1
|
Caza M, Hayman J, Jassem A, Wilmer A. Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel for detection of pathogens in nasopharyngeal and lower respiratory tract specimens. Diagn Microbiol Infect Dis 2024; 110:116368. [PMID: 38906032 DOI: 10.1016/j.diagmicrobio.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024]
Abstract
This study evaluates the performance of the QIAstat-Dx Respiratory SARS-CoV-2 Panel (RS2P) for the detection of respiratory pathogens. RS2P testing was performed on 440 specimens, including 82 negatives and 358 specimens positive for 1 or more targets (520 targets initially detected). Initial testing was performed on multiple platforms during routine laboratory workflow. Specimens with discordant results on RS2P were re-tested on a different platform to obtain a consensus result based on agreement of 2/3 assays. Percent positive, negative and overall agreement (PPA, PNA, POA), as well as concordance by number of targets and CT value range were calculated. RS2P produced valid results in 439 specimens, with a POA of 91.5 % based on consensus results, with 16/31 (51.6 %) discordant specimens with >1 positive target. When individual targets were examined, PPA, PNA and POA were 93.7 %, 99.9 % and 99.6 % compared to consensus results. Overall, RS2P performed well in detection of respiratory pathogens.
Collapse
Affiliation(s)
- Mélissa Caza
- Kelowna General Hospital, Kelowna, BC, Canada; University of British Columbia, Vancouver, BC, Canada; University of British Columbia Okanagan, Kelowna, BC, Canada.
| | - Jen Hayman
- University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Agatha Jassem
- University of British Columbia, Vancouver, BC, Canada; BCCDC Public Health Microbiology & Reference Laboratory, Vancouver, BC, Canada
| | - Amanda Wilmer
- Kelowna General Hospital, Kelowna, BC, Canada; University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
van der Westhuizen C, Newton-Foot M, Nel P. Performance comparison of three commercial multiplex molecular panels for respiratory viruses at a South African academic hospital. Afr J Lab Med 2024; 13:2415. [PMID: 39228900 PMCID: PMC11369576 DOI: 10.4102/ajlm.v13i1.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Respiratory infections are a major contributor to hospital admissions. Identification of respiratory pathogens by means of conventional culture and serology methods remains challenging. Multiplex molecular assays are an appealing alternative that endeavours to be rapid, more accurate and less arduous. Objective The study aimed to compare the clinical performance of three commercial multiplex molecular assays for respiratory viruses. Methods Forty-eight respiratory specimens obtained from patients at Tygerberg Hospital in the Western Cape province of South Africa were studied. These specimens were collected between May 2020 and August 2020. The results of the Seegene Anyplex™ II RV16, FilmArray® Respiratory 2.1 plus Panel (FARP), and QIAstat-Dx® Respiratory SARS-CoV-2 Panel (QRP) were analysed based on the overlapping targets. A composite reference standard was applied to provide a standard reference for comparison. Results The overall sensitivity of the Seegene Anyplex™ II RV16 was 96.6% (57/59), the FARP 98.2% (56/57) and the QRP 80.7% (46/57). The overall specificities were 99.8% (660/661), 99.0% (704/711) and 99.7% (709/711), respectively. The QRP failed to detect coronaviruses and parainfluenza viruses in 41.7% (5/12) and 28.6% (4/14) of positive specimens, respectively, while the FARP produced the lowest target specificity of 88.4% (38/43) for rhinovirus/enterovirus. Conclusion The overall specificity of all three platforms was comparable; however, the sensitivity of the QRP was inferior to that of the ARV and FARP. What this study adds This study adds to the body of performance characteristics described for respiratory multiplex panels, especially in the African context where molecular diagnostics for infectious diseases are gaining momentum.
Collapse
Affiliation(s)
- Clinton van der Westhuizen
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Pieter Nel
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
3
|
Mills DC, Huder JB, Bloemberg GV, Huber M. Comparison of three cartridge-based platforms for syndromic testing for respiratory viruses. Diagn Microbiol Infect Dis 2024; 109:116308. [PMID: 38688147 DOI: 10.1016/j.diagmicrobio.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Syndromic testing, the simultaneous testing for multiple pathogens causing similar symptoms, has recently gained ground in clinical diagnostics. This approach can significantly shorten time to diagnosis and speed up decision-making, leading to an improved outcome for the patient. Here, we compared three automated multiplex PCR platforms for syndromic testing of respiratory samples in a retrospective study, and assessed their relative sensitivities. The PPA between BioFire and QIAstat compared to ePlex was 98.4 % and 93.8 %, respectively, and 6 discrepant results were observed. The BioFire was identified as the platform with the highest relative sensitivity. Overall, the platforms performed similarly and are all suitable for syndromic testing of respiratory samples.
Collapse
Affiliation(s)
| | - Jon Barduot Huder
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
AlBahrani S, AlZahrani SJ, Al-Maqati TN, Almehbash A, Alshammari A, Bujlai R, Ba Taweel S, Almasabi F, AlAmari A, Al-Tawfiq JA. Dynamic Patterns and Predominance of Respiratory Pathogens Post-COVID-19: Insights from a Two-Year Analysis. J Epidemiol Glob Health 2024; 14:311-318. [PMID: 38589755 PMCID: PMC11176149 DOI: 10.1007/s44197-024-00213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Respiratory tract infections (RTIs) stand out as the most frequent causes leading to visits to the emergency department and hospitalizations. This study aims to assess the types and prevalence of respiratory infections across two years following the end of the COVID-19 pandemic. METHODS Patients presenting with an influenza-like illness (ILI) were tested using multiplex RT-PCR (QIAstat-Dx, Qiagen). The multiplexed RT- PCR test detects 21 respiratory viruses and bacteria. RESULTS During the study period, PCR test was done on a total of 1,790 samples were tested, and 712 (40%) were positive for a total of 796 pathogens. The mean age (± SD) of the participants was 20.1 ± 28.4 years in 2022 and 21.9 ± 27.6 years in 2023. Among the detected pathogens, the most prevalent were Rhinovirus/Enterovirus 222 (12.4%), followed by RSV A&B (103 cases, 5.7%), and H1N1 Influenza (77 cases, 4.3%). Additionally, Influenza A/B constituted 172 (9.6%) while parainfluenza constituted (58, 3.2%). SARS-CoV-2 was identified in 3.97% of the samples. Over the two-year period, the monthly pattern of the identified pathogens exhibited fluctuations in the prevalence. Furthermore, variations were observed in the detected pathogens across different age groups. CONCLUSION In addition to adding significant knowledge to the field of respiratory viral infections, this study emphasizes the necessity of ongoing research and surveillance for the detection and characterization of respiratory viruses, particularly those with the potential for emergence. Such studies would also require setting up a strategy for genotyping and/or sequencing of viruses.
Collapse
Affiliation(s)
- Salma AlBahrani
- Infectious Disease Unit, Specialty Internal Medicine, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
- College of medicine-Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Thekra N Al-Maqati
- Department of Clinical laboratory Science, Prince Sultan Military College of health science, Dammam, Saudi Arabia
| | - Atheer Almehbash
- Molecular laboratory department, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Anfal Alshammari
- Molecular laboratory department, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Refan Bujlai
- Molecular laboratory department, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Sarah Ba Taweel
- Molecular laboratory department, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Fares Almasabi
- Radiology Department, Armed Forces Hospital Najran, Najran, Saudi Arabia
| | - Abdullah AlAmari
- Department of pharmacy, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
- Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Time to result advantage of point-of-care SARS-CoV-2 PCR testing to confirm COVID-19 in emergency department: a retrospective multicenter study. Eur J Emerg Med 2023; 30:132-134. [PMID: 36815473 DOI: 10.1097/mej.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Calderaro A, Buttrini M, Farina B, Montecchini S, De Conto F, Chezzi C. Respiratory Tract Infections and Laboratory Diagnostic Methods: A Review with A Focus on Syndromic Panel-Based Assays. Microorganisms 2022; 10:microorganisms10091856. [PMID: 36144458 PMCID: PMC9504108 DOI: 10.3390/microorganisms10091856] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory tract infections (RTIs) are the focus of developments in public health, given their widespread distribution and the high morbidity and mortality rates reported worldwide. The clinical spectrum ranges from asymptomatic or mild infection to severe or fatal disease. Rapidity is required in diagnostics to provide adequate and prompt management of patients. The current algorithm for the laboratory diagnosis of RTIs relies on multiple approaches including gold-standard conventional methods, among which the traditional culture is the most used, and innovative ones such as molecular methods, mostly used to detect viruses and atypical bacteria. The implementation of molecular methods with syndromic panels has the potential to be a powerful decision-making tool for patient management despite requiring appropriate use of the test in different patient populations. Their use radically reduces time-to-results and increases the detection of clinically relevant pathogens compared to conventional methods. Moreover, if implemented wisely and interpreted cautiously, syndromic panels can improve antimicrobial use and patient outcomes, and optimize laboratory workflow. In this review, a narrative overview of the main etiological, clinical, and epidemiological features of RTI is reported, focusing on the laboratory diagnosis and the potentialities of syndromic panels.
Collapse
|
7
|
Ogunbayo AE, Mogotsi MT, Sondlane H, Nkwadipo KR, Sabiu S, Nyaga MM. Pathogen Profile of Children Hospitalised with Severe Acute Respiratory Infections during COVID-19 Pandemic in the Free State Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610418. [PMID: 36012053 PMCID: PMC9408356 DOI: 10.3390/ijerph191610418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
Severe acute respiratory infections (SARI) contribute to mortality in children ≤5 years. Their microbiological aetiologies are often unknown and may be exacerbated in light of coronavirus disease 19 (COVID-19). This study reports on respiratory pathogens in children ≤5 years (n = 84) admitted with SARI during and between the second and third waves of COVID-19 infection in South Africa. Nasopharyngeal/oropharyngeal swabs collected were subjected to viral detection using QIAstat-Dx® Respiratory SARS-CoV-2 Panel. The results revealed viral positivity and negativity detection rates of 88% (74/84) and 12% (10/84), respectively. Of the 21 targeted pathogens, human rhinovirus/enterovirus (30%), respiratory syncytial virus (RSV; 26%), and severe acute respiratory syndrome coronavirus 2 (24%) were mostly detected, with other viruses being 20% and a co-infection rate of 64.2% (54/84). Generally, RSV-positive samples had lower Ct values, and fewer viruses were detected during the third wave. Changes in the circulation patterns of respiratory viruses with total absence of influenza virus could be attributed to measures against COVID-19 transmission, which may result in waned immunity, thereby increasing susceptibility to severe infections in the following season. High viral co-infection rate, as detected, may complicate diagnosis. Nonetheless, accurate identification of the pathogens may guide treatment decisions and infection control.
Collapse
Affiliation(s)
- Ayodeji E. Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Hlengiwe Sondlane
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Kelebogile R. Nkwadipo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
8
|
Cassidy H, van Genne M, Lizarazo-Forero E, Niesters HGM, Gard L. Evaluation of the QIAstat-Dx RP2.0 and the BioFire FilmArray RP2.1 for the Rapid Detection of Respiratory Pathogens Including SARS-CoV-2. Front Microbiol 2022; 13:854209. [PMID: 35401449 PMCID: PMC8989387 DOI: 10.3389/fmicb.2022.854209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Point-of-care syndromic panels allow for simultaneous and rapid detection of respiratory pathogens from nasopharyngeal swabs. The clinical performance of the QIAstat-Dx Respiratory SARS-CoV-2 panel RP2.0 (QIAstat-Dx RP2.0) and the BioFire FilmArray Respiratory panel RP2.1 (BioFire RP2.1) was evaluated for the detection of SARS-CoV-2 and other common respiratory pathogens. A total of 137 patient samples were retrospectively selected based on emergency department admission, along with 33 SARS-CoV-2 positive samples tested using a WHO laboratory developed test. The limit of detection for SARS-CoV-2 was initially evaluated for both platforms. The QIAstat-Dx RP2.0 detected SARS-CoV-2 at 500 copies/mL and had a positive percent agreement (PPA) of 85%. The BioFire RP2.1 detected SARS-CoV-2 at 50 copies/mL and had a PPA of 97%. Both platforms showed a negative percent agreement of 100% for SARS-CoV-2. Evaluation of analytical specificity from a range of common respiratory targets showed a similar performance between each platform. The QIAstat-Dx RP2.0 had an overall PPA of 82% (67–100%) in clinical samples, with differences in sensitivity depending on the respiratory target. Both platforms can be used to detect acute cases of SARS-CoV-2. While the QIAstat-Dx RP2.0 is suitable for detecting respiratory viruses within a clinical range, it has less analytical and clinical sensitivity for SARS-CoV-2 compared to the BioFire RP2.1.
Collapse
|
9
|
Ishikane M, Unoki-Kubota H, Moriya A, Kutsuna S, Ando H, Kaburagi Y, Suzuki T, Iwamoto N, Kimura M, Ohmagari N. Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 pPanel, a rRapid mMultiplex PCR mMethod for the dDiagnosis of COVID-19. J Infect Chemother 2022; 28:729-734. [PMID: 35184977 PMCID: PMC8825349 DOI: 10.1016/j.jiac.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Introduction Rapid, simple, and accurate methods are required to diagnose coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to evaluate the performance of the QIAstat-Dx Respiratory SARS-CoV-2 Panel (QIAstat-SARS-CoV-2), a rapid multiplex PCR assay for SARS-CoV-2 detection. Methods Nasopharyngeal swabs (NPS) that were obtained from patients with COVID-19 who were diagnosed at the National Center for Global Health and Medicine were used in this study. When the NPS samples were found to be negative for SARS-CoV-2 after treatment, they were used as negative samples. We evaluated the performance of the QIAstat-SARS-CoV-2 comparing SARS-CoV-2 detection with the National Institute of Infectious Diseases in Japan-recommended real-time polymerase chain reaction (RT-PCR) method (NIID-RT-PCR). Results In total, 45 NPS samples were analyzed. The proportion of overall agreement between QIAstat-SARS-CoV-2 and NIID-RT-PCR on 45 samples was 91.0% with a sensitivity of 84.0% (21/25), specificity at 100% (20/20), negative predictive value at 83.3% (20/24), and positive predictive value at 100% (21/21). There were no patients with co-infections with pathogens other than SARS-CoV-2. Conclusions QIAstat-SARS-CoV-2 showed a high agreement in comparison with the NIID-RT-PCR for the detection of SARS-CoV-2. The QIAstat-SARS-CoV-2 also provided a rapid and accurate diagnosis for COVID-19, even when the concurrent detection of other respiratory pathogens was desired, and therefore, has the potential to direct appropriate therapy and infection control precautions.
Collapse
|
10
|
Results from Observational Studies in Real Therapeutic Practice in Patients with Covid-19. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of the present work is to summarize the available data from observational studies performed in a real clinical setting of patients with active COVID-19 infection.A systematic review of publications in the scientific medical literature was conducted during the period from the beginning of the infection to the end of June, 2021. All of the 28 publications included in this review are full-text, observational studies published in English, conducted in a real clinical environment and present data on patients, who have been infected with COVID-19. Out of the 28 studies, 4 reviewed the possibility of a mother to infect her newborn during pregnancy or breastfeeding and found no risk to children. One study was related to children and adolescents of all races and included also patients with MIS-C and comorbidities. Non-invasive mechanical ventilation (HFNC) with a nasal cannula in patients with respiratory failure has been also explored and was reported to lead to a positive outcome. Three papers were dedicated to assessment of COVID-19 Standard of Care (SoC), in particular administration of hydroxychloroquine and doxycycline, favipiravir and remdesivir. Another three articles reviewed a large cohort of hospitalized patients with COVID-19. The mortality was higher in patients who were in the ICU. Observational studies of patients with COVID-19 in a real life setting are relatively limited, but provide valuable information on the risks of the disease in adults, children and newborns, as well as the treatment of complications of the infection.
Collapse
|
11
|
Syndromic approach to SARS-CoV-2 detection using QIAstat-Dx SARS-CoV-2 panel from clinical samples. J Virol Methods 2021; 298:114300. [PMID: 34562514 PMCID: PMC8457645 DOI: 10.1016/j.jviromet.2021.114300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
The QIAstat-Dx SARS-CoV-2 panel is a multiplex cartridge based assay based on real time PCR which can detect 17 respiratory viruses, including the novel coronavirus SARS-CoV-2. A syndromic approach is the need of the hour for COVID-19 diagnostics among patients presenting with respiratory symptoms. The present study was done to evaluate 120 archived respiratory clinical specimens for SARS-CoV-2 on the SARS-CoV-2 panel. Further, 27 specimens were tested for other respiratory viruses, in comparison with the BioFire RP1.7 platform. The sensitivity and specificity for SARS-CoV-2 on SARS panel was found to be 90.00 % and 100 % respectively, indicating good diagnostic accuracy. The positive predictive value was found to be 100 %, negative predictive value was found to be 99.93 % and accuracy was 99.93 %. Detection of other respiratory viruses observed a concordance of 77.7 %. Despite advantages of speed, minimal expertise and accurate results; significant costs and discrepancies at Ct >35 remain important limitations of the SARS panel.
Collapse
|