1
|
Bloomfield M, Hutton S, Burton M, Tarring C, Velasco C, Clissold C, Balm M, Kelly M, Macartney-Coxson D, White R. Early identification of a ward-based outbreak of Clostridioides difficile using prospective multilocus sequence type-based Oxford Nanopore genomic surveillance. Infect Control Hosp Epidemiol 2024; 45:1-7. [PMID: 38706217 PMCID: PMC11518675 DOI: 10.1017/ice.2024.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To describe an outbreak of sequence type (ST)2 Clostridioides difficile infection (CDI) detected by a recently implemented multilocus sequence type (MLST)-based prospective genomic surveillance system using Oxford Nanopore Technologies (ONT) sequencing. SETTING Hemato-oncology ward of a public tertiary referral centre. METHODS From February 2022, we began prospectively sequencing all C. difficile isolated from inpatients at our institution on the ONT MinION device, with the output being an MLST. Bed-movement data are used to construct real-time ST-specific incidence charts based on ward exposures over the preceding three months. RESULTS Between February and October 2022, 76 of 118 (64.4%) CDI cases were successfully sequenced. There was wide ST variation across cases and the hospital, with only four different STs being seen in >4 patients. A clear predominance of ST2 CDI cases emerged among patients with exposure to our hemato-oncology ward between May and October 2022, which totalled ten patients. There was no detectable rise in overall CDI incidence for the ward or hospital due to the outbreak. Following a change in cleaning product to an accelerated hydrogen peroxide wipe and several other interventions, no further outbreak-associated ST2 cases were detected. A retrospective phylogenetic analysis using original sequence data showed clustering of the suspected outbreak cases, with the exception of two cases that were retrospectively excluded from the outbreak. CONCLUSIONS Prospective genomic surveillance of C. difficile using ONT sequencing permitted the identification of an outbreak of ST2 CDI that would have otherwise gone undetected.
Collapse
Affiliation(s)
- Max Bloomfield
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Samantha Hutton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Megan Burton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Claire Tarring
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Charles Velasco
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Carolyn Clissold
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Michelle Balm
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Matthew Kelly
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | | | - Rhys White
- Institute of Environmental Science and Research, Health Group, Porirua, New Zealand
| |
Collapse
|
2
|
Couturier J, Davies K, Barbut F. Ribotypes and New Virulent Strains Across Europe. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:151-168. [PMID: 38175475 DOI: 10.1007/978-3-031-42108-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides (formerly Clostridium) difficile is a major bacterial cause of post-antibiotic diarrhoea. The epidemiology of C. difficile infections (CDIs) has dramatically changed since the early 2000s, with an increasing incidence and severity across Europe. This trend is partly due to the emergence and rapid worldwide spread of the hypervirulent and epidemic PCR ribotype 027. Profiles of patients with CDI have also evolved, with description of community-acquired (CA) infections in patients with no traditional risk factors for CDI. However, epidemiological studies indicated that some European countries have successfully controlled the dissemination of the 027 clone whereas other countries reported the emergence of other virulent or unusual strains. The aims of this review are to summarize the current European CDI epidemiology and to describe the new virulent C. difficile strains circulating in Europe, as well as other potential emerging strains described elsewhere. Standardized typing methods and surveillance programmes are mandatory for a better understanding and monitoring of CDI in Europe.
Collapse
Affiliation(s)
- Jeanne Couturier
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France.
- Université Paris Cité, UMR INSERM 1139, Paris, France.
| | - Kerrie Davies
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridioides difficile (ESGCD), Basel, Switzerland
| | - Frédéric Barbut
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France
- Université Paris Cité, UMR INSERM 1139, Paris, France
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridioides difficile (ESGCD), Basel, Switzerland
| |
Collapse
|
3
|
Blau K, Berger FK, Mellmann A, Gallert C. Clostridioides difficile from Fecally Contaminated Environmental Sources: Resistance and Genetic Relatedness from a Molecular Epidemiological Perspective. Microorganisms 2023; 11:2497. [PMID: 37894155 PMCID: PMC10608975 DOI: 10.3390/microorganisms11102497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile isolates from diverse fecally contaminated environmental sources. C. difficile isolates were recovered from different environmental samples in Northern Germany. Antimicrobial susceptibility testing was determined by E-test or disk diffusion method. Toxin genes (tcdA and tcdB), genes coding for binary toxins (cdtAB) and ribotyping were determined by PCR. Furthermore, 166 isolates were subjected to whole genome sequencing (WGS) for core genome multi-locus sequence typing (cgMLST) and extraction of AMR and virulence-encoding genes. Eighty-nine percent (148/166) of isolates were toxigenic, and 51% (76/148) were positive for cdtAB. Eighteen isolates (11%) were non-toxigenic. Thirty distinct RTs were identified. The most common RTs were RT127, RT126, RT001, RT078, and RT014. MLST identified 32 different sequence types (ST). The dominant STs were ST11, followed by ST2, ST3, and ST109. All isolates were susceptible to vancomycin and metronidazole and displayed a variable rate of resistance to moxifloxacin (14%), clarithromycin (26%) and rifampicin (2%). AMR genes, such as gyrA/B, blaCDD-1/2, aph(3')-llla-sat-4-ant(6)-la cassette, ermB, tet(M), tet(40), and tetA/B(P), conferring resistance toward fluoroquinolone, beta-lactam, aminoglycoside, macrolide and tetracycline antimicrobials, were found in 166, 137, 29, 32, 21, 72, 17, and 9 isolates, respectively. Eleven "hypervirulent" RT078 strains were detected, and several isolates belonged to RTs (i.e., RT127, RT126, RT023, RT017, RT001, RT014, RT020, and RT106) associated with CA-CDI, indicating possible transmission between humans and environmental sources pointing out to a zoonotic potential.
Collapse
Affiliation(s)
- Khald Blau
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| | - Fabian K. Berger
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, 66421 Homburg, Germany;
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
| | - Alexander Mellmann
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
4
|
Walter C, Soni T, Gavin MA, Kubes J, Paciullo K. An interprofessional approach to reducing hospital-onset Clostridioides difficile infections. Am J Infect Control 2022; 50:1346-1351. [PMID: 35569613 DOI: 10.1016/j.ajic.2022.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Clostridioides difficile is the most prevalent hospital-onset (HO) infection. There are significant financial and safety impacts associated with HO-C. difficile infections (HO-CDIs) for both patients and health care organizations. The incidence of HO-CDIs at our community hospital within an academic acute health care system was continuously above the national benchmark. METHODS In response to the high HO-CDI rates at our facility, an interprofessional team selected evidence-based interventions with the goal of reducing HO-CDI incidence rates. Interventions included: diagnostic stewardship, enhanced environmental cleaning, antimicrobial stewardship and education and accountability. RESULTS After one year, we achieved a 63% reduction in HO-CDI and have sustained a 77% reduction. The infection rate remained below national benchmark for HO-CDI for over 4 years at a rate of 2.80 per 10,000 patient days and a SIR of 0.43 in 2020. DISCUSSION Multiple evidence-based interventions were successfully implemented over several service lines over a 4-year period through the collaboration of an interprofessional team. The addition of an accountability processes further improved compliance with standards of practice. CONCLUSIONS Collaboration of an interprofessional team led to substantial and sustained reductions in HO-CDI.
Collapse
|
5
|
Magnusson C, Mernelius S, Bengnér M, Norén T, Serrander L, Forshell S, Matussek A. Characterization of a Clostridioides difficile outbreak caused by PCR ribotype 046, associated with increased mortality. Emerg Microbes Infect 2022; 11:850-859. [PMID: 35240942 PMCID: PMC8942542 DOI: 10.1080/22221751.2022.2049981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study describes a large nosocomial outbreak of Clostridioides difficile infections (CDI) dominated by ribotype (RT) 046 in a Swedish hospital. The present study aimed to examine the pathogenicity of this RT, explore epidemiological links by whole genome sequencing (WGS), and evaluate different interventions implemented to stop the outbreak. Clinical isolates (n = 366) collected during and after the outbreak were ribotyped and 246 isolates were subjected to WGS. Medical records of patients infected with the seven most common RTs were evaluated. RT046 was spread effectively throughout the hospital and was the most common among the 44 different RTs found (114/366 isolates). Infection with RT046 was associated with higher mortality compared to other strains (20.2% to 7.8%), although there were no differences in concomitant disease, age or antibiotic treatment. To control the outbreak, several measures were successfully implemented.
Collapse
Affiliation(s)
- Cecilia Magnusson
- Department of Infectious Diseases, Region Jönköping County, Jönköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sara Mernelius
- Laboratory Medicine, Region Jönköping County, Jönköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Malin Bengnér
- Office for control of Communicable Diseases, Region Jönköping County, Jönköping, Sweden
| | - Torbjörn Norén
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University, Örebro, Sweden
| | - Lena Serrander
- Division of Clinical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Sophie Forshell
- Department of Infectious Diseases, Region Jönköping County, Jönköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Matussek
- Laboratory Medicine, Region Jönköping County, Jönköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Abdrabou AMM, Bischoff M, Mellmann A, von Müller L, Margardt L, Gärtner BC, Berger FK, Haase G, Häfner H, Hoffmann R, Simon V, Stappmanns H, Hischebeth GT, Büchler C, Rößler S, Hochauf-Stange K, Pfeffer K, MacKenzie C, Kunz C, Alsalameh R, Dziobaka J, le Chapot VS, Sanabria E, Hogardt M, Komp J, Imirzalioglu C, Schmiedel J, Pararas M, Sommer F, Groß U, Bohne W, Kekulé AS, Dagwadordsch U, Löffler B, Rödel J, Walker SV, Tobys D, Weikert-Asbeck S, Hauswaldt S, Kaasch AJ, Zautner AE, Joß N, Siegel E, Kehr K, Schaumburg F, Schoeler S, Hamprecht A, Hellkamp J, Hagemann JB, Kubis J, Hering S, Warnke P. Implementation of a Clostridioides difficile sentinel surveillance system in Germany: First insights for 2019–2021. Anaerobe 2022; 77:102548. [DOI: 10.1016/j.anaerobe.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/01/2022]
|
7
|
Senoh M, Kato H. Molecular epidemiology of endemic Clostridioides difficile infection in Japan. Anaerobe 2022; 74:102510. [DOI: 10.1016/j.anaerobe.2021.102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
8
|
Greninger AL, Zerr DM. NGSocomial Infections: High-Resolution Views of Hospital-Acquired Infections Through Genomic Epidemiology. J Pediatric Infect Dis Soc 2021; 10:S88-S95. [PMID: 34951469 PMCID: PMC8755322 DOI: 10.1093/jpids/piab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hospital outbreak investigations are high-stakes epidemiology. Contacts between staff and patients are numerous; environmental and community exposures are plentiful; and patients are highly vulnerable. Having the best data is paramount to understanding an outbreak in order to stop ongoing transmission and prevent future outbreaks. In the past 5 years, the high-resolution view of transmission offered by analyzing pathogen whole-genome sequencing (WGS) is increasingly part of hospital outbreak investigations. Concerns over speed and actionability, assay validation, liability, cost, and payment models lead to further opportunities for work in this area. Now accelerated by funding for COVID-19, the use of genomics in hospital outbreak investigations has firmly moved from the academic literature to more quotidian operations, with associated concerns involving regulatory affairs, data integration, and clinical interpretation. This review details past uses of WGS data in hospital-acquired infection outbreaks as well as future opportunities to increase its utility and growth in hospital infection prevention.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Corresponding Author: Alexander L. Greninger MD, PhD, MS, MPhil, 1616 Eastlake Ave East Suite 320, Seattle, WA 98102, USA. E-mail:
| | - Danielle M Zerr
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington, USA,Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
9
|
Kabała M, Gofron Z, Aptekorz M, Sacha K, Harmanus C, Kuijper E, Martirosian G. Clostridioides difficile Ribotype 027 (RT027) Outbreak Investigation Due to the Emergence of Rifampicin Resistance Using Multilocus Variable-Number Tandem Repeat Analysis (MLVA). Infect Drug Resist 2021; 14:3247-3254. [PMID: 34429622 PMCID: PMC8380304 DOI: 10.2147/idr.s324745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
Objective The aim of this study was Clostridioides difficile outbreak investigation due to the emergence of rifampicin resistant ribotype 027 (RT 027) fecal isolates from patients of Polish tertiary care hospital between X. 2017 and II. 2018 using multilocus variable tandem repeat analysis (MLVA). Materials and Methods Twenty-nine C. difficile fecal isolates from patients of tertiary care hospital in Southern Poland were ribotyped and analyzed by MLVA. Multiplex PCR (mPCR) for genes encoding GDH (gluD), toxins A (tcdA)/ B (tcdB), 16S rDNA and binary toxin genes (ctdA and ctdB) was performed. The antibiotic susceptibility profile was determined by E-test. Results The A, B and binary toxins encoding genes were detected in all 29 C. difficile strains which were sensitive to metronidazole, vancomycin and were resistant to erythromycin, clindamycin, and moxifloxacin; resistance to imipenem demonstrated 97%, to rifampicin – 45% isolates. C. difficile strains could be grouped by MLVA into 5 distinct clusters, and the largest cluster II contains 16 strains. The comparison of rifampicin GM MIC of cluster II (n=16 strains) with all others (n=13) showed that strains from clusters I, III, IV and V possessed significantly (p <0.005) higher GM MIC and were more resistant to rifampicin. Conclusion MLVA analysis proved transmission and recognized outbreak due to multidrug-resistant RT 027 C. difficile among patients of tertiary care hospital in Southern Poland. The reason for this is probably the widespread occurrence of spores in the hospital environment, which includes, among others, neglect of hygienic procedures and epidemic supervision. High resistance to imipenem (97%) and to rifampicin (45%) among C. difficile RT 027 Silesian isolates is threatening and requires further studies to elucidate this phenomenon.
Collapse
Affiliation(s)
- Monika Kabała
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Zygmunt Gofron
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata Aptekorz
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Krzysztof Sacha
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Celine Harmanus
- Department of Medical Microbiology Leiden University Medical Center, Leiden, the Netherlands
| | - Ed Kuijper
- Department of Medical Microbiology Leiden University Medical Center, Leiden, the Netherlands
| | - Gayane Martirosian
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
10
|
Molecular epidemiology and antimicrobial resistance of Clostridioides difficile in Germany, 2014-2019. Int J Med Microbiol 2021; 311:151507. [PMID: 33915347 DOI: 10.1016/j.ijmm.2021.151507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a Gram positive spore-forming rod and mainly responsible for nosocomial diarrhea in developed nations. Molecular and antimicrobial surveillance is important for monitoring the strain composition including genotypes of high epidemiological importance such as ribotype 027 (RT027) and corresponding resistance patterns. 1535 isolates obtained from samples sent between 2014 and 2019 to the German National Reference Center (NRC) for diagnostic reasons (NRC strain set), and 1143 isolates from a Tertiary Care University Center in Saarland, Germany (non-NRC strain set), were evaluated using antibiotic susceptibility testing and ribotyping. In the NRC strain set, RT027 overtook RT001, the main RT found in the preceding studies, and dominated with 36.2%, followed by RT001 (13.3%), and RT014 (8.5%). Of note, since 2016 a constant decrease of RT027 could be noticed. In the non-NRC strain set a large strain diversity was present with RT014 (18%) and RT001 (8.9%) being most prevalent. In NRC samples, resistance towards metronidazole, vancomycin, moxifloxacin, clarithromycin and rifampicin was 2.7%, 0%, 57.1%, 53.2% and 19.2%, respectively. Metronidazole resistance was almost exclusively found in RT027 isolates. Rifampicin resistance was also observed predominantly in isolates of RT027, constituting an almost four-fold increase, when compared to preceeding studies in this region. In conclusion these data demonstrate that RT027 is a driver for rifampicin and metronidazole resistance, underlining the importance of continuous surveillance efforts.
Collapse
|
11
|
Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Göker M, Riedel T, Bunk B, Spröer C, Overmann J, Blaschitz M, Indra A, von Müller L, Kohl TA, Niemann S, Seyboldt C, Klawonn F, Kumar N, Lawley TD, García-Fernández S, Cantón R, del Campo R, Zimmermann O, Groß U, Achtman M, Nübel U. A publicly accessible database for Clostridioides difficile genome sequences supports tracing of transmission chains and epidemics. Microb Genom 2020; 6:mgen000410. [PMID: 32726198 PMCID: PMC7641423 DOI: 10.1099/mgen.0.000410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly accessible database within EnteroBase (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST alleles) were statistically associated with specific hospitals (P<10-4) or single wards (P=0.01) within hospitals, indicating they represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by retrospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, clustering at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies database entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile.
Collapse
Affiliation(s)
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, UK
| | - Matthias Steglich
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
| | | | | | - Thomas Riedel
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Jörg Overmann
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| | - Marion Blaschitz
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Alexander Indra
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Thomas A. Kohl
- Research Center Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | - Stefan Niemann
- Research Center Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | | | - Frank Klawonn
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University, Wolfenbüttel, Germany
| | | | | | - Sergio García-Fernández
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | | | - Uwe Groß
- University Medical Center Göttingen, Germany
| | - Mark Achtman
- Warwick Medical School, University of Warwick, UK
| | - Ulrich Nübel
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| |
Collapse
|
12
|
Molecular epidemiology and antimicrobial resistance of Clostridioides difficile detected in chicken, soil and human samples from Zimbabwe. Int J Infect Dis 2020; 96:82-87. [DOI: 10.1016/j.ijid.2020.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/05/2023] Open
|
13
|
Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, Baines SD, Camacho-Ortíz A, Garza-González E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J Microbiol Methods 2020; 175:105974. [PMID: 32531232 DOI: 10.1016/j.mimet.2020.105974] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
There has been an increase in the incidence and severity of Clostridioides difficile infection (CDI) worldwide, and strategies to control, monitor, and diminish the associated morbidity and mortality have been developed. Several typing methods have been used for typing of isolates and studying the epidemiology of CDI; serotyping was the first typing method, but then was replaced by pulsed-field gel electrophoresis (PFGE). PCR ribotyping is now the gold standard method; however, multi locus sequence typing (MLST) schemes have been developed. New sequencing technologies have allowed comparing whole bacterial genomes to address genetic relatedness with a high level of resolution and discriminatory power to distinguish between closely related strains. Here, we review the most frequent C. difficile ribotypes reported worldwide, with a focus on their epidemiology and genetic characteristics.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Sierra Mojada 950, Col. Independencia, CP 44350 Guadalajara, Jalisco, Mexico
| | - Licet Villarreal-Treviño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Simon D Baines
- University of Hertfordshire, School of Life and Medical Sciences, Department of Biological and Environmental Sciences, Hatfield AL10 9AB, UK
| | - Adrián Camacho-Ortíz
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
14
|
Novakova E, Stefkovicova M, Kopilec MG, Novak M, Kotlebova N, Kuijper E, Krutova M. The emergence of Clostridium difficile ribotypes 027 and 176 with a predominance of the Clostridium difficile ribotype 001 recognized in Slovakia following the European standardized Clostridium difficile infection surveillance of 2016. Int J Infect Dis 2020; 90:111-115. [PMID: 31707136 PMCID: PMC6912155 DOI: 10.1016/j.ijid.2019.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
AIM To obtain standardized epidemiological data for Clostridium difficile infection (CDI) in Slovakia. METHODS Between October and December 2016, 36 hospitals in Slovakia used the European Centre for Disease Prevention and Control (ECDC) Clostridium difficile infection (CDI) surveillance protocol. RESULTS The overall mean CDI incidence density was 2.8 (95% confidence interval 1.9-3.9) cases per 10 000 patient-days. Of 332 CDI cases, 273 (84.9%) were healthcare-associated, 45 (15.1%) were community-associated, and 14 (4.2%) were cases of recurrent CDI. A complicated course of CDI was reported in 14.8% of cases (n=51). CDI outcome data were available for 95.5% of cases (n=317). Of the 35 patients (11.1%) who died, 34 did so within 30 days after their CDI diagnosis. Of the 78 isolates obtained from 12 hospitals, 46 belonged to PCR ribotype 001 (59.0%; 11 hospitals) and 23 belonged to ribotype 176 (29.5%; six hospitals). A total of 73 isolates (93.6%) showed reduced susceptibility to moxifloxacin (ribotypes 001 and 176; p< 0.01). A reduced susceptibility to metronidazole was observed in 13 isolates that subsequently proved to be metronidazole-susceptible when, after thawing, they were retested using the agar dilution method. No reduced susceptibility to vancomycin was found. CONCLUSIONS These results show the emergence of C. difficile ribotypes 027 and 176 with a predominance of ribotype 001 in Slovakia in 2016. Given that an almost homogeneous reduced susceptibility to moxifloxacin was detected in C. difficile isolates, this stresses the importance of reducing fluoroquinolone prescriptions in Slovak healthcare settings.
Collapse
Affiliation(s)
- Elena Novakova
- Department of Microbiology and Immunology, Comenius University, Jessenius Faculty of Medicine in Martin, Slovakia
| | - Maria Stefkovicova
- Department of Epidemiology, Regional Public Health Authority, Trenčín, Slovakia; Department of Laboratory Medicine and Public Health, Faculty of Health Care, Alexander Dubcek University, Trenčín, Slovakia
| | | | - Martin Novak
- Department of Public Health, Comenius University, Jessenius Faculty of Medicine in Martin, Slovakia
| | - Nina Kotlebova
- Department of Microbiology and Immunology, Comenius University, Jessenius Faculty of Medicine in Martin, Slovakia
| | - Ed Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
15
|
Gateau C, Deboscker S, Couturier J, Vogel T, Schmitt E, Muller J, Ménard C, Turcan B, Zaidi RS, Youssouf A, Lavigne T, Barbut F. Local outbreak of Clostridioides difficile PCR-Ribotype 018 investigated by multi locus variable number tandem repeat analysis, whole genome multi locus sequence typing and core genome single nucleotide polymorphism typing. Anaerobe 2019; 60:102087. [DOI: 10.1016/j.anaerobe.2019.102087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023]
|
16
|
Krutova M, Wilcox MH, Kuijper EJ. A two-step approach for the investigation of a Clostridium difficile outbreak by molecular methods. Clin Microbiol Infect 2019; 25:1300-1301. [PMID: 31369805 DOI: 10.1016/j.cmi.2019.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 11/25/2022]
Affiliation(s)
- M Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic; European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD).
| | - M H Wilcox
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD); Leeds Teaching Hospitals NHS Trust & University of Leeds, Leeds, United Kingdom
| | - E J Kuijper
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD); Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|