1
|
Talaat FM, Elnaggar AR, Shaban WM, Shehata M, Elhosseini M. CardioRiskNet: A Hybrid AI-Based Model for Explainable Risk Prediction and Prognosis in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:822. [PMID: 39199780 PMCID: PMC11351968 DOI: 10.3390/bioengineering11080822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet's novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care.
Collapse
Affiliation(s)
- Fatma M. Talaat
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Faculty of Computer Science & Engineering, New Mansoura University, Gamasa 35712, Egypt
| | | | - Warda M. Shaban
- Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura 35511, Egypt;
| | - Mohamed Shehata
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
| | - Mostafa Elhosseini
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
2
|
Li C, Liu X, Shen P, Sun Y, Zhou T, Chen W, Chen Q, Lin H, Tang X, Gao P. Improving cardiovascular risk prediction through machine learning modelling of irregularly repeated electronic health records. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2024; 5:30-40. [PMID: 38264696 PMCID: PMC10802828 DOI: 10.1093/ehjdh/ztad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 01/25/2024]
Abstract
Aims Existing electronic health records (EHRs) often consist of abundant but irregular longitudinal measurements of risk factors. In this study, we aim to leverage such data to improve the risk prediction of atherosclerotic cardiovascular disease (ASCVD) by applying machine learning (ML) algorithms, which can allow automatic screening of the population. Methods and results A total of 215 744 Chinese adults aged between 40 and 79 without a history of cardiovascular disease were included (6081 cases) from an EHR-based longitudinal cohort study. To allow interpretability of the model, the predictors of demographic characteristics, medication treatment, and repeatedly measured records of lipids, glycaemia, obesity, blood pressure, and renal function were used. The primary outcome was ASCVD, defined as non-fatal acute myocardial infarction, coronary heart disease death, or fatal and non-fatal stroke. The eXtreme Gradient boosting (XGBoost) algorithm and Least Absolute Shrinkage and Selection Operator (LASSO) regression models were derived to predict the 5-year ASCVD risk. In the validation set, compared with the refitted Chinese guideline-recommended Cox model (i.e. the China-PAR), the XGBoost model had a significantly higher C-statistic of 0.792, (the differences in the C-statistics: 0.011, 0.006-0.017, P < 0.001), with similar results reported for LASSO regression (the differences in the C-statistics: 0.008, 0.005-0.011, P < 0.001). The XGBoost model demonstrated the best calibration performance (men: Dx = 0.598, P = 0.75; women: Dx = 1.867, P = 0.08). Moreover, the risk distribution of the ML algorithms differed from that of the conventional model. The net reclassification improvement rates of XGBoost and LASSO over the Cox model were 3.9% (1.4-6.4%) and 2.8% (0.7-4.9%), respectively. Conclusion Machine learning algorithms with irregular, repeated real-world data could improve cardiovascular risk prediction. They demonstrated significantly better performance for reclassification to identify the high-risk population correctly.
Collapse
Affiliation(s)
- Chaiquan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
| | - Xiaofei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
| | - Peng Shen
- Yinzhou District Center for Disease Control and Prevention, No. 1221 Xueshi Road, Yinzhou District, 315199 Ningbo, China
| | - Yexiang Sun
- Yinzhou District Center for Disease Control and Prevention, No. 1221 Xueshi Road, Yinzhou District, 315199 Ningbo, China
| | - Tianjing Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
| | - Weiye Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
| | - Qi Chen
- Yinzhou District Center for Disease Control and Prevention, No. 1221 Xueshi Road, Yinzhou District, 315199 Ningbo, China
| | - Hongbo Lin
- Yinzhou District Center for Disease Control and Prevention, No. 1221 Xueshi Road, Yinzhou District, 315199 Ningbo, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
| | - Pei Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
- Center for Real-world Evidence Evaluation, Peking University Clinical Research Institute, No. 38 Xueyuan Road, Haidian District, 100191 Beijing, China
| |
Collapse
|
3
|
Ding J, Luo Y, Shi H, Chen R, Luo S, Yang X, Xiao Z, Liang B, Yan Q, Xu J, Ji L. Machine learning for the prediction of atherosclerotic cardiovascular disease during 3-year follow up in Chinese type 2 diabetes mellitus patients. J Diabetes Investig 2023; 14:1289-1302. [PMID: 37605871 PMCID: PMC10583655 DOI: 10.1111/jdi.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
AIMS/INTRODUCTION Clinical guidelines for the management of individuals with type 2 diabetes mellitus endorse the systematic assessment of atherosclerotic cardiovascular disease risk for early interventions. In this study, we aimed to develop machine learning models to predict 3-year atherosclerotic cardiovascular disease risk in Chinese type 2 diabetes mellitus patients. MATERIALS AND METHODS Clinical records of 4,722 individuals with type 2 diabetes mellitus admitted to 94 hospitals were used. The features included demographic information, disease histories, laboratory tests and physical examinations. Logistic regression, support vector machine, gradient boosting decision tree, random forest and adaptive boosting were applied for model construction. The performance of these models was evaluated using the area under the receiver operating characteristic curve. Additionally, we applied SHapley Additive exPlanation values to explain the prediction model. RESULTS All five models achieved good performance in both internal and external test sets (area under the receiver operating characteristic curve >0.8). Random forest showed the highest discrimination ability, with sensitivity and specificity being 0.838 and 0.814, respectively. The SHapley Additive exPlanation analyses showed that previous history of diabetic peripheral vascular disease, older populations and longer diabetes duration were the three most influential predictors. CONCLUSIONS The prediction models offer opportunities to personalize treatment and maximize the benefits of these medical interventions.
Collapse
Affiliation(s)
| | - Yingying Luo
- Department of Endocrinology and MetabolismPeking University People's HospitalBeijingChina
| | | | | | | | | | | | | | | | - Jie Xu
- Shanghai AI LaboratoryShanghaiChina
| | - Linong Ji
- Department of Endocrinology and MetabolismPeking University People's HospitalBeijingChina
| |
Collapse
|
4
|
Esmaeili P, Roshanravan N, Mousavi S, Ghaffari S, Mesri Alamdari N, Asghari-Jafarabadi M. Machine learning framework for atherosclerotic cardiovascular disease risk assessment. J Diabetes Metab Disord 2023; 22:423-430. [PMID: 37255822 PMCID: PMC10225383 DOI: 10.1007/s40200-022-01160-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/20/2022] [Indexed: 06/01/2023]
Abstract
Introduction Atherosclerotic cardiovascular disease (ASCVD) is the first leading cause of mortality globally. To identify the individual risk factors of ASCVD utilizing the machine learning (ML) approaches. Materials & methods This cohort-based cross-sectional study was conducted on data of 500 participants with ASCVD among Tabriz University Medical Sciences employees, during 2020. The data with ML methods were developed and validated to predict ASCVD risk with naive Bayes (NB), spurt vesture machines (SVM), regression tree (RT), k-nearest neighbors (KNN), artificial neural networks (ANN), generalized additive models (GAM), and logistic regression (LR). Results Accuracy of the models ranged from 95.7 to 98.1%, with a sensitivity of 50.0 to 97.3%, specificity of 74.3 to 99.1%, positive predictive value (PPV) of 0.0 to 98.0%, negative predictive value (NPV) of 68.4 to 100.0%, positive likelihood ratio (LR +) of 13.8 to 96.4%, negative likelihood ratio (LR-) of 3.6 to 51.9%, and area under ROC curve (AUC) of 62.5 to 99.4%. The ANN fit the data best with an accuracy of 98.1% (95% CI: 96.5-99.1), a specificity of 99.1% (95% CI: 97.7-99.9), a LR + of 96.4% (95% CI: 36.2-258.8), and AUC of 99.4% (95% CI: 85.2-97.0). Based on the optimal model, sex (females), age, smoking, and metabolic syndrome were shown to be the most important risk factors of ASCVD. Conclusion Sex (females), age, smoking, and metabolic syndrome were predictors obtained by ANN. Considering the ANN as the optimal model identified, more accurate prevention planning may be designed.
Collapse
Affiliation(s)
- Parya Esmaeili
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Mousavi
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Asghari-Jafarabadi
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cabrini Research, Cabrini Health, 154 Wattletree Rd, Malvern, VIC 3144 Australia
- School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
5
|
Kee OT, Harun H, Mustafa N, Abdul Murad NA, Chin SF, Jaafar R, Abdullah N. Cardiovascular complications in a diabetes prediction model using machine learning: a systematic review. Cardiovasc Diabetol 2023; 22:13. [PMID: 36658644 PMCID: PMC9854013 DOI: 10.1186/s12933-023-01741-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Prediction model has been the focus of studies since the last century in the diagnosis and prognosis of various diseases. With the advancement in computational technology, machine learning (ML) has become the widely used tool to develop a prediction model. This review is to investigate the current development of prediction model for the risk of cardiovascular disease (CVD) among type 2 diabetes (T2DM) patients using machine learning. A systematic search on Scopus and Web of Science (WoS) was conducted to look for relevant articles based on the research question. The risk of bias (ROB) for all articles were assessed based on the Prediction model Risk of Bias Assessment Tool (PROBAST) statement. Neural network with 76.6% precision, 88.06% sensitivity, and area under the curve (AUC) of 0.91 was found to be the most reliable algorithm in developing prediction model for cardiovascular disease among type 2 diabetes patients. The overall concern of applicability of all included studies is low. While two out of 10 studies were shown to have high ROB, another studies ROB are unknown due to the lack of information. The adherence to reporting standards was conducted based on the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) standard where the overall score is 53.75%. It is highly recommended that future model development should adhere to the PROBAST and TRIPOD assessment to reduce the risk of bias and ensure its applicability in clinical settings. Potential lipid peroxidation marker is also recommended in future cardiovascular disease prediction model to improve overall model applicability.
Collapse
Affiliation(s)
- Ooi Ting Kee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), 56000, Kuala Lumpur, Malaysia
| | - Harmiza Harun
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), 56000, Kuala Lumpur, Malaysia
| | - Norlaila Mustafa
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), 56000, Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), 56000, Kuala Lumpur, Malaysia
| | - Siok Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), 56000, Kuala Lumpur, Malaysia
| | - Rosmina Jaafar
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), 56000, Kuala Lumpur, Malaysia.
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Subramani S, Varshney N, Anand MV, Soudagar MEM, Al-keridis LA, Upadhyay TK, Alshammari N, Saeed M, Subramanian K, Anbarasu K, Rohini K. Cardiovascular diseases prediction by machine learning incorporation with deep learning. Front Med (Lausanne) 2023; 10:1150933. [PMID: 37138750 PMCID: PMC10150633 DOI: 10.3389/fmed.2023.1150933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/09/2023] [Indexed: 05/05/2023] Open
Abstract
It is yet unknown what causes cardiovascular disease (CVD), but we do know that it is associated with a high risk of death, as well as severe morbidity and disability. There is an urgent need for AI-based technologies that are able to promptly and reliably predict the future outcomes of individuals who have cardiovascular disease. The Internet of Things (IoT) is serving as a driving force behind the development of CVD prediction. In order to analyse and make predictions based on the data that IoT devices receive, machine learning (ML) is used. Traditional machine learning algorithms are unable to take differences in the data into account and have a low level of accuracy in their model predictions. This research presents a collection of machine learning models that can be used to address this problem. These models take into account the data observation mechanisms and training procedures of a number of different algorithms. In order to verify the efficacy of our strategy, we combined the Heart Dataset with other classification models. The proposed method provides nearly 96 percent of accuracy result than other existing methods and the complete analysis over several metrics has been analysed and provided. Research in the field of deep learning will benefit from additional data from a large number of medical institutions, which may be used for the development of artificial neural network structures.
Collapse
Affiliation(s)
- Sivakannan Subramani
- Department of Advanced Computing, St. Joseph's University, Bengaluru, Karnataka, India
| | - Neeraj Varshney
- Department of Computer Engineering and Applications, GLA University, Mathura, Uttar Pradesh, India
| | - M. Vijay Anand
- Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India
| | | | | | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Kumaran Subramanian
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Krishnan Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Centre of Excellence for Biomaterials Engeneering, Faculty of Medicine, AIMST University, Semeleing, Bedong, Malaysia
- Centre for Excellence for Biomaterials Science AIMST University, Semeling, Bedong, Malaysia
- Department of Computational Biology, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
- *Correspondence: Rohini Karunakaran,
| |
Collapse
|
7
|
Junaid SB, Imam AA, Balogun AO, De Silva LC, Surakat YA, Kumar G, Abdulkarim M, Shuaibu AN, Garba A, Sahalu Y, Mohammed A, Mohammed TY, Abdulkadir BA, Abba AA, Kakumi NAI, Mahamad S. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare (Basel) 2022; 10:1940. [PMID: 36292387 PMCID: PMC9601636 DOI: 10.3390/healthcare10101940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
In recent times, the growth of the Internet of Things (IoT), artificial intelligence (AI), and Blockchain technologies have quickly gained pace as a new study niche in numerous collegiate and industrial sectors, notably in the healthcare sector. Recent advancements in healthcare delivery have given many patients access to advanced personalized healthcare, which has improved their well-being. The subsequent phase in healthcare is to seamlessly consolidate these emerging technologies such as IoT-assisted wearable sensor devices, AI, and Blockchain collectively. Surprisingly, owing to the rapid use of smart wearable sensors, IoT and AI-enabled technology are shifting healthcare from a conventional hub-based system to a more personalized healthcare management system (HMS). However, implementing smart sensors, advanced IoT, AI, and Blockchain technologies synchronously in HMS remains a significant challenge. Prominent and reoccurring issues such as scarcity of cost-effective and accurate smart medical sensors, unstandardized IoT system architectures, heterogeneity of connected wearable devices, the multidimensionality of data generated, and high demand for interoperability are vivid problems affecting the advancement of HMS. Hence, this survey paper presents a detailed evaluation of the application of these emerging technologies (Smart Sensor, IoT, AI, Blockchain) in HMS to better understand the progress thus far. Specifically, current studies and findings on the deployment of these emerging technologies in healthcare are investigated, as well as key enabling factors, noteworthy use cases, and successful deployments. This survey also examined essential issues that are frequently encountered by IoT-assisted wearable sensor systems, AI, and Blockchain, as well as the critical concerns that must be addressed to enhance the application of these emerging technologies in the HMS.
Collapse
Affiliation(s)
| | - Abdullahi Abubakar Imam
- School of Digital Science, Universiti Brunei Darussalam, Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Abdullateef Oluwagbemiga Balogun
- Department of Computer Science, University of Ilorin, Ilorin 1515, Nigeria
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| | | | | | - Ganesh Kumar
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| | - Muhammad Abdulkarim
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Aliyu Nuhu Shuaibu
- Department of Electrical Engineering, University of Jos, Bauchi Road, Jos 930105, Nigeria
| | - Aliyu Garba
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Yusra Sahalu
- SEHA Abu Dhabi Health Services Co., Abu Dhabi 109090, United Arab Emirates
| | - Abdullahi Mohammed
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | | | | | | | - Nana Aliyu Iliyasu Kakumi
- Patient Care Department, General Ward, Saudi German Hospital Cairo, Taha Hussein Rd, Huckstep, El Nozha, Cairo Governorate 4473303, Egypt
| | - Saipunidzam Mahamad
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| |
Collapse
|
8
|
Griffith N, Bigham G, Sajja A, Gluckman TJ. Leveraging Healthcare System Data to Identify High-Risk Dyslipidemia Patients. Curr Cardiol Rep 2022; 24:1387-1396. [PMID: 35994196 DOI: 10.1007/s11886-022-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW While randomized controlled trials have historically served as the gold standard for shaping guideline recommendations, real-world data are increasingly being used to inform clinical decision-making. We describe ways in which healthcare systems are generating real-world data related to dyslipidemia and how these data are being leveraged to improve patient care. RECENT FINDINGS The electronic medical record has emerged as a major source of clinical data, which alongside claims and pharmacy dispending data is enabling healthcare systems the ability to identify care gaps (underdiagnosis and undertreatment) in patients with dyslipidemia. Availability of this data also allows healthcare systems the ability to test and deliver interventions at the point-of-care. Real-world data possess great potential as a complement to randomized controlled trials. Healthcare systems are uniquely positioned to not only define care gaps and areas of opportunity, but to also to leverage tools (e.g., clinical decision support, case identification) aimed at closing them.
Collapse
Affiliation(s)
- Nayrana Griffith
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.
| | - Grace Bigham
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Aparna Sajja
- Division of Cardiology, Medstar Georgetown University Hospital-Washington Hospital Center, Washington, DC, USA
| | - Ty J Gluckman
- Center for Cardiovascular Analytics, Research and Data Science (CARDS), Providence Heart Institute, Providence Research Network, Portland, OR, USA
| |
Collapse
|