1
|
Carole NVD, Sheng L, Ji J, Zhang Y, Sun X. Multispectral pathogens detection in food using multiplex hyperbranched saltatory rolling circle amplification. Talanta 2024; 279:126618. [PMID: 39116729 DOI: 10.1016/j.talanta.2024.126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Foodborne illnesses caused by Salmonella and Staphylococcus aureus are a significant public health concern, leading to societal and economic repercussions. It is important to develop a simple and straightforward bacteria detection and identification method. A triple-probe multiplex rolling circle amplification technique has been developed to simultaneously detect Salmonella Typhimurium and S. aureus. This method utilizes fluorophore-labeled long padlock probes targeting S. Typhimurium invA and S. aureus glnA specific genes, along with a pH-based detection approach for direct visual identification. The multiplex hyperbranched saltatory rolling circle amplification assay at 30 °C has showed promising results with synthetic targets within 30 min and real bacteria within 2 h after establishing the detection settings. The assay is specific for S. aureus and S. Typhimurium, with a limit of detection of 39 μM for fluorescence and 78 μM for colorimetric. In the simulative test of this method for the detection of S. Typhimurium and S. aureus in milk, the limit of detection for the fluorescence signal after 2 h of amplification was 10 CFU/mL and 5 CFU/mL, respectively. The detection method was evaluated to be stable enough to detect pathogen for 3.29 months. Consequently, this triple-probe-multiplex rolling circle amplification method displays notable specificity, sensitivity, as well as ease of interpretation when testing food samples for harmful pathogens.
Collapse
Affiliation(s)
- Nanfack V D Carole
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
2
|
Yang R, Cui L, Xu S, Zhong Y, Xu T, Liu J, Lan Z, Qin S, Guo Y. Membrane-Targeting Amphiphilic Honokiol Derivatives Containing an Oxazole Moiety as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:16858-16872. [PMID: 39259708 DOI: 10.1021/acs.jmedchem.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Infections with methicillin-resistant Staphylococcus aureus (MRSA) are becoming increasingly serious, making the development of novel antimicrobials urgent. Here, we synthesized some amphiphilic honokiol derivatives bearing an oxazole moiety and investigated their antibacterial and hemolytic activities. Bioactivity evaluation showed that E17 possessed significant in vitro antibacterial activity against S. aureus and MRSA, along with low hemolytic activity. Moreover, E17 exhibited rapid bactericidal properties and was not susceptible to resistance. Mechanistic studies indicated that E17 interacts with phosphatidylglycerol and cardiolipin of bacterial cell membranes, leading to changes in cell membrane permeability and polarization, increased intracellular ROS, and leakage of DNA and proteins, thus accelerating bacterial death. Transcriptome analysis further demonstrated that E17 has membrane-targeting effects, affecting the expression of genes related to cell membranes and ABC transporter proteins. Notably, in vivo activity showed that E17 has prominent anti-MRSA efficacy, comparable to vancomycin, and is expected to be a new anti-MRSA drug candidate.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shengnan Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
3
|
Handa VL, Patel BN, Bhattacharya DA, Kothari RK, Kavathia DG, Vyas BRM. A study of antibiotic resistance pattern of clinical bacterial pathogens isolated from patients in a tertiary care hospital. Front Microbiol 2024; 15:1383989. [PMID: 38694800 PMCID: PMC11061477 DOI: 10.3389/fmicb.2024.1383989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
We investigated antibiotic resistance pattern in clinical bacterial pathogens isolated from in-patients and out-patients, and compared it with non-clinical bacterial isolates. 475 bacterial strains isolated from patients were examined for antibiotic resistance. Staphylococcus spp. (148; 31.1%) were found to be the most prevalent, followed by Klebsiella pneumoniae (135; 28.4%), Escherichia coli (74; 15.5%), Pseudomonas aeruginosa (65; 13.6%), Enterobacter spp. (28; 5.8%), and Acinetobacter spp. (25; 5.2%). Drug-resistant bacteria isolated were extended spectrum-β-lactamase K. pneumoniae (8.8%), E. coli (20%), metallo-β-lactamase P. aeruginosa (14; 2.9%), erythromycin-inducing clindamycin resistant (7.4%), and methicillin-resistant Staphylococcus species (21.6%). Pathogens belonging to the Enterobacteriaceae family were observed to undergo directional selection developing resistance against antibiotics ciprofloxacin, piperacillin-tazobactam, cefepime, and cefuroxime. Pathogens in the surgical ward exhibited higher levels of antibiotic resistance, while non-clinical P. aeruginosa and K. pneumoniae strains were more antibiotic-susceptible. Our research assisted in identifying the drugs that can be used to control infections caused by antimicrobial resistant bacteria in the population and in monitoring the prevalence of drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Vishal L. Handa
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Bhoomi N. Patel
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Dr. Arpita Bhattacharya
- Department of Microbiology, Pandit Deendayal Upadhyay Medical College, Rajkot, Gujarat, India
| | - Ramesh K. Kothari
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Dr. Ghanshyam Kavathia
- Department of Microbiology, Pandit Deendayal Upadhyay Medical College, Rajkot, Gujarat, India
| | - B. R. M. Vyas
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
4
|
Wang Y, Mukherjee I, Venkatasubramaniam A, Dikeman D, Orlando N, Zhang J, Ortines R, Mednikov M, Sherchand SP, Kanipakala T, Le T, Shukla S, Ketner M, Adhikari RP, Karauzum H, Aman MJ, Archer NK. Dry and liquid formulations of IBT-V02, a novel multi-component toxoid vaccine, are effective against Staphylococcus aureus isolates from low-to-middle income countries. Front Immunol 2024; 15:1373367. [PMID: 38633244 PMCID: PMC11022162 DOI: 10.3389/fimmu.2024.1373367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) in the U.S. as well as more serious invasive diseases, including bacteremia, sepsis, endocarditis, surgical site infections, osteomyelitis, and pneumonia. These infections are exacerbated by the emergence of antibiotic-resistant clinical isolates such as methicillin-resistant S. aureus (MRSA), highlighting the need for alternatives to antibiotics to treat bacterial infections. We have previously developed a multi-component toxoid vaccine (IBT-V02) in a liquid formulation with efficacy against multiple strains of Staphylococcus aureus prevalent in the industrialized world. However, liquid vaccine formulations are not compatible with the paucity of cold chain storage infrastructure in many low-to-middle income countries (LMICs). Furthermore, whether our IBT-V02 vaccine formulations are protective against S. aureus isolates from LMICs is unknown. To overcome these limitations, we developed lyophilized and spray freeze-dried formulations of IBT-V02 vaccine and demonstrated that both formulations had comparable biophysical attributes as the liquid formulation, including similar levels of toxin neutralizing antibodies and protective efficacy against MRSA infections in murine and rabbit models. To enhance the relevancy of our findings, we then performed a multi-dimensional screen of 83 S. aureus clinical isolates from LMICs (e.g., Democratic Republic of Congo, Palestine, and Cambodia) to rationally down-select strains to test in our in vivo models based on broad expression of IBT-V02 targets (i.e., pore-forming toxins and superantigens). IBT-V02 polyclonal antisera effectively neutralized toxins produced by the S. aureus clinical isolates from LMICs. Notably, the lyophilized IBT-V02 formulation exhibited significant in vivo efficacy in various preclinical infection models against the S. aureus clinical isolates from LMICs, which was comparable to our liquid formulation. Collectively, our findings suggested that lyophilization is an effective alternative to liquid vaccine formulations of our IBT-V02 vaccine against S. aureus infections, which has important implications for protection from S. aureus isolates from LMICs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | | | | | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | - Nicholas Orlando
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | - Jing Zhang
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | - Roger Ortines
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | - Mark Mednikov
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | | | | | - Thao Le
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Sanjay Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Mark Ketner
- Engineered Biopharmaceuticals, Danville, VA, United States
| | | | - Hatice Karauzum
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | - M. Javad Aman
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Quiñonez-Flores A, Martinez-Guerra BA, Román-Montes CM, Tamez-Torres KM, González-Lara MF, Ponce-de-León A, Rajme-López S. Cephalotin Versus Dicloxacillin for the Treatment of Methicillin-Susceptible Staphylococcus aureus Bacteraemia: A Retrospective Cohort Study. Antibiotics (Basel) 2024; 13:176. [PMID: 38391562 PMCID: PMC10885996 DOI: 10.3390/antibiotics13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND First-line treatments for methicillin-susceptible S. aureus (MSSA) bacteraemia are nafcillin, oxacillin, or cefazolin. Regional shortages of these antibiotics force clinicians to use other options like dicloxacillin and cephalotin. This study aims to describe and compare the safety and efficacy of cephalotin and dicloxacillin for the treatment of MSSA bacteraemia. METHODS This retrospective study was conducted in a referral centre in Mexico City. We identified MSSA isolates in blood cultures from 1 January 2012 to 31 December 2022. Patients ≥ 18 years of age, with a first episode of MSSA bacteraemia, who received cephalotin or dicloxacillin as the definitive antibiotic treatment, were included. The primary outcome was in-hospital all-cause mortality. RESULTS We included 202 patients, of which 48% (97/202) received cephalotin as the definitive therapy and 52% (105/202) received dicloxacillin. In-hospital all-cause mortality was 20.7% (42/202). There were no differences in all-cause in-hospital mortality between patients receiving cephalotin or dicloxacillin (20% vs. 21%, p = 0.43), nor in 30-day all-cause mortality (14% vs. 18%, p = 0.57) or 90-day all-cause mortality (24% vs. 22%, p = 0.82). No severe adverse reactions were associated with either antibiotic. CONCLUSIONS Cephalotin and dicloxacillin were equally effective for treating MSSA bacteraemia, and both showed an adequate safety profile.
Collapse
Affiliation(s)
- Alejandro Quiñonez-Flores
- Internal Medicine Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bernardo A Martinez-Guerra
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Carla M Román-Montes
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Karla M Tamez-Torres
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - María F González-Lara
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Alfredo Ponce-de-León
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Sandra Rajme-López
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
6
|
Abdollahi A, Nojomi M, Karimi Y, Ranjbar M. Mortality patterns in patients with Staphylococcus aureus bacteremia during the COVID-19 pandemic: Predictors and insights. Heliyon 2024; 10:e24511. [PMID: 38312595 PMCID: PMC10835178 DOI: 10.1016/j.heliyon.2024.e24511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Objectives This paper aims to determine the Staphylococcus aureus bacteremia (SAB) in-hospital mortality rate and its associated risk factors during the COVID-19 pandemic. Methods A total of 167 SAB samples were collected between March 2020 and March 2022 at a teaching hospital in Tehran, Iran. The patient's baseline data and antibiograms were collected. The outcome of the study was in-hospital mortality. Results The overall in-hospital mortality rate was 41.9 %, with higher mortality observed in patients over 60 years old (P = 0.032), those with community-acquired Staphylococcus aureus bacteremia (P = 0.010), and those admitted to the ICU (P = 0.016). Antibiotic resistance profiles indicated a higher mortality in resistant S.aureus strains but only significant for ciprofloxacin (P = 0.001), methicillin (P = 0.047), and sulfamethoxazole (P = 0.023). Multivariate analysis identified age, sex, ICU admission, and the source of bacteremia as independent predictors of mortality, while COVID-19 coinfection and resistance to antibiotics were not found to be significant predictors. Conclusion SAB remains a challenging infection that is amplified by the pandemic. Older age and ICU admission are significant mortality predictors. In settings with a high prevalence of MRSA, factors like age, sex, and quality of care outweigh pathogen-related factors such as antibiotic resistance.
Collapse
Affiliation(s)
- Arash Abdollahi
- Medical Doctor, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nojomi
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yeganeh Karimi
- Medical Doctor, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Ranjbar
- Department of Infectious Diseases, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Martens CP, Peetermans M, Vanassche T, Verhamme P, Jacquemin M, Martinod K. Peptidylarginine deiminase 4 and ADAMTS13 activity in Staphylococcus aureus bacteraemia. Philos Trans R Soc Lond B Biol Sci 2023; 378:20230042. [PMID: 37778390 PMCID: PMC10542450 DOI: 10.1098/rstb.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus infection is associated with increased levels of neutrophil extracellular traps (NETs) and von Willebrand factor (VWF), and with reduced activity of ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Peptidylarginine deiminase 4 (PAD4) contributes to NET formation and inactivates ADAMTS13 in vitro. The role of PADs in the dynamics of NETs, VWF and ADAMTS13 has not yet been studied. We thus aimed to assess the longitudinal evolution of NETs, PADs, VWF and ADAMTS13 activity in S. aureus infection. Plasma samples from S. aureus bacteraemia patients were longitudinally collected and analysed for NETs, PAD4/PAD2, VWF and ADAMTS13 activity. Correlation analyses with clinical data were performed. Recombinant PAD4 and S. aureus were assessed in vitro for their potential to modulate ADAMTS13 activity. Sixty-seven patients were included. Plasma levels of NETs, VWF, PAD4 and PAD2 were increased and ADAMTS13 activity was decreased. Levels of PADs were negatively correlated with ADAMTS13 activity. NETs were positively correlated with PADs, and negatively with ADAMTS13 activity. In vitro, recombinant PAD4 but not S. aureus reduced ADAMTS13 activity in plasma. Levels of PAD4 and PAD2 correlate with reduced ADAMTS13 activity, with neutrophils as the likely source of PAD activity in S. aureus bacteraemia. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Caroline P. Martens
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| | - Marijke Peetermans
- Laboratory for Clinical Infectious and Inflammatory Diseases, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Marc Jacquemin
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
8
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
9
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
10
|
Ioannou P, Zacharioudaki M, Spentzouri D, Koutoulakou A, Kitsos-Kalyvianakis K, Chontos C, Karakonstantis S, Maraki S, Samonis G, Kofteridis DP. A Retrospective Study of Staphylococcus aureus Bacteremia in a Tertiary Hospital and Factors Associated with Mortality. Diagnostics (Basel) 2023; 13:1975. [PMID: 37296829 PMCID: PMC10253165 DOI: 10.3390/diagnostics13111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Staphylococcus aureus bacteremia (SAB) is a severe infection frequently associated with significant morbidity and mortality. Recent studies have shown that SAB mortality has decreased during the last decades. However, about 25% of patients suffering from the disease will ultimately die. Hence, there is an urgent need for more timely and efficient treatment of patients with SAB. The aim of the present study was to retrospectively evaluate a cohort of SAB patients hospitalized in a tertiary hospital and to identify factors independently associated with mortality. All 256 SAB patients hospitalized from January 2005 to December 2021 in the University Hospital of Heraklion, Greece, were evaluated. Their median age was 72 years, while 101 (39.5%) were female. Most SAB patients were cared for in medical wards (80.5%). The infection was community-acquired in 49.5%. Among all strains 37.9% were methicillin-resistant S. aureus (MRSA), however, definite treatment with an antistaphylococcal penicillin was given only in 22% of patients. Only 14.4% of patients had a repeat blood culture after the initiation of antimicrobial treatment. Infective endocarditis was present in 8%. In-hospital mortality has reached 15.9%. Female gender, older age, higher McCabe score, previous antimicrobial use, presence of a central venous catheter, neutropenia, severe sepsis, septic shock, and MRSA SAB were positively associated with in-hospital mortality, while monomicrobial bacteremia was negatively associated. The multivariate logistic regression model identified only severe sepsis (p = 0.05, odds ratio = 12.294) and septic shock (p = 0.007, odds ratio 57.18) to be independently positively associated with in-hospital mortality. The evaluation revealed high rates of inappropriate empirical antimicrobial treatment and non-adherence to guidelines, as shown, by the lack of repeat blood cultures. These data underline the urgent need for interventions with antimicrobial stewardship, increased involvement of infectious diseases physicians, educational sessions, and creation and implementation of local guidelines for improvement of the necessary steps for timely and efficient SAB treatment. Optimization of diagnostic techniques is needed to overcome challenges such as heteroresistance that may affect treatment. Clinicians should be aware of the factors associated with mortality in patients with SAB to identify those who are at a higher risk and optimize medical management.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Maria Zacharioudaki
- Pediatrics Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Despoina Spentzouri
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | - Christoforos Chontos
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | - Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
11
|
Hou Z, Liu L, Wei J, Xu B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2023; 16:3271-3292. [PMID: 37255882 PMCID: PMC10226514 DOI: 10.2147/idr.s412308] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen with a variety of virulence factors, which can cause multiple infectious diseases. In recent decades, due to the constant evolution and the abuse of antibiotics, Staphylococcus aureus was becoming more resistant, the infection rate of MRSA remained high, and clinical treatment of MRSA became more difficult. The genetic diversity of MRSA was mainly represented by the continuous emergence of epidemic strains, resulting in the constant changes of epidemic clones. Different classes of MRSA resulted in different epidemics and resistance characteristics, which could affect the clinical symptoms and treatments. MRSA had also spread from traditional hospitals to community and livestock environments, and the new clones established a relationship between animals and humans, promoting further evolution of MRSA. Since the resistance mechanism of MRSA is very complex, it is important to clarify these resistance mechanisms at the molecular level for the treatment of infectious diseases. We firstly described the diversity of SCCmec elements, and discussed the types of SCCmec, its drug resistance mechanisms and expression regulations. Then, we described how the vanA operon makes Staphylococcus aureus resistant to vancomycin and its expression regulation. Finally, a brief introduction was given to the drug resistance mechanisms of biofilms and efflux pump systems. Analyzing the resistance mechanism of MRSA can help study new anti-infective drugs and alleviate the evolution of MRSA. At the end of the review, we summarized the treatment strategies for MRSA infection, including antibiotics, anti-biofilm agents and efflux pump inhibitors. To sum up, here we reviewed the epidemic characteristics of Staphylococcus aureus, summarized its classifications, drug resistance mechanisms of MRSA (SCCmec element, vanA operon, biofilm and active efflux pump system) and novel therapy strategies, so as to provide a theoretical basis for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| |
Collapse
|