is appropriate for clinical laboratory and community-based surveillance due to its high sensitivity and specificity.
Collapse
Affiliation(s)
- Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | - Fatma Ali
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | - Salma Younes
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | | | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
6
|
Klivleyeva N, Lukmanova G, Glebova T, Shamenova M, Ongarbayeva N, Saktaganov N, Baimukhametova A, Baiseiit S, Ismagulova D, Kassymova G, Rachimbayeva A, Murzagaliyeva A, Xetayeva G, Isabayeva R, Sagatova M. Spread of Pathogens Causing Respiratory Viral Diseases Before and During CoVID-19 Pandemic in Kazakhstan. Indian J Microbiol 2023; 63:129-138. [PMID: 37168842 PMCID: PMC9972336 DOI: 10.1007/s12088-023-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/11/2023] [Indexed: 03/06/2023] Open
Abstract
Analyze clinical samples collected and determine the etiology of viral pathogens and the dynamics of their spread. Acute respiratory viral infections remain one of the key health problems worldwide. They constitute etiologically independent diseases, with similar clinical infection manifestations and a single mechanism for the transmission of pathogens. 4712 nasopharyngeal swabs were collected from people before and during the COVID-19 pandemic with acute respiratory infections that tested negative for COVID-19 and were examined in this study. The collected samples were screened by a real-time polymerase chain reaction on a Rotor-Gene Q6 plex instrument. Statistical processing of the results, tabular, and graphical data were analyzed in the MS Excel. The largest number of the nasopharyngeal swabs were collected from children under 17 years of age (60.75%). In 702 samples (9.85%) pathogens of respiratory infections of non-influenza etiology were detected, including adenovirus, bocavirus, coronavirus, metapneumovirus, paramyxovirus types I–IV, respiratory syncytial virus, and rhinovirus. At the same time, both before and during the COVID-19 pandemic, different influenza virus variants co-circulation (A/H1N1, A/H3N2, and type B) were discovered, with a predominance of viruses with the antigenic formula A/H1N1. The results of the study indicate the need for continuous monitoring of the viral pathogens spread, which will expand the existing knowledge of the viral etiology of respiratory diseases and highlight the importance of viruses in the respiratory infections occurrence.
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Galina Lukmanova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Tatyana Glebova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Mira Shamenova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Nuray Ongarbayeva
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Nurbol Saktaganov
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Assem Baimukhametova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Sagadat Baiseiit
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Dariya Ismagulova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | | | - Almagul Rachimbayeva
- The Almaty Branch of National Center for Expertise, 3 Zhibek Zholy Avenue, Almaty, Kazakhstan
| | - Ardak Murzagaliyeva
- The West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe, Kazakhstan
| | - Gulzakira Xetayeva
- The Children’s City Clinical Infectious Diseases Hospital, SOPE On REM, ChCCIDH, 299a Baizakova Street, Almaty, Kazakhstan
| | - Rauna Isabayeva
- The Communal State Enterprise Regional Region Clinical Hospital (CSE RCH) of Karaganda Regional Health Department, 41/43 Erubaev Street, Karaganda, Kazakhstan
| | - Madisha Sagatova
- The East Kazakhstan Regional Branch of National Center for Expertise, 17 Independence Avenue, Ust-Kamenogorsk, Kazakhstan
| |
Collapse
|
7
|
Riepl A, Straßmayr L, Voitl P, Ehlmaier P, Voitl JJM, Langer K, Kuzio U, Mühl-Riegler A, Mühl B, Diesner-Treiber SC. The surge of RSV and other respiratory viruses among children during the second COVID-19 pandemic winter season. Front Pediatr 2023; 11:1112150. [PMID: 36816380 PMCID: PMC9929140 DOI: 10.3389/fped.2023.1112150] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The non-pharmaceutical measures in the first Covid-19 winter season significantly impacted respiratory pathogens such as RSV, influenza, or metapneumovirus, which cause respiratory infections, especially in infants and young children. This longitudinal prospective study aimed to determine how less strict measures affect the pathogen profile in the second winter season. METHODS From September 2021 till the end of March 2022, 678 children (0-36 months) admitted to Vienna's largest pediatric center with an acute respiratory infection were enrolled in this study. The researchers performed nasal swabs and tested them by multiplex PCR for 23 respiratory pathogens, chronicled clinical features and treatment, and analyzed the effect of lockdown on the pathogen prevalence. RESULTS The 815 smears of 678 children revealed the most common pathogens to be rhino-/enterovirus (38.5%), RSV (26.7%), and metapneumovirus (7.2%). The lockdown interrupted the early RSV onset in September [RR 0.367, CI (0.184-0.767), p = 0.003], while no effects on the other pathogens were found. Metapneumovirus started circulating in January. Influenza was only sporadically detected. The hospitalization rate was significantly higher than last season due to RSV [OR 4.089, 95%CI (1.414-11.827), p-adj = 0.05]. CONCLUSION With more flexible non-pharmaceutical measures, children aged 0-36 months started presenting again with viral pathogens, such as RSV and metapneumovirus. RSV, associated with a high hospitalization rate, had a very early onset with an abrupt interruption due to the only lockdown.
Collapse
Affiliation(s)
- Angela Riepl
- First Vienna Pediatric Medical Center, Vienna, Austria
| | | | - Peter Voitl
- First Vienna Pediatric Medical Center, Vienna, Austria.,Sigmund Freud University Vienna, Vienna, Austria
| | | | | | - Klara Langer
- First Vienna Pediatric Medical Center, Vienna, Austria
| | - Ulrike Kuzio
- First Vienna Pediatric Medical Center, Vienna, Austria
| | | | | | | |
Collapse
|
8
|
Pérez-López A, Al Mana H, Iqbal M, Suleiman M, Hasan MR, Tang P. Resurgence of influenza A infections in children after the relaxation of COVID-19-related social distancing measures and normalization of international travel in Qatar. J Travel Med 2022; 29:6712676. [PMID: 36150023 PMCID: PMC9619463 DOI: 10.1093/jtm/taac107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
We report an off-season surge of influenza A infections among children in Qatar coinciding with the relaxation of COVID-19 related social restrictions and the normalization of international travel. The unusual surge may be related to population waning immunity after a prolonged reduced influenza A activity in Qatar.
Collapse
Affiliation(s)
- Andrés Pérez-López
- To whom correspondence should be addressed. Department of Pathology and Laboratory Medicine, Sidra Medicine, Level 2M, Office H2M-24093, PO Box 26999, Doha, Qatar. Tel: +974-4003-2908; Mobile: +974-7479-9454;
| | - Hassan Al Mana
- Biomedical Research Centre, Microbiology Department, Qatar University, Doha Qatar
| | | | | | - Mohammad Rubayet Hasan
- Medical Scientific Department, LifeLabs, Toronto, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Patrick Tang
- Division of Microbiology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine in Qatar, Doha, Qatar
| |
Collapse
|
9
|
Alkharsah KR. The Scope of Respiratory Syncytial Virus Infection in a Tertiary Hospital in the Eastern Province of Saudi Arabia and the Change in Seasonal Pattern during and after the COVID-19 Pandemic. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111623. [PMID: 36363580 PMCID: PMC9693047 DOI: 10.3390/medicina58111623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Background and Objectives: Respiratory syncytial virus (RSV) is a major cause of morbidity and hospital admission due to respiratory tract infection among infants and young children. The current study aims to describe the prevalence and the seasonal pattern of RSV during the previous seven years. Materials and Methods: Clinical data and RSV antigen and PCR test results were collected from patients’ medical records at King Fahd Hospital of the University in the Eastern Province of Saudi Arabia between January 2015 and February 2022. Results: The overall percentage of RSV detection was 26.3% (336/1279) among the tested individuals. RSV infection was more common among children below five years and elderly above 60 years of age. Two-thirds of the cases required hospitalization. The average hospital stay due to RSV infection was 6.5 days (range 0−56 days). The rate of hospitalization was higher among infants and younger children and decreased with age (p-value < 0.001). RSV infection was more prevalent between August and February and decreased appreciably between March and July. The peak level of infection was during December and January. No RSV infections were reported during the COVID-19 pandemic and the following winter. The cases increased again in August 2021, with an unusual out-of-season peak. Conclusions: RSV infection is one of the important causes of morbidity and hospitalization among infants and young children in Saudi Arabia. The seasonal pattern of infection has changed after the COVID-19 pandemic, and the physicians should be aware that infection may happen currently at different times throughout the year.
Collapse
Affiliation(s)
- Khaled R Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
10
|
Pérez-López A, Al Mana H, Iqbal M, Suleiman M, Hasan MR, Tang P. Variations in respiratory syncytial virus activity following the relaxation of COVID-19 restrictions in Qatar. J Travel Med 2022; 29:6590686. [PMID: 35608003 PMCID: PMC9384098 DOI: 10.1093/jtm/taac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Andrés Pérez-López
- Division of Microbiology, Sidra Medicine, Doha, Qatar.,Weill Cornell Medicine in Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar
| | - Hassan Al Mana
- Biomedical Research Centre, Microbiology Department, Qatar University, Doha Qatar
| | | | | | - Mohammad Rubayet Hasan
- Medical Scientific Department, LifeLabs, Toronto, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Patrick Tang
- Division of Microbiology, Sidra Medicine, Doha, Qatar.,Weill Cornell Medicine in Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
11
|
Zhang Z, Tan L, Tan M, Zhang X, He W, Li M, He J, Pan Y, Xu B, Bin S, Gan Z, Yan L, Sun Y, Jiang H, Sun Q, Zhang Z. Molecular Characterization of the Viral Structural Genes of Human Rhinovirus A11 from Children Hospitalized with Lower Respiratory Tract Infection in Kunming. Int J Infect Dis 2022; 117:274-283. [PMID: 35121125 DOI: 10.1016/j.ijid.2022.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Human rhinovirus (HRV) is a picornavirus that can cause a variety of respiratory diseases, including the aggravation of chronic respiratory diseases, such as bronchitis, pneumonia, and asthma. Although an increasing number of lower respiratory tract infection cases have been reported with HRV infection in Europe, few such cases have been reported in China. METHODS The complete genomic sequences of HRV-A11 epidemic strains were amplifed and obtained by segmented PCR and sequence, then phylogenetic, nucleotide mutation, recombinant, and comparative analyses of amino acid mutations were performed. RESULTS Phylogenetic analyses showed that the epidemic strains from three rare cases of pneumonia belong to the HRV-A11 subgenotypes. All strains were highly similar to strains from the USA. No obvious homologous recombination signals were observed in epidemic strains. There were 498 nucleotide and 47 amino acid mutations compared to the HRV-A11 prototype strain. Amino acid mutations were observed at the capsid protein region, P1a, RVA2147-2155, and RVA97-114 epitopes of these clinical strains. CONCLUSIONS We reported the first case of HRV-A11-associated lower respiratory tract infection in China. These mutations in the P1a, HRV A-specific CD8, and CD4 T-cell epitopes might provide a reference for virological surveillance and vaccine development.
Collapse
Affiliation(s)
- Zhilei Zhang
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| | - Li Tan
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Department of Respiratory Medicine, The Kunming Children' s Hospital, Kunming, PR China.
| | - Miao Tan
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| | - Xiaolin Zhang
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| | - Wenji He
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China.
| | - Ming Li
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Department of Respiratory Medicine, The Kunming Children' s Hospital, Kunming, PR China.
| | - Juan He
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Department of Respiratory Medicine, The Kunming Children' s Hospital, Kunming, PR China.
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.
| | - Bin Xu
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Department of Laboratory, The Kunming Children' s Hospital, Kunming, PR China.
| | - Songtao Bin
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Department of Respiratory Medicine, The Kunming Children' s Hospital, Kunming, PR China.
| | - Zhengyan Gan
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Department of Respiratory Medicine, The Kunming Children' s Hospital, Kunming, PR China.
| | - Lingmei Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.
| | - Yuxing Sun
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Department of Respiratory Medicine, The Kunming Children' s Hospital, Kunming, PR China.
| | - Hongchao Jiang
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.
| | - Zhen Zhang
- Institute of Pediatrics, The Kunming Children' s Hospital, Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| |
Collapse
|
12
|
Prevalence of Human Bocavirus in Children Under 5 Years with Upper and Lower Respiratory Infections in Southeastern Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2022. [DOI: 10.5812/pedinfect.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Human Bocavirus (HBoV) is a parvovirus associated with mild to severe upper and lower respiratory tract infections in children. Objectives: This study aimed to detect the virus in the nasopharynx of children under 5-year-old with respiratory infection by polymerase chain reaction (PCR). Methods: Two hundred samples were taken from children referred to pediatric clinics in Kerman, southeastern Iran, with respiratory infections and were positive for virus by PCR. Next, the positive samples were genotyped by real-time PCR. Results: Out of 200 samples, 13 (6.5%) were positive for the Bocavirus gene, and all positive samples were infected by HBoV-1. We observed that 116 patients were male, and there was no difference in the prevalence of the virus based on gender (P = 0.345). The prevalence was significantly higher in infants under 10 months old (P = 0.049). Infection by Bucavirus virus was significantly correlated with symptoms, such as fever (P = 0.035, r = 0.7), otitis media (P = 0.013, r = 0.8), diarrhea, nausea, and vomiting (P = 0.001, r = 0.4). Conclusions: According to our findings, HBoV could be one of the causes of infections in the respiratory system of children, and the only type in the studied region is HBoV-1.
Collapse
|
13
|
Respiratory Syncytial Virus: New Challenges for Molecular Epidemiology Surveillance and Vaccination Strategy in Patients with ILI/SARI. Vaccines (Basel) 2021; 9:vaccines9111334. [PMID: 34835265 PMCID: PMC8622394 DOI: 10.3390/vaccines9111334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Several respiratory pathogens are responsible for influenza-like illness (ILI) and severe respiratory infections (SARI), among which human respiratory syncytial virus (hRSV) represents one of the most common aetiologies. We analysed the hRSV prevalence among subjects with ILI or SARI during the five influenza seasons before the emergence of SARS-CoV-2 epidemic in Sicily (Italy). Respiratory specimens from ILI outpatients and SARI inpatients were collected in the framework of the Italian Network for the Influenza Surveillance and molecularly tested for hRSV-A and hRSV-B. Overall, 8.1% of patients resulted positive for hRSV. Prevalence peaked in the age-groups <5 years old (range: 17.6–19.1%) and ≥50 years old (range: 4.8–5.1%). While the two subgroups co-circulated throughout the study period, hRSV-B was slightly predominant over hRSV-A, except for the season 2019–2020 when hRSV-A strongly prevailed (82.9%). In the community setting, the distribution of hRSV subgroups was balanced (47.8% vs. 49.7% for hRSV-A and hRSV-B, respectively), while most infections identified in the hospital setting were caused by hRSV-B (69.5%); also, this latter one was more represented among hRSV cases with underlying diseases, as well as among those who developed a respiratory complication. The molecular surveillance of hRSV infections may provide a valuable insight into the epidemiological features of ILI/SARI. Our findings add new evidence to the existing knowledge on viral aetiology of ILI and SARI in support of public health strategies and may help to define high-risk categories that could benefit from currently available and future vaccines.
Collapse
|
14
|
Epidemiology of Human Bocavirus in the Middle East and North Africa: Systematic Review. Pathogens 2021; 10:pathogens10111456. [PMID: 34832613 PMCID: PMC8620978 DOI: 10.3390/pathogens10111456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The emergence of the COVID-19 pandemic highlighted the importance of studying newly emerging viruses that cause respiratory illnesses. Human bocavirus (HBoV) is one of the relatively newly discovered viruses that has been detected worldwide and causes respiratory and gastrointestinal infections, mainly in pediatric patients. However, little is known about the pathogenicity and evolution of HBoV. This systematic review was initiated to clarify the prevalence and circulating genotypes of HBoV in both respiratory and stool samples from patients of all age groups in the Middle East and North Africa (MENA) from 2005 to February 2021. We performed an electronic search through Science Direct, Scopus, PubMed, Mendeley and Cochrane Library databases. We included all studies reporting the detection rate of HBoV in the MENA region. Data were extracted, and the quality of the included articles was assessed. We included articles containing data on HBoV only or with other respiratory or gastrointestinal viral infections. Review articles, case studies, and animal and environmental studies were excluded. The final number of articles included in this study was 65 articles. The results showed that the HBoV prevalence in children was the lowest in Iran (0%) and the highest in Egypt (56.8%). In adults, the lowest and the highest prevalence were reported in Iran, with values of 0% and 6.6%, respectively. Regarding the respiratory cases, our findings revealed no significant difference between HBoV prevalence among the tested categories (p-value = 0.998). The present study has shown that HBoV is common in children and adults in the MENA region. This systematic review highlights the need for more data on the role of coinfection of HBoV and other viruses, for instance, SARS-CoV-2 in children with acute bronchiolitis.
Collapse
|
15
|
Ren J, Wu W, Zhang K, Choi EJ, Wang P, Ivanciuc T, Peniche A, Qian Y, Garofalo RP, Zhou J, Bao X. Exchange Protein Directly Activated by cAMP 2 Enhances Respiratory Syncytial Virus-Induced Pulmonary Disease in Mice. Front Immunol 2021; 12:757758. [PMID: 34733289 PMCID: PMC8558466 DOI: 10.3389/fimmu.2021.757758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Department of Chemistry, University of Houston Clear Lake, Clear Lake, TX, United States
| | - Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Peniche
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Youwen Qian
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
16
|
Tran TQ, Mostafa EM, Tawfik GM, Soliman M, Mahabir S, Mahabir R, Dong V, Ravikulan R, Alhijazeen S, Farrag DA, Dumre SP, Huy NT, Hirayama K. Efficacy of face masks against respiratory infectious diseases: a systematic review and network analysis of randomized-controlled trials. J Breath Res 2021; 15. [PMID: 34407516 DOI: 10.1088/1752-7163/ac1ea5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
During the ongoing COVID-19 pandemic, face masks are among the most common and practical control measures used globally in reducing the risk of infection and disease transmission. Although several studies have investigated the efficacy of various face masks and respirators in preventing infection, the results have been inconsistent. Therefore, we performed a systematic review and network meta-analysis (NMA) of the randomized-controlled trials (RCTs) to assess the actual efficacy of face masks in preventing respiratory infections. We searched nine electronic databases up to July 2020 to find potential articles. We accepted trials reporting the protective efficacy of face masks against respiratory infections, of which the primary endpoint was the presence of respiratory infections. We used the ROB-2 Cochrane tool to grade the trial quality. We initially registered the protocol for this study in PROSPERO (CRD42020178516). Sixteen RCTs involving 17 048 individuals were included for NMA. Overall, evidence was weak, lacking statistical power due to the small number of participants, and there was substantial inconsistency in our findings. In comparison to those without face masks, participants with fit-tested N95 respirators were likely to have lesser infection risk (RR 0.67, 95% CI 0.38-1.19,P-score 0.80), followed by those with non-fit-tested N95 and non-fit-tested FFP2 respirators that shared the similar risk, (RR 0.73, 95% CI 0.12-4.36,P-score 0.63) and (RR 0.80, 95% CI 0.38-1.71,P-score 0.63), respectively. Next, participants who donned face masks with and without hand hygiene practices showed modest risk improvement alike (RR 0.89, 95% CI 0.67-1.17,P-score 0.55) and (RR 0.92, 95% CI 0.70-1.22,P-score 0.51). Otherwise, participants donning double-layered cloth masks were prone to infection (RR 4.80, 95% CI 1.42-16.27,P-score 0.01). Eleven out of 16 RCTs that underwent a pairwise meta-analysis revealed a substantially lower infection risk in those donning medical face masks (MFMs) than those without face masks (RR 0.83 95% CI 0.71-0.96). Given the body of evidence through a systematic review and meta-analyses, our findings supported the protective benefits of MFMs in reducing respiratory transmissions, and the universal mask-wearing should be applied-especially during the COVID-19 pandemic. More clinical data is required to conclude the efficiency of cloth masks; in the short term, users should not use cloth face masks in the outbreak hot spots and places where social distancing is impossible.
Collapse
Affiliation(s)
- Thach Quang Tran
- Department of Immunogenetics, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | - Vinh Dong
- AU/UGA Medical Partnership, Athens, Georgia, United States of America
| | | | | | | | | | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kenji Hirayama
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
17
|
Suryadevara M, Domachowske JB. Epidemiology and Seasonality of Childhood Respiratory Syncytial Virus Infections in the Tropics. Viruses 2021; 13:696. [PMID: 33923823 PMCID: PMC8074094 DOI: 10.3390/v13040696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Infections caused by respiratory syncytial virus (RSV) are a major cause of morbidity and mortality in young children worldwide. Understanding seasonal patterns of region-specific RSV activity is important to guide resource allocation for existing and future treatment and prevention strategies. The decades of excellent RSV surveillance data that are available from the developed countries of the world are incredibly instructive in advancing public health initiatives in those regions. With few exceptions, these developed nations are positioned geographically across temperate regions of the world. RSV surveillance across tropical regions of the world has improved in recent years, but remains spotty, and where available, still lacks the necessary longitudinal data to determine the amount of seasonal variation expected over time. However, existing and emerging data collected across tropical regions of the world do indicate that patterns of infection are often quite different from those so well described in temperate areas. Here, we provide a brief summary regarding what is known about general patterns of RSV disease activity across tropical Asia, Africa and South America, then offer additional country-specific details using examples where multiple reports and/or more robust surveillance data have become available.
Collapse
|
18
|
Park S, Lee Y, Michelow IC, Choe YJ. Global Seasonality of Human Coronaviruses: A Systematic Review. Open Forum Infect Dis 2020; 7:ofaa443. [PMID: 33204751 PMCID: PMC7651300 DOI: 10.1093/ofid/ofaa443] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
In the context of the coronavirus disease 2019 pandemic, we aimed to systematically address the global seasonal patterns of human coronavirus (HCoV) infections. We identified relevant articles from MEDLINE, EMBASE, and CINAHL Plus as of May 11, 2020. The main outcomes were the peak months of HCoV infections each year and the months during which more than 5% of positive respiratory specimen tests were attributable to HCoV. Of 707 articles reviewed, 22 met the inclusion criteria. The annual percentage of HCoV infections reached a peak in February globally. We found a higher HCoV positivity rate among studies that tested only children (median: 5.9%, range: 0.9%–18.4%), compared with other studies of adults alone (median: 5.2%, range: 3.3%–7.1%) or the entire population (median: 1.9%, range: 0.2%–8.1%). We found the largest global peak of HCoV during the winter season, with the highest rate of positivity among children.
Collapse
Affiliation(s)
- Sangshin Park
- Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea
| | - Yeonjin Lee
- Department of Social Work and Social Administration, The University of Hong Kong, Pok Fu Lam, Hong Kong.,School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian C Michelow
- Department of Pediatrics, Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Center for International Health Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Young June Choe
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|