1
|
Yibar A, Ajmi N, Duman M. First report and genomic characterization of Escherichia coli O111:H12 serotype from raw mussels in Türkiye. BMC Genomics 2024; 25:1027. [PMID: 39487414 PMCID: PMC11531133 DOI: 10.1186/s12864-024-10945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND This study aimed to assess the prevalence and genomic characteristics of Shiga-toxigenic (STEC) and Enteroaggregative E. coli (EAEC) strains in raw mussels and ready-to-eat (RTE)-stuffed mussels, focusing on potential public health implications for identifying virulence and antimicrobial resistance genes. RESULTS The genome sequence analysis identified the E. coli strain named 23EM as serotype O111:H12, with adhesion (fimH-54) and fumarate hydratase (fumC-11) genes. The draft genome (4.9 Mb, 50.6% GC content, 111 contigs, 4,688 genes) is available in NCBI GenBank (accession JAWXVJ000000000). The strain, classified as ST292 and CC ST10, showed high similarity to nonpathogenic E. coli MG1655 but was distinct from pathogenic strains such as EAEC and ExPEC. In silico serotyping revealed the presence of O111-antigen flippase (wzx) and H12-antigen flagellin (fliC) genes. The strain harbors an IncFII (pCoo) plasmid with 96.95% identity. PathogenFinder predicted a 92% probability of being a human pathogen, supported by 720 pathogenic protein families. CRISPR analysis identified one high-evidence sequence with nine spacers and six low-evidence sequences. Phylogenetic analysis using RAxML positioned 23EM close to nonpathogenic E. coli but distant from other pathogenic strains. Antimicrobial resistance genes across multiple classes, including macrolides, fluoroquinolones, and aminoglycosides, were identified. The strain also contains several virulence factors, such as adhesins (e.g., ECP, ELF, TIF, type IV pili), and autotransporter genes (espP, pic), highlighting its significant pathogenic potential and public health risk. CONCLUSIONS This study highlights the ability of the detection of E. coli strains harboring virulence and antimicrobial resistance genes in mussels, thus emphasizing the importance of ongoing surveillance and careful consideration of the potential risks associated with the consumption of these shellfish.
Collapse
Affiliation(s)
- Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Gorukle Bursa, 16059, Türkiye.
| | - Nihed Ajmi
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Gorukle Bursa, 16059, Türkiye
| | - Muhammed Duman
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Gorukle Bursa, 16059, Türkiye
| |
Collapse
|
2
|
Del Carpio AMG, Freire CA, Andrade FB, Piazza RMF, Silva RM, Carvalho E, Elias WP. Genomic Dissection of an Enteroaggregative Escherichia coli Strain Isolated from Bacteremia Reveals Insights into Its Hybrid Pathogenic Potential. Int J Mol Sci 2024; 25:9238. [PMID: 39273188 PMCID: PMC11394720 DOI: 10.3390/ijms25179238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024] Open
Abstract
Escherichia coli is a frequent pathogen isolated from bloodstream infections. This study aimed to characterize the genetic features of EC092, an E. coli strain isolated from bacteremia that harbors enteroaggregative E. coli (EAEC) genetic markers, indicating its hybrid pathogenic potential. Whole-genome sequencing showed that EC092 belongs to phylogroup B1, ST278, and serotype O165:H4. Genes encoding virulence factors such as fimbriae, toxins, iron-uptake systems, autotransporter proteins (Pet, Pic, Sat, and SepA), and secretion systems were detected, as well as EAEC virulence genes (aggR, aatA, aaiC, and aap). EC092 was found to be closely related to the other EAEC prototype strains and highly similar in terms of virulence to three EAEC strains isolated from diarrhea. The genomic neighborhood of pet, pic, sat, sepA, and the EAEC virulence genes of EC092 and its three genetically related fecal EAEC strains showed an identical genomic organization and nucleotide sequences. Also, EC092 produced and secreted Pet, Pic, Sat, and SepA in the culture supernatant and resisted the bactericidal activity of normal human serum. Our results demonstrate that the strain EC092, isolated from bacteremia, is a hybrid pathogenic extraintestinal E. coli (ExPEC)/EAEC with virulence features that could mediate both extraintestinal and intestinal infections.
Collapse
Affiliation(s)
| | - Claudia A Freire
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Fernanda B Andrade
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Roxane M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
3
|
Izquierdo-Vega JA, Castillo-Juarez RJ, Sánchez-Gutiérrez M, Ares MA, De La Cruz MA. A Mini-Review of Enteroaggregative Escherichia coli with a Specific Target on the Virulence Factors Controlled by the AggR Master Regulator. Pol J Microbiol 2023; 72:347-354. [PMID: 37875068 PMCID: PMC10725161 DOI: 10.33073/pjm-2023-037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains have been linked to several outbreaks of severe diarrhea around the world, and this bacterium is now commonly resistant to antibiotics. As part of the pathophysiology of EAEC, the characteristic pattern of adherence looks like stacked bricks on the intestinal epithelium. This phenotype depends on an aggregative adhesion plasmid (pAA), which codes for a regulatory protein named AggR. The AggR protein is a master regulator that transcriptionally actives the main virulence genes in this E. coli pathotype, such as those that encode the aggregative adhesion fimbriae, dispersin and its secretion apparatus, Aar regulatory protein, and type VI secretion system. Several reports have shown that AggR positively affects most EAEC virulence genes, functioning as a classic transcriptional activator in the promoter region of these genes, interacting with the RNA polymerase. This minireview article integrates the information about virulence determinants of EAEC controlled by the AggR regulator.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | | |
Collapse
|
4
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
5
|
Feng A, Akter S, Leigh SA, Wang H, Pharr GT, Evans J, Branton SL, Landinez MP, Pace L, Wan XF. Genomic diversity, pathogenicity and antimicrobial resistance of Escherichia coli isolated from poultry in the southern United States. BMC Microbiol 2023; 23:15. [PMID: 36647025 PMCID: PMC9841705 DOI: 10.1186/s12866-022-02721-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli (E. coli) are typically present as commensal bacteria in the gastro-intestinal tract of most animals including poultry species, but some avian pathogenic E. coli (APEC) strains can cause localized and even systematic infections in domestic poultry. Emergence and re-emergence of antimicrobial resistant isolates (AMR) constrain antibiotics usage in poultry production, and development of an effective vaccination program remains one of the primary options in E. coli disease prevention and control for domestic poultry. Thus, understanding genetic and pathogenic diversity of the enzootic E. coli isolates, particularly APEC, in poultry farms is the key to designing an optimal vaccine candidate and to developing an effective vaccination program. This study explored the genomic and pathogenic diversity among E. coli isolates in southern United States poultry. A total of nine isolates were recovered from sick broilers from Mississippi, and one from Georgia, with epidemiological variations among clinical signs, type of housing, and bird age. The genomes of these isolates were sequenced by using both Illumina short-reads and Oxford Nanopore long-reads, and our comparative analyses suggested data from both platforms were highly consistent. The 16 s rRNA based phylogenetic analyses showed that the 10 bacteria strains are genetically closer to each other than those in the public database. However, whole genome analyses showed that these 10 isolates encoded a diverse set of reported virulence and AMR genes, belonging to at least nine O:H serotypes, and are genetically clustered with at least five different groups of E. coli isolates reported by other states in the United States. Despite the small sample size, this study suggested that there was a large extent of genomic and serological diversity among E. coli isolates in southern United States poultry. A large-scale comprehensive study is needed to understand the overall genomic diversity and the associated virulence, and such a study will be important to develop a broadly protective E. coli vaccine.
Collapse
Affiliation(s)
- Aijing Feng
- grid.134936.a0000 0001 2162 3504Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO USA ,grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA ,grid.134936.a0000 0001 2162 3504Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO USA
| | - Sadia Akter
- grid.134936.a0000 0001 2162 3504Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO USA ,grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA ,grid.134936.a0000 0001 2162 3504Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO USA
| | - Spencer A. Leigh
- Poultry Research Unit, USDA Agricultural Research Service, Mississippi State, MS USA
| | - Hui Wang
- grid.260120.70000 0001 0816 8287Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
| | - G. Todd Pharr
- grid.260120.70000 0001 0816 8287Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
| | - Jeff Evans
- Poultry Research Unit, USDA Agricultural Research Service, Mississippi State, MS USA
| | - Scott L. Branton
- Poultry Research Unit, USDA Agricultural Research Service, Mississippi State, MS USA
| | - Martha Pulido Landinez
- grid.260120.70000 0001 0816 8287Poultry Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS USA
| | - Lanny Pace
- grid.260120.70000 0001 0816 8287Mississippi Veterinary Research and Diagnostic Laboratory System, College of Veterinary Medicine, Mississippi State University, Pearl, MS USA
| | - Xiu-Feng Wan
- grid.134936.a0000 0001 2162 3504Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO USA ,grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA ,grid.134936.a0000 0001 2162 3504Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO USA
| |
Collapse
|
6
|
Munhoz DD, Richards AC, Santos FF, Mulvey MA, Piazza RMF. E. coli Common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments. Gut Microbes 2023; 15:2190308. [PMID: 36949030 PMCID: PMC10038029 DOI: 10.1080/19490976.2023.2190308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Pathogenic subsets of Escherichia coli include diarrheagenic (DEC) strains that cause disease within the gut and extraintestinal pathogenic E. coli (ExPEC) strains that are linked with urinary tract infections, bacteremia, and other infections outside of intestinal tract. Among DEC strains is an emergent pathotype known as atypical enteropathogenic E. coli (aEPEC), which can cause severe diarrhea. Recent sequencing efforts revealed that some E. coli strains possess genetic features that are characteristic of both DEC and ExPEC isolates. BA1250 is a newly reclassified hybrid strain with characteristics of aEPEC and ExPEC. This strain was isolated from a child with diarrhea, but its genetic features indicate that it might have the capacity to cause disease at extraintestinal sites. The spectrum of adhesins encoded by hybrid strains like BA1250 are expected to be especially important in facilitating colonization of diverse niches. E. coli common pilus (ECP) is an adhesin expressed by many E. coli pathogens, but how it impacts hybrid strains has not been ascertained. Here, using zebrafish larvae as surrogate hosts to model both gut colonization and extraintestinal infections, we found that ECP can act as a multi-niche colonization and virulence factor for BA1250. Furthermore, our results indicate that ECP-related changes in activation of envelope stress response pathways may alter the fitness of BA1250. Using an in silico approach, we also delineated the broader repertoire of adhesins that are encoded by BA1250, and provide evidence that the expression of at least a few of these varies in the absence of functional ECP.
Collapse
Affiliation(s)
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | - Fernanda F. Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | | |
Collapse
|
7
|
Soria-Bustos J, Saitz W, Medrano A, Lara-Ochoa C, Bennis Z, Monteiro-Neto V, Dos Santos CI, Rodrigues J, Hernandes RT, Yáñez JA, Torres J, Navarro-García F, Martínez-Laguna Y, Fontes Piazza RM, Munhoz DD, Cedillo ML, Ares MA, De la Cruz MA, Nataro JP, Girón JA. Role of the YehD fimbriae in the virulence-associated properties of enteroaggregative Escherichia coli. Environ Microbiol 2021; 24:1035-1051. [PMID: 34431194 DOI: 10.1111/1462-2920.15737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new YehD fimbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.
Collapse
Affiliation(s)
- Jorge Soria-Bustos
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Waleska Saitz
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Abraham Medrano
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Cristina Lara-Ochoa
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Zineb Bennis
- University of Florida, Emerging Pathogens Institute, Gainesville, FL, USA
| | | | | | - Josias Rodrigues
- Departamento de Microbiologia e Imunologia, Instituto de Biociencias da UNESP, Botucatu, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociencias da UNESP, Botucatu, SP, Brazil
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Fernando Navarro-García
- Departamento de Biología Celular, Centro de Investigaciones Avanzadas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jorge A Girón
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
8
|
Aggregative Adherence Fimbriae II of Enteroaggregative Escherichia coli Are Required for Adherence and Barrier Disruption during Infection of Human Colonoids. Infect Immun 2020; 88:IAI.00176-20. [PMID: 32631917 DOI: 10.1128/iai.00176-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
Symptomatic and asymptomatic infection with the diarrheal pathogen enteroaggregative Escherichia coli (EAEC) is associated with growth faltering in children in developing settings. The mechanism of this association is unknown, emphasizing a need for better understanding of the interactions between EAEC and the human gastrointestinal mucosa. In this study, we investigated the role of the aggregative adherence fimbriae II (AAF/II) in EAEC adherence and pathogenesis using human colonoids and duodenal enteroids. We found that a null mutant in aafA, the major subunit of AAF/II, adhered significantly less than wild-type (WT) EAEC strain 042, and adherence was restored in a complemented strain. Immunofluorescence confocal microscopy of differentiated colonoids, which produce an intact mucus layer comprised of the secreted mucin MUC2, revealed bacteria at the epithelial surface and within the MUC2 layer. The WT strain adhered to the epithelial surface, whereas the aafA deletion strain remained within the MUC2 layer, suggesting that the presence or absence of AAF/II determines both the abundance and location of EAEC adherence. In order to determine the consequences of EAEC adherence on epithelial barrier integrity, colonoid monolayers were exposed to EAEC constructs expressing or lacking aafA Colonoids infected with WT EAEC had significantly decreased epithelial resistance, an effect that required AAF/II, suggesting that binding of EAEC to the epithelium is necessary to impair barrier function. In summary, we show that production of AAF/II is critical for adherence and barrier disruption in human colonoids, suggesting a role for this virulence factor in EAEC colonization of the gastrointestinal mucosa.
Collapse
|
9
|
Petro CD, Duncan JK, Seldina YI, Allué-Guardia A, Eppinger M, Riddle MS, Tribble DR, Johnson RC, Dalgard CL, Sukumar G, Connor P, Boisen N, Melton-Celsa AR. Genetic and Virulence Profiles of Enteroaggregative Escherichia coli (EAEC) Isolated From Deployed Military Personnel (DMP) With Travelers' Diarrhea. Front Cell Infect Microbiol 2020; 10:200. [PMID: 32509590 PMCID: PMC7251025 DOI: 10.3389/fcimb.2020.00200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 02/01/2023] Open
Abstract
To discern if there was a particular genotype associated with clinical enteroaggregative Escherichia coli (EAEC) strains isolated from deployed military personnel (DMP) with travelers' diarrhea (TD), we characterized a collection of EAEC from DMP deployed to Afghanistan, Djibouti, Kenya, or Honduras. Although we did not identify a specific EAEC genotype associated with TD in DMP, we found that EAEC isolated at the first clinic visit were more likely to encode the dispersin gene aap than EAEC collected at follow-up visits. A majority of the EAEC isolates were typical EAEC that adhered to HEp-2 cells, formed biofilms, and harbored genes for aggregative adherence fimbriae (AAF), AggR, and serine protease autotransporters of Enterobacteriaceae (SPATEs). A separate subset of the EAEC had aggR and genes for SPATEs but encoded a gene highly homologous to that for CS22, a fimbriae more commonly found in enterotoxigenic E. coli. None of these CS22-encoding EAEC formed biofilms in vitro or adhered to HEp-2 cells. Whole genome sequence and single nucleotide polymorphism analyses demonstrated that most of the strains were genetically diverse, but that a few were closely related. Isolation of these related strains occurred within days to more than a year apart, a finding that suggests a persistent source and genomic stability. In an ampicillin-treated mouse model we found that an agg4A+ aar- isolate formed a biofilm in the intestine and caused reduced weight gain in mice, whereas a strain that did not form an in vivo biofilm caused no morbidity. Our diverse strain collection from DMP displays the heterogeneity of EAEC strains isolated from human patients, and our mouse model of infection indicated the genotype agg4A+ aar– and/or capacity to form biofilm in vivo may correlate to disease severity.
Collapse
Affiliation(s)
- Courtney D Petro
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey K Duncan
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yuliya I Seldina
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Mark S Riddle
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R Tribble
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ryan C Johnson
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Henry Jackson Foundation, Bethesda, MD, United States
| | - Patrick Connor
- Military Enteric Disease Group, Academic Department of Military Medicine, Birmingham, United Kingdom
| | - Nadia Boisen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Angela R Melton-Celsa
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
10
|
Ellis SJ, Crossman LC, McGrath CJ, Chattaway MA, Hölken JM, Brett B, Bundy L, Kay GL, Wain J, Schüller S. Identification and characterisation of enteroaggregative Escherichia coli subtypes associated with human disease. Sci Rep 2020; 10:7475. [PMID: 32366874 PMCID: PMC7198487 DOI: 10.1038/s41598-020-64424-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Enteroaggregative E. coli (EAEC) are a major cause of diarrhoea worldwide. Due to their heterogeneity and carriage in healthy individuals, identification of diagnostic virulence markers for pathogenic strains has been difficult. In this study, we have determined phenotypic and genotypic differences between EAEC strains of sequence types (STs) epidemiologically associated with asymptomatic carriage (ST31) and diarrhoeal disease (ST40). ST40 strains demonstrated significantly enhanced intestinal adherence, biofilm formation, and pro-inflammatory interleukin-8 secretion compared with ST31 isolates. This was independent of whether strains were derived from diarrhoea patients or healthy controls. Whole genome sequencing revealed differences in putative virulence genes encoding aggregative adherence fimbriae, E. coli common pilus, flagellin and EAEC heat-stable enterotoxin 1. Our results indicate that ST40 strains have a higher intrinsic potential of human pathogenesis due to a specific combination of virulence-related factors which promote host cell colonization and inflammation. These findings may contribute to the development of genotypic and/or phenotypic markers for EAEC strains of high virulence.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, UK.,SequenceAnalysis.co.uk, Norwich Research Park, Norwich, UK
| | - Conor J McGrath
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Johanna M Hölken
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Bernard Brett
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Leah Bundy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gemma L Kay
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK. .,Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
11
|
Guerrieri CG, Monfardini MV, Silva EA, Bueno de Freitas L, Schuenck RP, Spano LC. Wide genetic heterogeneity and low antimicrobial resistance of enteroaggregative Escherichia coli isolates from several rural communities. J Med Microbiol 2020; 69:96-103. [DOI: 10.1099/jmm.0.001120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Caroline Gastaldi Guerrieri
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Mariane Vedovatti Monfardini
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Eliza Andrade Silva
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Luciana Bueno de Freitas
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Liliana Cruz Spano
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
12
|
Ellis SJ, Yasir M, Browning DF, Busby SJW, Schüller S. Oxygen and contact with human intestinal epithelium independently stimulate virulence gene expression in enteroaggregative Escherichia coli. Cell Microbiol 2019; 21:e13012. [PMID: 30673154 PMCID: PMC6563437 DOI: 10.1111/cmi.13012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) are important intestinal pathogens causing acute and persistent diarrhoeal illness worldwide. Although many putative EAEC virulence factors have been identified, their association with pathogenesis remains unclear. As environmental cues can modulate bacterial virulence, we investigated the effect of oxygen and human intestinal epithelium on EAEC virulence gene expression to determine the involvement of respective gene products in intestinal colonisation and pathogenesis. Using in vitro organ culture of human intestinal biopsies, we established the colonic epithelium as the major colonisation site of EAEC strains 042 and 17‐2. We subsequently optimised a vertical diffusion chamber system with polarised T84 colon carcinoma cells for EAEC infection and showed that oxygen induced expression of the global regulator AggR, aggregative adherence fimbriae, E. coli common pilus, EAST‐1 toxin, and dispersin in EAEC strain 042 but not in 17‐2. Furthermore, the presence of T84 epithelia stimulated additional expression of the mucinase Pic and the toxins HlyE and Pet. This induction was dependent on physical host cell contact and did not require AggR. Overall, these findings suggest that EAEC virulence in the human gut is modulated by environmental signals including oxygen and the intestinal epithelium.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
13
|
Munhoz DD, Nara JM, Freitas NC, Moraes CTP, Nunes KO, Yamamoto BB, Vasconcellos FM, Martínez-Laguna Y, Girón JA, Martins FH, Abe CM, Elias WP, Piazza RMF. Distribution of Major Pilin Subunit Genes Among Atypical Enteropathogenic Escherichia coli and Influence of Growth Media on Expression of the ecp Operon. Front Microbiol 2018; 9:942. [PMID: 29867850 PMCID: PMC5962669 DOI: 10.3389/fmicb.2018.00942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains are unable to produce the bundle-forming pilus (BFP), which is responsible for the localized adherence pattern, a characteristic of the pathogenicity of typical EPEC strains. The lack of BFP in aEPEC strains suggests that other fimbrial or non-fimbrial adhesins are involved in their adhesion to the host cells. The aim of this study was to investigate the distribution of major subunit fimbrial genes known to be important adherence factors produced by several E. coli pathotypes in a collection of 72 aEPEC strains. Our results demonstrate that a high percentage (94–100%) of aEPEC strains harbored ecpA, fimA, hcpA, and lpfA fimbrial genes. Other fimbrial genes including pilS, pilV, sfpA, daaC, papA, and sfa were detected at lower frequencies (1–8%). Genes encoding fimbrial subunits, which are characteristic of enteroaggregative E. coli or enterotoxigenic E. coli were not found. No correlation was found between fimbrial gene profiles and adherence phenotypes. Since all aEPEC strains contained ecpA, the major pilin gene of the E. coli common pilus (ECP), a subset of ecpA+ strains was analyzed for transcription of ecpRABCDE and production of ECP upon growth in three different culture conditions at 37°C. Transcription of ecpRABCDE occurred in all conditions; however, ECP production was medium dependent. In all, the data suggest that aEPEC strains are highly heterogeneous in terms of their fimbrial gene profiles. Despite lacking BFP production, other mechanisms of cell adherence exist in aEPEC strains to ensure host colonization, e.g., mediated by other prevalent pili such as ECP. Moreover, the production of ECP by aEPEC strains might be influenced by yet unknown post-transcriptional factors.
Collapse
Affiliation(s)
| | - Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Kamila O Nunes
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Bruno B Yamamoto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
14
|
Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors. mSphere 2018; 3:mSphere00078-18. [PMID: 29577084 PMCID: PMC5863034 DOI: 10.1128/msphere.00078-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal E. coli. EAEC bacteria attach via multiple proteins and structures, including long appendages produced by assembling molecules of AafA and a short surface protein called Hra1. EAEC also secretes an antiadherence protein (Aap; also known as dispersin) which remains loosely attached to the cell surface. This report shows that dispersin covers Hra1 such that the adhesive properties of EAEC seen in the laboratory are largely produced by AafA structures. When the bacteria colonize worms, dispersin is sloughed off, or otherwise removed, such that Hra1-mediated adherence occurs. All three factors are required for optimal colonization, as well as to produce the signature EAEC stacked-brick adherence pattern. Interplay among multiple colonization factors may be an essential feature of exceptional colonizers. Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers that are associated with diarrhea. The genome of EAEC strain 042, a diarrheal pathogen validated in a human challenge study, encodes multiple colonization factors. Notable among them are aggregative adherence fimbriae (AAF/II) and a secreted antiaggregation protein (Aap). Deletion of aap is known to increase adherence, autoaggregation, and biofilm formation, so it was proposed that Aap counteracts AAF/II-mediated interactions. We hypothesized that Aap sterically masks heat-resistant agglutinin 1 (Hra1), an integral outer membrane protein recently identified as an accessory colonization factor. We propose that this masking accounts for reduced in vivo colonization upon hra1 deletion and yet no colonization-associated phenotypes when hra1 is deleted in vitro. Using single and double mutants of hra1, aap, and the AAF/II structural protein gene aafA, we demonstrated that increased adherence in aap mutants occurs even when AAF/II proteins are genetically or chemically removed. Deletion of hra1 together with aap abolishes the hyperadherence phenotype, demonstrating that Aap indeed masks Hra1. The presence of all three colonization factors, however, is necessary for optimal colonization and for rapidly building stacked-brick patterns on slides and cultured monolayers, the signature EAEC phenotype. Altogether, our data demonstrate that Aap serves to mask nonstructural adhesins such as Hra1 and that optimal colonization by EAEC is mediated through interactions among multiple surface factors. IMPORTANCE Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal E. coli. EAEC bacteria attach via multiple proteins and structures, including long appendages produced by assembling molecules of AafA and a short surface protein called Hra1. EAEC also secretes an antiadherence protein (Aap; also known as dispersin) which remains loosely attached to the cell surface. This report shows that dispersin covers Hra1 such that the adhesive properties of EAEC seen in the laboratory are largely produced by AafA structures. When the bacteria colonize worms, dispersin is sloughed off, or otherwise removed, such that Hra1-mediated adherence occurs. All three factors are required for optimal colonization, as well as to produce the signature EAEC stacked-brick adherence pattern. Interplay among multiple colonization factors may be an essential feature of exceptional colonizers.
Collapse
|
15
|
Huang YT, Cheng JF, Liu YT, Mao YC, Wu MS, Liu PY. Genome-based analysis of virulence determinants of a Serratia marcescens strain from soft tissues following a snake bite. Future Microbiol 2017; 13:331-343. [PMID: 29105506 DOI: 10.2217/fmb-2017-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Serratia marcescens wound infection after snakebite is often associated with aggressive presentations. However, the virulence determinants remain understudied. MATERIALS & METHODS Whole-genome sequencing was performed on S. marcescens VGH107, an isolate from wound infection secondary to Trimeresurus mucrosquamatus bite. Comparative genomics approach coupled with multivirulent-locus sequencing typing was applied to systematically predict potential virulence factors. RESULTS Multivirulent-locus sequencing typing indicated VGH107 falls within the cluster of high pathogenic strains. Comparative analysis identified virulence genes unique in VGH107, including ecpD and ecpE genes for periplasmic chaperone-pilus subunit complex and cdiA and cdiB genes for contact-dependent growth inhibition system. CONCLUSION The data established here provide foundation for further research regarding the virulence and resistance of S. marcescens.
Collapse
Affiliation(s)
- Yao-Ting Huang
- Department of Computer Science & Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Jan-Fang Cheng
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Yi-Ting Liu
- Department of Computer Science & Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Yan-Chiao Mao
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-San Wu
- Division of Infection & Immunity, University College London, London, UK
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
16
|
Maddux JT, Stromberg ZR, Curtiss Iii R, Mellata M. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli. Front Immunol 2017; 8:1280. [PMID: 29062318 PMCID: PMC5640888 DOI: 10.3389/fimmu.2017.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023] Open
Abstract
Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an immune response to E. coli and Salmonella antigens in some mice, provide significant protection in some internal organs during ExPEC challenge, and thus this study is a promising initial step toward developing a vaccine for prevention of ExPEC infections. Future studies should optimize the ExPEC antigens displayed by the RASV strain for a more robust immune response and enhanced protection against ExPEC infection.
Collapse
Affiliation(s)
- Jacob T Maddux
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Roy Curtiss Iii
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Melha Mellata
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli. Microb Pathog 2015; 85:44-9. [PMID: 26057827 DOI: 10.1016/j.micpath.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 02/08/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.
Collapse
|
18
|
Markland SM, LeStrange KJ, Sharma M, Kniel KE. Old Friends in New Places: Exploring the Role of ExtraintestinalE. coliin Intestinal Disease and Foodborne Illness. Zoonoses Public Health 2015; 62:491-6. [DOI: 10.1111/zph.12194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 12/13/2022]
Affiliation(s)
- S. M. Markland
- Department of Animal and Food Sciences; University of Delaware; Newark DE USA
| | - K. J. LeStrange
- Department of Animal and Food Sciences; University of Delaware; Newark DE USA
| | - M. Sharma
- Environmental Microbial and Food Safety Laboratory; USDA-Agricultural Research Service; Beltsville MD USA
| | - K. E. Kniel
- Department of Animal and Food Sciences; University of Delaware; Newark DE USA
| |
Collapse
|
19
|
Vijay D, Dhaka P, Vergis J, Negi M, Mohan V, Kumar M, Doijad S, Poharkar K, Kumar A, Malik SS, Barbuddhe SB, Rawool DB. Characterization and biofilm forming ability of diarrhoeagenic enteroaggregative Escherichia coli isolates recovered from human infants and young animals. Comp Immunol Microbiol Infect Dis 2014; 38:21-31. [PMID: 25529123 DOI: 10.1016/j.cimid.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important pathotype that causes infection in humans and animals. EAEC isolates (n=86) recovered from diarrhoeal cases in human infants (37) and young animals (49) were characterized as 'typical' and/or 'atypical' EAEC strains employing PCR for virulence associated genes (cvd432, aaiA, astA, pilS, irp2, ecp, pic, aggR, aafA, aggA, and agg3A). Besides, biofilm formation ability of human and animal EAEC isolates was assessed using microtiter plate assay. In addition, the transcriptional profile of biofilm associated genes (fis and ecp) was also evaluated and correlated with biofilm formation assay for few selected EAEC isolates of human and animal origins. Overall, a diverse virulence gene profile was observed for the EAEC isolates of human and animal origins as none of the EAEC isolates revealed the presence of all the genes that were targeted. Nine 'typical' EAEC isolates were identified (6 from humans and 3 from animals) while, the majority of the isolates were 'atypical' EAEC strains. Isolation and identification of three 'typical' EAEC isolates from animals (canines) appears to be the first report globally. Further, based on the observations of the biofilm formation assay, the study suggested that human EAEC isolates in particular were comparatively more biofilm producers than that of the animal EAEC isolates. The fis gene was highly expressed in majority of 'typical' EAEC isolates and the ecp gene in 'atypical' EAEC isolates.
Collapse
Affiliation(s)
- Deepthi Vijay
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Pankaj Dhaka
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Jess Vergis
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Mamta Negi
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Vysakh Mohan
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Manesh Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | | | | - Ashok Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | | - Deepak B Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India.
| |
Collapse
|
20
|
Rossez Y, Holmes A, Lodberg-Pedersen H, Birse L, Marshall J, Willats WGT, Toth IK, Holden NJ. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants. J Biol Chem 2014; 289:34349-65. [PMID: 25320086 DOI: 10.1074/jbc.m114.587717] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.
Collapse
Affiliation(s)
- Yannick Rossez
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Ashleigh Holmes
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Henriette Lodberg-Pedersen
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg Copenhagen, Denmark
| | - Louise Birse
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Jacqueline Marshall
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - William G T Willats
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg Copenhagen, Denmark
| | - Ian K Toth
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Nicola J Holden
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| |
Collapse
|
21
|
Saldaña Z, De la Cruz MA, Carrillo-Casas EM, Durán L, Zhang Y, Hernández-Castro R, Puente JL, Daaka Y, Girón JA. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium. PLoS One 2014; 9:e101200. [PMID: 25036370 PMCID: PMC4103759 DOI: 10.1371/journal.pone.0101200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/04/2014] [Indexed: 01/05/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. colicommon pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.
Collapse
Affiliation(s)
- Zeus Saldaña
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Miguel A. De la Cruz
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | | | - Laura Durán
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Yushan Zhang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, Tlalpan, Mexico City, México
| | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jorge A. Girón
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
22
|
Stacy AK, Mitchell NM, Maddux JT, De la Cruz MA, Durán L, Girón JA, 3rd RC, Mellata M. Evaluation of the prevalence and production of Escherichia coli common pilus among avian pathogenic E. coli and its role in virulence. PLoS One 2014; 9:e86565. [PMID: 24466152 PMCID: PMC3900561 DOI: 10.1371/journal.pone.0086565] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/11/2013] [Indexed: 01/15/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains cause systemic and localized infections in poultry, jointly termed colibacillosis. Avian colibacillosis is responsible for significant economic losses to the poultry industry due to disease treatment, decrease in growth rate and egg production, and mortality. APEC are also considered a potential zoonotic risk for humans. Fully elucidating the virulence and zoonotic potential of APEC is key for designing successful strategies against their infections and their transmission. Herein, we investigated the prevalence of a newly discovered E. coli common pilus (ECP) for the subunit protein of the ECP pilus (ecpA) and ECP expression amongst APEC strains as well as the role of ECP in virulence. A PCR-based ecpA survey of a collection of 167 APEC strains has shown that 76% (127/167) were ecpA+. An immunofluorescence assay using anti-EcpA antibodies, revealed that among the ecpA+ strains, 37.8% (48/127) expressed ECP when grown in DMEM +0.5% Mannose in contact with HeLa cells at 37°C and/or in biofilm at 28°C; 35.4% (17/48) expressed ECP in both conditions and 64.6% (31/48) expressed ECP in biofilm only. We determined that the ecp operon in the APEC strain χ7122 (ecpA+, ECP-) was not truncated; the failure to detect ECP in some strains possessing non-truncated ecp genes might be attributed to differential regulatory mechanisms between strains that respond to specific environmental signals. To evaluate the role of ECP in the virulence of APEC, we generated ecpA and/or ecpD-deficient mutants from the strain χ7503 (ecpA+, ECP+). Deletion of ecpA and/or ecpD abolished ECP synthesis and expression, and reduced biofilm formation and motility in vitro and virulence in vivo. All together our data show that ecpA is highly prevalent among APEC isolates and its expression could be differentially regulated in these strains, and that ECP plays a role in the virulence of APEC.
Collapse
Affiliation(s)
- Alyssa K. Stacy
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Natalie M. Mitchell
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jacob T. Maddux
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | | | - Laura Durán
- University of Florida, Gainesville, Florida, United States of America
| | - Jorge A. Girón
- University of Florida, Gainesville, Florida, United States of America
| | - Roy Curtiss 3rd
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Melha Mellata
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
23
|
Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 2013; 13:739-55. [PMID: 23305361 PMCID: PMC3601411 DOI: 10.2174/138920312804871166] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 11/24/2022]
Abstract
A community-based life style is the normal mode of growth and survival for many bacterial species. These cellular accretions or biofilms are initiated upon recognition of solid phases by cell surface exposed adhesive moieties. Further cell-cell interactions, cell signalling and bacterial replication leads to the establishment of dense populations encapsulated in a mainly self-produced extracellular matrix; this comprises a complex mixture of macromolecules. These fascinating architectures protect the inhabitants from radiation damage, dehydration, pH fluctuations and antimicrobial compounds. As such they can cause bacterial persistence in disease and problems in industrial applications. In this review we discuss the current understandings of these initial biofilm-forming processes based on structural data. We also briefly describe latter biofilm maturation and dispersal events, which although lack high-resolution insights, are the present focus for many structural biologists working in this field. Finally we give an overview of modern techniques aimed at preventing and disrupting problem biofilms.
Collapse
Affiliation(s)
- James A Garnett
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | |
Collapse
|
24
|
Medeiros P, Bolick DT, Roche JK, Noronha F, Pinheiro C, Kolling GL, Lima A, Guerrant RL. The micronutrient zinc inhibits EAEC strain 042 adherence, biofilm formation, virulence gene expression, and epithelial cytokine responses benefiting the infected host. Virulence 2013; 4:624-33. [PMID: 23958904 DOI: 10.4161/viru.26120] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a major pathogen worldwide, associated with diarrheal disease in both children and adults, suggesting the need for new preventive and therapeutic treatments. We investigated the role of the micronutrient zinc in the pathogenesis of an E. coli strain associated with human disease. A variety of bacterial characteristics-growth in vitro, biofilm formation, adherence to IEC-6 epithelial cells, gene expression of putative EAEC virulence factors as well as EAEC-induced cytokine expression by HCT-8 cells-were quantified. At concentrations (≤ 0.05 mM) that did not alter EAEC growth (strain 042) but that are physiologic in serum, zinc markedly decreased the organism's ability to form biofilm (P<0.001), adhere to IEC-6 epithelial cells (P<0.01), and express putative EAEC virulence factors (aggR, aap, aatA, virK) (P<0.03). After exposure of the organism to zinc, the effect on virulence factor generation was prolonged (> 3 h). Further, EAEC-induced IL-8 mRNA and protein secretion by HCT-8 epithelial cells were significantly reduced by 0.05 mM zinc (P<0.03). Using an in vivo murine model of diet-induced zinc-deficiency, oral zinc supplementation (0.4 µg/mouse daily) administered after EAEC challenge (10 (10) CFU/mouse) significantly abrogated growth shortfalls (by>90%; P<0.01); furthermore, stool shedding was reduced (days 9-11) but tissue burden of organisms in the intestine was unchanged. These findings suggest several potential mechanisms whereby physiological levels of zinc alter pathogenetic events in the bacterium (reducing biofilm formation, adherence to epithelium, virulence factor expression) as well as the bacterium's effect on the epithelium (cytokine response to exposure to EAEC) to alter EAEC pathogenesis in vitro and in vivo. These effects may help explain and extend the benefits of zinc in childhood diarrhea and malnutrition.
Collapse
Affiliation(s)
- Pedro Medeiros
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA; Institute of Biomedicine; Federal University of Ceará; Fortaleza, CE Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Etcheverría AI, Padola NL. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence 2013; 4:366-72. [PMID: 23624795 PMCID: PMC3714128 DOI: 10.4161/viru.24642] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Outbreaks are linked to bovine food sources. STEC O157:H7 has been responsible for the most severe outbreaks worldwide. However, non-O157 serotypes have emerged as important enteric pathogens in several countries. The main virulence factor of STEC is the production of Shiga toxins 1 and 2. Additional virulence markers are a plasmid-encoded enterohemolysin (ehxA), an autoagglutinating adhesin (Saa), a catalase-peroxidase (katP), an extracellular serine protease (espP), a zinc metalloprotease (stcE), a subtilase cytotoxin (subAB), among others. Other virulence factors are intimin and adhesins that had a roll in the adherence of STEC to bovine colon. This review focuses on the virulence traits of STEC and especially on those related to the adhesion to bovine colon. The known of the interaction between STEC and the bovine host is crucial to develop strategies to control cattle colonization.
Collapse
Affiliation(s)
- Analía Inés Etcheverría
- Laboratorio de Imunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | | |
Collapse
|
26
|
Lehti TA, Bauchart P, Kukkonen M, Dobrindt U, Korhonen TK, Westerlund-Wikström B. Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli. Mol Microbiol 2013; 87:1200-22. [PMID: 23347101 DOI: 10.1111/mmi.12161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 11/28/2022]
Abstract
Heterogeneity of cell population is a key component behind the evolutionary success of Escherichia coli. The heterogeneity supports species adaptation and mainly results from lateral gene transfer. Adaptation may also involve genomic alterations that affect regulation of conserved genes. Here we analysed regulation of the mat (or ecp) genes that encode a conserved fimbrial adhesin of E. coli. We found that the differential and temperature-sensitive expression control of the mat operon is dependent on mat promoter polymorphism and closely linked to phylogenetic grouping of E. coli. In the mat promoter lineage favouring fimbriae expression, the mat operon-encoded regulator MatA forms a positive feedback loop that overcomes the repression by H-NS and stabilizes the fimbrillin mRNA under low growth temperature, acidic pH or elevated levels of acetate. The study exemplifies phylogenetic group-associated expression of a highly common surface organelle in E. coli.
Collapse
Affiliation(s)
- Timo A Lehti
- Division of General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Alcántar-Curiel MD, Blackburn D, Saldaña Z, Gayosso-Vázquez C, Iovine NM, De la Cruz MA, Girón JA. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 2013; 4:129-38. [PMID: 23302788 DOI: 10.4161/viru.22974] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen frequently associated with nosocomially acquired infections. Host cell adherence and biofilm formation of K. pneumoniae isolates is mediated by type 1 (T1P) and type 3 (MR/K) pili whose major fimbrial subunits are encoded by the fimA and mrkA genes, respectively. The E. coli common pilus (ECP) is an adhesive structure produced by all E. coli pathogroups and a homolog of the ecpABCDE operon is present in the K. pneumoniae genome. In this study, we aimed to determine the prevalence of these three fimbrial genes among a collection of 69 clinical and environmental K. pneumoniae strains and to establish a correlation with fimbrial production during cell adherence and biofilm formation. The PCR-based survey demonstrated that 96% of the K. pneumoniae strains contained ecpA and 94% of these strains produced ECP during adhesion to cultured epithelial cells. Eighty percent of the strains forming biofilms on glass produced ECP, suggesting that ECP is required, at least in vitro, for expression of these phenotypes. The fim operon was found in 100% of the strains and T1P was detected in 96% of these strains. While all the strains examined contained mrkA, only 57% of them produced MR/K fimbriae, alone or together with ECP. In summary, this study highlights the ability of K. pneumoniae strains to produce ECP, which may represent a new important adhesive structure of this organism. Further, it defines the multi-fimbrial nature of the interaction of this nosocomial pathogen with host epithelial cells and inert surfaces.
Collapse
Affiliation(s)
- María D Alcántar-Curiel
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zav’yalov VP. POLYADHESINS: AN ARMORY OF GRAM--NEGATIVE PATHOGENS FOR PENETRATION THROUGH THE IMMUNE SHIELD. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.04.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Transcriptional regulation of the ecp operon by EcpR, IHF, and H-NS in attaching and effacing Escherichia coli. J Bacteriol 2012; 194:5020-33. [PMID: 22797761 DOI: 10.1128/jb.00915-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli are clinically important diarrheagenic pathogens that adhere to the intestinal epithelial surface. The E. coli common pili (ECP), or meningitis-associated and temperature-regulated (MAT) fimbriae, are ubiquitous among both commensal and pathogenic E. coli strains and play a role as colonization factors by promoting the interaction between bacteria and host epithelial cells and favoring interbacterial interactions in biofilm communities. The first gene of the ecp operon encodes EcpR (also known as MatA), a proposed regulatory protein containing a LuxR-like C-terminal helix-turn-helix (HTH) DNA-binding motif. In this work, we analyzed the transcriptional regulation of the ecp genes and the role of EcpR as a transcriptional regulator. EHEC and EPEC ecpR mutants produce less ECP, while plasmids expressing EcpR increase considerably the expression of EcpA and production of ECP. The ecp genes are transcribed as an operon from a promoter located 121 bp upstream of the start codon of ecpR. EcpR positively regulates this promoter by binding to two TTCCT boxes distantly located upstream of the ecp promoter, thus enhancing expression of downstream ecp genes, leading to ECP production. EcpR mutants in the putative HTH DNA-binding domain are no longer able to activate ecp expression or bind to the TTCCT boxes. EcpR-mediated activation is aided by integration host factor (IHF), which is essential for counteracting the repression exerted by histone-like nucleoid-structuring protein (H-NS) on the ecp promoter. This work demonstrates evidence about the interplay between a novel member of a diverse family of regulatory proteins and global regulators in the regulation of a fimbrial operon.
Collapse
|
30
|
Nara JM, Pimenta DC, Abe CM, Abreu PAE, Moraes CTP, Freitas NC, Elias WP, Piazza RMF. Low-molecular mass comparative proteome of four atypical enteropathogenic Escherichia coli isolates showing different adherence patterns. Comp Immunol Microbiol Infect Dis 2012; 35:539-49. [PMID: 22768807 DOI: 10.1016/j.cimid.2012.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous in terms of serotypes, adherence patterns and the presence of non-locus of enterocyte effacement virulence factors. In this study, the low-molecular mass proteomes of four representative aEPEC, comprising three different adhesion phenotypes (localized-like, aggregative and diffuse) and one non-adherent isolate, were analyzed and compared by 2D gel electrophoresis and LC-MS/MS. By mass spectrometry, a total of 59 proteins were identified according to their annotated function, with most of them being involved in metabolism, protection, and transport; some of them still classified as hypothetical proteins. Thus, in this comparative proteomic analysis of low-molecular mass extracted proteins from different aEPEC isolates, the proteins identified are mainly involved in key metabolic pathways. Also, the majority of the hypothetical and filamentous proteins identified in the isolates studied are products of genes originally identified in the genome of enterohemorrhagic E. coli.
Collapse
Affiliation(s)
- Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli. J Bacteriol 2012; 194:3475-85. [PMID: 22522901 DOI: 10.1128/jb.06596-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The common colonization factor of Escherichia coli, the Mat (also termed ECP) fimbria, functions to advance biofilm formation on inert surfaces as well as bacterial adherence to epithelial cells and subsequent colonization. We used global mini-Tn5 transposon mutagenesis to identify novel regulators of biofilm formation by the meningitic E. coli isolate IHE 3034. Of the 4,418 transformants, we found 17 that were impaired in biofilm formation. Most of these mutants were affected in lipopolysaccharide synthesis and were reduced in growth but not in Mat fimbria expression. In contrast, two mutants grew well but did not express Mat fimbria. The insertions in these two mutants were located at different sites of the rcsB gene, which encodes a DNA-binding response regulator of the Rcs response regulon. The mutations abrogated temperature-dependent biofilm formation by IHE 3034, and the phenotype correlated with loss of mat expression. The defect in biofilm formation in the rcsB mutant was reversed upon complementation with rcsB as well as by overexpression of structural mat genes but not by overexpression of the fimbria-specific activator gene matA. Monitoring of the mat operon promoter activity with chromosomal reporter fusions showed that the RcsB protein and an RcsAB box in the mat regulatory region, but not RcsC, RcsD, AckA, and Pta, are essential for initiation of mat transcription. Gel retardation assays showed that RcsB specifically binds to the mat promoter DNA, which enables its function in promoting biofilm formation by E. coli.
Collapse
|
32
|
Lehti TA, Bauchart P, Dobrindt U, Korhonen TK, Westerlund-Wikström B. The fimbriae activator MatA switches off motility in Escherichia coli by repression of the flagellar master operon flhDC. MICROBIOLOGY-SGM 2012; 158:1444-1455. [PMID: 22422754 DOI: 10.1099/mic.0.056499-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Flagella provide advantages to Escherichia coli by facilitating taxis towards nutrients and away from unfavourable niches. On the other hand, flagellation is an energy sink to the bacterial cell, and flagella also stimulate host innate inflammatory responses against infecting bacteria. The flagellar assembly pathway is ordered and under a complex regulatory circuit that involves three classes of temporally regulated promoters as well as the flagellar master regulator FlhD(4)C(2). We report here that transcription of the flhDC operon from the class 1 promoter is under negative regulation by MatA, a key activator of the common mat (or ecp) fimbria operon that enhances biofilm formation by E. coli. Ectopic expression of MatA completely precluded motility and flagellar synthesis in the meningitis-associated E. coli isolate IHE 3034. Northern blotting, analysis of chromosomal promoter-lacZ fusions and electrophoretic mobility shift assays revealed an interaction between MatA and the flhDC promoter region that apparently repressed flagellum biosynthesis. However, inactivation of matA in the chromosome of IHE 3034 had only a minor effect on flagellation, which underlines the complexity of regulatory signals that promote flagellation in E. coli. We propose that the opposite regulatory actions of MatA on mat and on flhDC promoters advance the adaptation of E. coli from a planktonic to an adhesive lifestyle.
Collapse
Affiliation(s)
- Timo A Lehti
- Division of General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Finland
| | - Philippe Bauchart
- Institute for Molecular Biology of Infectious Diseases, Julius-Maximilians-University Würzburg, D-97080 Würzburg, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Institute for Molecular Biology of Infectious Diseases, Julius-Maximilians-University Würzburg, D-97080 Würzburg, Germany
| | - Timo K Korhonen
- Division of General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Finland
| | | |
Collapse
|
33
|
Farfan MJ, Torres AG. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 2012; 80:903-13. [PMID: 22144484 PMCID: PMC3294676 DOI: 10.1128/iai.05907-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogens which cause gastrointestinal disease in humans and have been associated with numerous food-borne outbreaks worldwide. The intimin adhesin has been considered for many years to be the only colonization factor in these strains. However, the rapid progress in whole-genome sequencing of different STEC serotypes has accelerated the discovery of other adhesins (fimbrial and afimbrial), which have emerged as important contributors to the intestinal colonization occurring during STEC infection. This review summarizes recent progress to identify and characterize, at the molecular level, novel adhesion and colonization factors in STEC strains, with an emphasis on their contribution to virulence traits, their host-pathogen interactions, the regulatory mechanisms controlling their expression, and their role as targets eliciting immune responses in the host.
Collapse
Affiliation(s)
- Mauricio J. Farfan
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, Department of Pathology, Sealy Center for Vaccine Development, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
34
|
Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus. Proc Natl Acad Sci U S A 2012; 109:3950-5. [PMID: 22355107 DOI: 10.1073/pnas.1106733109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria have evolved a variety of mechanisms for developing community-based biofilms. These bacterial aggregates are of clinical importance, as they are a major source of recurrent disease. Bacterial surface fibers (pili) permit adherence to biotic and abiotic substrates, often in a highly specific manner. The Escherichia coli common pilus (ECP) represents a remarkable family of extracellular fibers that are associated with both disease-causing and commensal strains. ECP plays a dual role in early-stage biofilm development and host cell recognition. Despite being the most common fimbrial structure, relatively little is known regarding its biogenesis, architecture, and function. Here we report atomic-resolution insight into the biogenesis and architecture of ECP. We also derive a structural model for entwined ECP fibers that not only illuminates interbacteria communication during biofilm formation but also provides a useful foundation for the design of novel nanofibers.
Collapse
|
35
|
Fimbrial adhesins produced by atypical enteropathogenic Escherichia coli strains. Appl Environ Microbiol 2011; 77:8391-9. [PMID: 21926222 DOI: 10.1128/aem.05376-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) has emerged as a significant cause of pediatric diarrhea worldwide; however, information regarding its adherence mechanisms to the human gut mucosa is lacking. In this study, we investigated the prevalence of several (fimA, ecpA, csgA, elfA, and hcpA) fimbrial genes in 71 aEPEC strains isolated from children with diarrhea (54 strains) and healthy individuals (17 strains) in Brazil and Australia by PCR. These genes are associated with adhesion and/or biofilm formation of pathogenic and commensal E. coli. Here, the most prevalent fimbrial genes found, in descending order, were hcpA (98.6%), ecpA (86%), fimA (76%), elfA (72%), and csgA (19.7%). Phenotypic expression of pili in aEPEC strains was assessed by several approaches. We were not able to detect the hemorrhagic coli pilus (HCP) or the E. coli laminin-binding fimbriae (ELF) in these strains by using immunofluorescence. Type 1 pili and curli were detected in 59% (by yeast agglutination) and 2.8% (by Congo red binding and immunofluorescence) of the strains, respectively. The E. coli common pilus (ECP) was evidenced in 36.6% of the strains on bacteria adhering to HeLa cells by immunofluorescence, suggesting that ECP could play an important role in cell adherence for some aEPEC strains. This study highlights the complex nature of the adherence mechanisms of aEPEC strains involving the coordinated function of fimbrial (e.g., ECP) and nonfimbrial (e.g., intimin) adhesins and indicates that these strains bear several pilus operons that could potentially be expressed in different niches favoring colonization and survival in and outside the host.
Collapse
|