1
|
Kawasuji H, Morinaga Y, Tani H, Yamada H, Yoshida Y, Ezaki M, Koshiyama Y, Takegoshi Y, Kaneda M, Murai Y, Kimoto K, Nagaoka K, Niimi H, Yamamoto Y. Low pre-infection levels of neutralizing antibody in breakthrough infections after bivalent BA.4-5 vaccine and practical application of dried blood spots. Vaccine 2024; 42:126029. [PMID: 38839519 DOI: 10.1016/j.vaccine.2024.05.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The level of neutralizing antibodies required to confer protection against COVID-19 breakthrough infections (BIs) is unclear, and the ability to know the immune status of individuals against the rapidly changing endemic variants is limited. We assessed longitudinal serum anti-RBD antibody levels and neutralizing activities (NTs) against Omicron BA.5 and XBB.1.5 in healthcare workers following the fourth monovalent and fifth bivalent BA.4-5 vaccines. The occurrence of BIs was also followed, and pre-infection antibody levels were compared between patients who developed BI and those who did not. In addition, we collected whole blood samples on the same day as the sera and stored them on filter papers (nos. 545, 590, and 424) for up to two months, then measured their NTs using dried blood spots (DBS) eluates, and compared them with the NTs in paired sera. Pre-infection levels of NTs were lower in patients who developed BI than those who did not, but the anti-RBD antibody levels were not different between them. The NTs below 50 % using 200-fold diluted sera might be one of the indicators of high risk for COVID-19 BI. However, the NTs against XBB.1.5 at 6 months after the fifth dose of bivalent BA.4-5 vaccine were lower than this threshold in almost half of infection-naïve participants. NTs measured using DBS eluates were strongly correlated with those measured using paired sera, but the time and temperature stability varied with the type of filter paper; no. 545 filter paper was found to most suitable for NT evaluation.
Collapse
Affiliation(s)
- Hitoshi Kawasuji
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Hiroshi Yamada
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoshihiro Yoshida
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Masayoshi Ezaki
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yuki Koshiyama
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yusuke Takegoshi
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Makito Kaneda
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yushi Murai
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kou Kimoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kentaro Nagaoka
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
2
|
Durier C, Ninove L, van der Werf S, Lefebvre M, Desaint C, Bauer R, Attia M, Lecompte AS, Lachatre M, Maakaroun-Vermesse Z, Nicolas JF, Verdon R, Kiladjian JJ, Loubet P, Schmidt-Mutter C, Corbin V, Ansart S, Melica G, Resch M, Netzer E, Kherabi Y, Tardieu R, Lelièvre JD, Tartour E, Meyer L, de Lamballerie X, Launay O. Incidence of COVID-19 mRNA vaccine symptomatic breakthrough infections during Omicron circulation in adults with or without infection prior to vaccination. Infect Dis Now 2024; 54:104886. [PMID: 38494117 DOI: 10.1016/j.idnow.2024.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES COVID-19 vaccine breakthrough infections were frequently reported during circulation of the Omicron variant. The ANRS|MIE CoviCompareP study investigated these infections in adults vaccinated and boosted with BNT162b2 [Pfizer-BioNTech] and with/without SARS-CoV-2 infection before vaccination. METHODS In the first half of 2021, healthy adults (aged 18-45, 65-74 and 75 or older) received either one dose of BNT162b2 (n = 120) if they had a documented history of SARS-CoV-2 infection at least five months previously, or two doses (n = 147) if they had no history confirmed by negative serological tests. A first booster dose was administered at least 6 months after the primary vaccination, and a second booster dose, if any, was reported in the database. Neutralizing antibodies (NAbs) against the European (D614G) strain and the Omicron BA.1 variant were assessed up to 28 days after the first booster dose. A case-control analysis was performed for the 252 participants who were followed up in 2022, during the Omicron waves. RESULTS From January to October 2022, 78/252 (31%) had a documented symptomatic breakthrough infection after full vaccination: 21/117 (18%) in those who had been infected before vaccination vs. 57/135 (42%) in those who had not. In a multivariate logistic regression model, factors associated with a lower risk of breakthrough infection were older age, a higher number of booster doses, and higher levels of Omicron BA.1 NAb titers in adults with infection before vaccination, but not in those without prior infection. CONCLUSION Our results highlight the need to consider immune markers of protection in association with infection and vaccination history.
Collapse
Affiliation(s)
| | - Laetitia Ninove
- Unité des Virus Émergents (UVE), Aix Marseille Univ, IRD 190, INSERM 1207, Marseille, France
| | - Sylvie van der Werf
- Institut Pasteur, Université Paris Cité, UMR 3569 CNRS, Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence Virus des Infections Respiratoires, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes - CIC1413 Nantes, Nantes, France
| | - Corinne Desaint
- INSERM US19, Villejuif, France; INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| | | | - Mikael Attia
- Institut Pasteur, Université Paris Cité, UMR 3569 CNRS, Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence Virus des Infections Respiratoires, Paris, France
| | - Anne-Sophie Lecompte
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes - CIC1413 Nantes, Nantes, France
| | - Marie Lachatre
- INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Zoha Maakaroun-Vermesse
- Centre de Vaccination CHU de Tours, Centre d'Investigation Clinique CIC 1415, INSERM, CHRU de Tours, Tours, France
| | - Jean-François Nicolas
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Université Claude Bernard Lyon I, Lyon, France; CHU Lyon-Sud, Pierre-Bénite, France
| | - Renaud Verdon
- Service de Maladies Infectieuses, CHU de Caen, Dynamicure INSERM, UMR 1311, Normandie Univ, UNICAEN, Caen, France
| | - Jean-Jacques Kiladjian
- AP-HP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM, CIC1427, Université Paris Cité, Paris, France
| | - Paul Loubet
- VBMI, INSERM U1047, Department of Infectious and Tropical Diseases, Université de Montpellier, CHU Nîmes, Montpellier, France
| | | | - Violaine Corbin
- CHU Clermont-Ferrand, INSERM CIC1405, Clermont-Ferrand, France
| | | | - Giovanna Melica
- Service d'Immunologie Clinique et Maladies Infectieuses, APHP, Hôpital Henri Mondor, INSERM CIC 1430, Créteil, France
| | | | | | - Yousra Kherabi
- INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| | | | | | - Eric Tartour
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, Paris, France
| | - Laurence Meyer
- INSERM US19, Villejuif, France; INSERM, CESP U1018, Université Paris Saclay, APHP, Le Kremlin-Bicêtre, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Aix Marseille Univ, IRD 190, INSERM 1207, Marseille, France
| | - Odile Launay
- INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
3
|
Goller KV, Ziemann J, Kohler C, Becker K, Hübner NO. Clinical Manifestations of Infections with the Omicron Sub-Lineages BA.1, BA.2, and BA.5: A Retrospective Follow-Up Analysis of Public Health Data from Mecklenburg-Western Pomerania, Germany. Viruses 2024; 16:454. [PMID: 38543819 PMCID: PMC10974208 DOI: 10.3390/v16030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
The Omicron variants BA.1, BA.2, and BA.5 caused several waves of SARS-CoV-2 in Germany in 2022. In this comparative study, public health data on SARS-CoV-2 infections from Mecklenburg-Western Pomerania, Germany, between January and October 2022 were examined retrospectively using Pearson's chi-squared tests and Fisher's exact tests for testing for statistical significance. Compared to BA.5 infections, BA.1 and BA.2 infections affected younger individuals aged up to 19 years significantly more often, whereas BA.5 infections occurred significantly more frequently in patients between 40 and 59 years of age when compared to BA.1 and BA.2. Infections with all three variants predominantly caused flu-like symptoms; nevertheless, there were significant differences between the reported symptoms of BA.1, BA.2, and BA.5 infections. Especially, the symptoms of 'fever', 'severe feeling of sickness', 'loss of taste', and 'loss of smell' were significantly more often present in patients with BA.5 infections compared to BA.1 and BA.2 cases. Additionally, BA.2 and BA.5 cases reported significantly more often the symptoms of 'runny nose' and 'cough' than BA.1-infected cases. Our findings indicate remarkable differences in the clinical presentations among the sub-lineages, especially in BA.5 infections. Furthermore, the study demonstrates a powerful tool to link epidemiological data with genetic data in order to investigate their potential impact on public health.
Collapse
Affiliation(s)
- Katja Verena Goller
- Central Unit for Infection Prevention and Control and Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Janine Ziemann
- Central Unit for Infection Prevention and Control and Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Christian Kohler
- Friedrich-Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany; (C.K.); (K.B.)
| | - Karsten Becker
- Friedrich-Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany; (C.K.); (K.B.)
| | - Nils-Olaf Hübner
- Central Unit for Infection Prevention and Control and Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, 17475 Greifswald, Germany;
| | | |
Collapse
|
4
|
Cruz Cisneros MC, Anderson EJ, Hampton BK, Parotti B, Sarkar S, Taft-Benz S, Bell TA, Blanchard M, Dillard JA, Dinnon KH, Hock P, Leist SR, Madden EA, Shaw GD, West A, Baric RS, Baxter VK, Pardo-Manuel de Villena F, Heise MT, Ferris MT. Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population. Vaccines (Basel) 2024; 12:103. [PMID: 38276675 PMCID: PMC10821422 DOI: 10.3390/vaccines12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.
Collapse
Affiliation(s)
- Marta C. Cruz Cisneros
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
| | - Brea K. Hampton
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Breantié Parotti
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Matthew Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| |
Collapse
|
5
|
Yamamoto S, Matsuda K, Maeda K, Horii K, Okudera K, Oshiro Y, Inamura N, Nemoto T, Takeuchi JS, Li Y, Konishi M, Tsuchiya K, Gatanaga H, Oka S, Mizoue T, Sugiyama H, Aoyanagi N, Mitsuya H, Sugiura W, Ohmagari N. Preinfection Neutralizing Antibodies, Omicron BA.5 Breakthrough Infection, and Long COVID: A Propensity Score-Matched Analysis. J Infect Dis 2023; 228:1652-1661. [PMID: 37756608 DOI: 10.1093/infdis/jiad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Data are limited on the role of preinfection humoral immunity protection against Omicron BA.5 infection and long coronavirus disease (COVID) development. METHODS We conducted nested case-control analysis among tertiary hospital staff in Tokyo who donated blood samples in June 2022 (1 month before Omicron BA.5 wave), approximately 6 months after receiving a third dose of COVID-19 mRNA vaccine. We measured live virus-neutralizing antibody titers against wild type and Omicron BA.5, and anti-receptor-binding domain (RBD) antibody titers at preinfection, and compared them between cases and propensity-matched controls. Among the breakthrough cases, we examined association between preinfection antibody titers and incidence of long COVID. RESULTS Preinfection anti-RBD and neutralizing antibody titers were lower in cases than controls. Neutralizing titers against wild type and Omicron BA.5 were 64% (95% confidence interval [CI], 42%-77%) and 72% (95% CI, 53%-83%) lower, respectively, in cases than controls. Individuals with previous Omicron BA.1/BA.2 infections were more frequent among controls than cases (10.3% vs 0.8%), and their Omicron BA.5 neutralizing titers were 12.8-fold higher than infection-naive individuals. Among cases, preinfection antibody titers were not associated with incidence of long COVID. CONCLUSIONS Preinfection immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may play a role in protecting against the Omicron BA.5 infection but not preventing long COVID.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kouki Matsuda
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Japan Foundation for AIDS Prevention, Tokyo, Japan
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kumi Horii
- Infection Control Office, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Kaori Okudera
- Infection Control Office, Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Yusuke Oshiro
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Natsumi Inamura
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Takashi Nemoto
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Junko S Takeuchi
- Department of Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yunfei Li
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maki Konishi
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruhito Sugiyama
- Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Nobuyoshi Aoyanagi
- Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Sood N, Lam CN, Kawaguchi E, Pernet O, Kovacs A, Unger JB, Hu H. Association between levels of receptor binding domain antibodies of SARS-CoV-2, receipt of booster and risk of breakthrough infections: LA pandemic surveillance cohort study. Sci Rep 2023; 13:20761. [PMID: 38007568 PMCID: PMC10676434 DOI: 10.1038/s41598-023-47261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Prevention of COVID-19 with vaccine requires multiple doses and updated boosters to maintain protection; however currently there are no tests that can measure immunity and guide clinical decisions about timing of booster doses. This study examined the association between the risk of COVID-19 breakthrough infections and receptor binding domain (RBD) antibody levels and receipt of booster of COVID-19 vaccines. A community sample of Los Angeles County adults were surveyed between 2021 and 2022 to determine if they had a self-reported breakthrough infection. Predictors included RBD antibody levels, measured by binding antibody responses to the ancestral strain at baseline and self-reported booster shot during the study period. Of the 859 participants, 182 (21%) reported a breakthrough infection. Irrespective of the level of antibodies, the risk of breakthrough infection was similar, ranging from 19 to 23% (P = 0.78). The risk of breakthrough infections was lower among participants who had a booster shot (P = 0.004). The protective effect of a booster shot did not vary by antibody levels prior to receiving the booster. This study found no association between RBD antibody levels and risk of breakthrough infections, while the receipt of booster was associated with lower risk of breakthrough infections, which was independent of pre-booster antibody levels. Therefore, antibody levels might not be a useful guide for clinical decisions about timing of booster doses.
Collapse
Affiliation(s)
- Neeraj Sood
- Sol Price School of Public Policy, University of Southern California, University Park Campus, Verna and Peter Dauterive Hall, 635 Downey Way, Los Angeles, CA, 90089, USA.
- Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | - Chun Nok Lam
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Eric Kawaguchi
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Olivier Pernet
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Andrea Kovacs
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Jennifer B Unger
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Howard Hu
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
7
|
Borgoyakova MB, Karpenko LI, Rudometov AP, Starostina EV, Zadorozhny AM, Kisakova LA, Kisakov DN, Sharabrin SV, Ilyichev AA, Bazhan SI. Artificial COVID-19 T-Cell Immunogen. Bull Exp Biol Med 2023; 175:804-809. [PMID: 37979020 DOI: 10.1007/s10517-023-05951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/19/2023]
Abstract
An artificial T-cell immunogen consisting of conserved fragments of different proteins of the SARS-CoV-2 virus and its immunogenic properties were studied in BALB/c mice. To create a T-cell immunogen, we used an approach based on the design of artificial antigens that combine many epitopes from the main proteins of the SARS-CoV-2 virus in the one molecule. The gene of the engineered immunogen protein was cloned as part of the pVAX1 plasmid in two versions: with an N-terminal ubiquitin and without it. The obtained plasmids were analyzed for their ability to provide the synthesis of the immunogen protein in vitro and in vivo. It has been shown that protein product of the created artificial genes is actively processed in HEK293T cells and induces cellular immunity in mice.
Collapse
Affiliation(s)
- M B Borgoyakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - E V Starostina
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A M Zadorozhny
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - L A Kisakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - D N Kisakov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - S V Sharabrin
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Ilyichev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - S I Bazhan
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|