1
|
Castro-Falcón G, Straetener J, Bornikoel J, Reimer D, Purdy TN, Berscheid A, Schempp FM, Liu DY, Linington RG, Brötz-Oesterhelt H, Hughes CC. Antibacterial Marinopyrroles and Pseudilins Act as Protonophores. ACS Chem Biol 2024; 19:743-752. [PMID: 38377384 PMCID: PMC10949930 DOI: 10.1021/acschembio.3c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Elucidating the mechanism of action (MoA) of antibacterial natural products is crucial to evaluating their potential as novel antibiotics. Marinopyrroles, pentachloropseudilin, and pentabromopseudilin are densely halogenated, hybrid pyrrole-phenol natural products with potent activity against Gram-positive bacterial pathogens like Staphylococcus aureus. However, the exact way they exert this antibacterial activity has not been established. In this study, we explore their structure-activity relationship, determine their spatial location in bacterial cells, and investigate their MoA. We show that the natural products share a common MoA based on membrane depolarization and dissipation of the proton motive force (PMF) that is essential for cell viability. The compounds show potent protonophore activity but do not appear to destroy the integrity of the cytoplasmic membrane via the formation of larger pores or interfere with the stability of the peptidoglycan sacculus. Thus, our current model for the antibacterial MoA of marinopyrrole, pentachloropseudilin, and pentabromopseudilin stipulates that the acidic compounds insert into the membrane and transport protons inside the cell. This MoA may explain many of the deleterious biological effects in mammalian cells, plants, phytoplankton, viruses, and protozoans that have been reported for these compounds.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Jan Straetener
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Jan Bornikoel
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Daniela Reimer
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Trevor N. Purdy
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Anne Berscheid
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Florence M. Schempp
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Dennis Y. Liu
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Roger G. Linington
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen 72076, Germany
- German
Center for Infection Research, Partner Site Tübingen, Tübingen 72076, Germany
| | - Chambers C. Hughes
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen 72076, Germany
- German
Center for Infection Research, Partner Site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
2
|
Brajtenbach D, Puls JS, Matos de Opitz CL, Sass P, Kubitscheck U, Grein F. Quantitative Analysis of Microscopy Data to Evaluate Bacterial Responses to Antibiotic Treatment. Methods Mol Biol 2023; 2601:231-257. [PMID: 36445587 DOI: 10.1007/978-1-0716-2855-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microscopy is a powerful method to evaluate the direct effects of antibiotic action on the single cell level. As with other methodologies, microscopy data is obtained through sufficient biological and technical replicate experiments, where evaluation of the sample is generally followed over time. Even if a single antibiotic is tested for a defined time, the most certain outcome is large amounts of raw data that requires systematic analysis. Although microscopy is a helpful qualitative method, the recorded information is stored as defined quantifiable units, the pixels. When this information is transferred to diverse bioinformatic tools, it is possible to analyze the microscopy data while avoiding the inherent bias associated to manual quantification. Here, we briefly describe methods for the analysis of microscopy images using open-source programs, with a special focus on bacteria exposed to antibiotics.
Collapse
Affiliation(s)
- Dominik Brajtenbach
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cruz L Matos de Opitz
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
3
|
Sass P. Antibiotics: Precious Goods in Changing Times. Methods Mol Biol 2023; 2601:3-26. [PMID: 36445576 DOI: 10.1007/978-1-0716-2855-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of antibiotic modes of action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow to appropriately react to the presence of antimicrobial agents, thereby ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, new resistance-breaking strategies to counteract bacterial infections are desperately needed. This chapter is an update to Chapter 1 of the first edition of this book and intends to give an overview of common antibiotics and their target pathways. It will also present examples for new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.
Collapse
Affiliation(s)
- Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Matos de Opitz CL, Sass P. Microscopy-Based Multiwell Assay to Characterize Disturbed Bacterial Morphogenesis Upon Antibiotic Action. Methods Mol Biol 2023; 2601:171-190. [PMID: 36445584 DOI: 10.1007/978-1-0716-2855-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The urgent need of new antimicrobial agents to combat life-threatening bacterial infections demands the identification and characterization of novel compounds that interfere with new and unprecedented target pathways or structures in multiresistant bacteria. Here, bacterial cell division has emerged as a new and promising target pathway for antibiotic intervention. Compounds, which inhibit division, commonly induce a characteristic filamentation phenotype of rod-shaped bacteria, such as Bacillus subtilis. Hence, this filamentation phenotype can be used to identify and characterize novel compounds that primarily target bacterial cell division. Since novel compounds of both synthetic and natural product origin are often available in small amounts only, thereby limiting the number of assays during mode of action studies, we here describe a semiautomated, microscopy-based approach that requires only small volumes of compounds to allow for the real-time observation of their effects on living bacteria, such as filamentation or cell lysis, in high-throughput 96-well-based formats. We provide a detailed workflow for the initial characterization of multiple compounds at once and further tools for the initial, microscopy-based characterization of their antibacterial mode of action.
Collapse
Affiliation(s)
- Cruz L Matos de Opitz
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Antibiotic Acyldepsipeptides Stimulate the Streptomyces Clp-ATPase/ClpP Complex for Accelerated Proteolysis. mBio 2022; 13:e0141322. [PMID: 36286522 PMCID: PMC9765437 DOI: 10.1128/mbio.01413-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clp proteases consist of a proteolytic, tetradecameric ClpP core and AAA+ Clp-ATPases. Streptomycetes, producers of a plethora of secondary metabolites, encode up to five different ClpP homologs, and the composition of their unusually complex Clp protease machinery has remained unsolved. Here, we report on the composition of the housekeeping Clp protease in Streptomyces, consisting of a heterotetradecameric core built of ClpP1, ClpP2, and the cognate Clp-ATPases ClpX, ClpC1, or ClpC2, all interacting with ClpP2 only. Antibiotic acyldepsipeptides (ADEP) dysregulate the Clp protease for unregulated proteolysis. We observed that ADEP binds Streptomyces ClpP1, but not ClpP2, thereby not only triggering the degradation of nonnative protein substrates but also accelerating Clp-ATPase-dependent proteolysis. The explanation is the concomitant binding of ADEP and Clp-ATPases to opposite sides of the ClpP1P2 barrel, hence revealing a third, so far unknown mechanism of ADEP action, i.e., the accelerated proteolysis of native protein substrates by the Clp protease. IMPORTANCE Clp proteases are antibiotic and anticancer drug targets. Composed of the proteolytic core ClpP and a regulatory Clp-ATPase, the protease machinery is important for protein homeostasis and regulatory proteolysis. The acyldepsipeptide antibiotic ADEP targets ClpP and has shown promise for treating multiresistant and persistent bacterial infections. The molecular mechanism of ADEP is multilayered. Here, we present a new way how ADEP can deregulate the Clp protease system. Clp-ATPases and ADEP bind to opposite sides of Streptomyces ClpP, accelerating the degradation of natural Clp protease substrates. We also demonstrate the composition of the major Streptomyces Clp protease complex, a heteromeric ClpP1P2 core with the Clp-ATPases ClpX, ClpC1, or ClpC2 exclusively bound to ClpP2, and the killing mechanism of ADEP in Streptomyces.
Collapse
|
6
|
Mendes SS, Marques J, Mesterházy E, Straetener J, Arts M, Pissarro T, Reginold J, Berscheid A, Bornikoel J, Kluj RM, Mayer C, Oesterhelt F, Friães S, Royo B, Schneider T, Brötz-Oesterhelt H, Romão CC, Saraiva LM. Synergetic Antimicrobial Activity and Mechanism of Clotrimazole-Linked CO-Releasing Molecules. ACS BIO & MED CHEM AU 2022; 2:419-436. [PMID: 35996473 PMCID: PMC9389576 DOI: 10.1021/acsbiomedchemau.2c00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Several metal-based
carbon monoxide-releasing molecules (CORMs)
are active CO donors with established antibacterial activity. Among
them, CORM conjugates with azole antibiotics of type [Mn(CO)3(2,2′-bipyridyl)(azole)]+ display important synergies
against several microbes. We carried out a structure–activity
relationship study based upon the lead structure of [Mn(CO)3(Bpy)(Ctz)]+ by producing clotrimazole (Ctz) conjugates
with varying metal and ligands. We concluded that the nature of the
bidentate ligand strongly influences the bactericidal activity, with
the substitution of bipyridyl by small bicyclic ligands leading to
highly active clotrimazole conjugates. On the contrary, the metal
did not influence the activity. We found that conjugate [Re(CO)3(Bpy)(Ctz)]+ is more than the sum of its parts:
while precursor [Re(CO)3(Bpy)Br] has no antibacterial activity
and clotrimazole shows only moderate minimal inhibitory concentrations,
the potency of [Re(CO)3(Bpy)(Ctz)]+ is one order
of magnitude higher than that of clotrimazole, and the spectrum of
bacterial target species includes Gram-positive and Gram-negative
bacteria. The addition of [Re(CO)3(Bpy)(Ctz)]+ to Staphylococcus aureus causes a
general impact on the membrane topology, has inhibitory effects on
peptidoglycan biosynthesis, and affects energy functions. The mechanism
of action of this kind of CORM conjugates involves a sequence of events
initiated by membrane insertion, followed by membrane disorganization,
inhibition of peptidoglycan synthesis, CO release, and break down
of the membrane potential. These results suggest that conjugation
of CORMs to known antibiotics may produce useful structures with synergistic
effects that increase the conjugate’s activity relative to
that of the antibiotic alone.
Collapse
Affiliation(s)
- Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Joana Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Edit Mesterházy
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Teresa Pissarro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jorgina Reginold
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Robert M Kluj
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Christoph Mayer
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Filipp Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Sofia Friães
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Beatriz Royo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
7
|
Brötz-Oesterhelt H, Vorbach A. Reprogramming of the Caseinolytic Protease by ADEP Antibiotics: Molecular Mechanism, Cellular Consequences, Therapeutic Potential. Front Mol Biosci 2021; 8:690902. [PMID: 34109219 PMCID: PMC8182300 DOI: 10.3389/fmolb.2021.690902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rising antibiotic resistance urgently calls for the discovery and evaluation of novel antibiotic classes and unique antibiotic targets. The caseinolytic protease Clp emerged as an unprecedented target for antibiotic therapy 15 years ago when it was observed that natural product-derived acyldepsipeptide antibiotics (ADEP) dysregulated its proteolytic core ClpP towards destructive proteolysis in bacterial cells. A substantial database has accumulated since on the interaction of ADEP with ClpP, which is comprehensively compiled in this review. On the molecular level, we describe the conformational control that ADEP exerts over ClpP, the nature of the protein substrates degraded, and the emerging structure-activity-relationship of the ADEP compound class. On the physiological level, we review the multi-faceted antibacterial mechanism, species-dependent killing modes, the activity against carcinogenic cells, and the therapeutic potential of the compound class.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany.,Cluster of Excellence: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Andreas Vorbach
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
8
|
Silber N, Mayer C, Matos de Opitz CL, Sass P. Progression of the late-stage divisome is unaffected by the depletion of the cytoplasmic FtsZ pool. Commun Biol 2021; 4:270. [PMID: 33649500 PMCID: PMC7921118 DOI: 10.1038/s42003-021-01789-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cell division is a central and essential process in most bacteria, and also due to its complexity and highly coordinated nature, it has emerged as a promising new antibiotic target pathway in recent years. We have previously shown that ADEP antibiotics preferably induce the degradation of the major cell division protein FtsZ, thereby primarily leading to a depletion of the cytoplasmic FtsZ pool that is needed for treadmilling FtsZ rings. To further investigate the physiological consequences of ADEP treatment, we here studied the effect of ADEP on the different stages of the FtsZ ring in rod-shaped bacteria. Our data reveal the disintegration of early FtsZ rings during ADEP treatment in Bacillus subtilis, indicating an essential role of the cytoplasmic FtsZ pool and thus FtsZ ring dynamics during initiation and maturation of the divisome. However, progressed FtsZ rings finalized cytokinesis once the septal peptidoglycan synthase PBP2b, a late-stage cell division protein, colocalized at the division site, thus implying that the concentration of the cytoplasmic FtsZ pool and FtsZ ring dynamics are less critical during the late stages of divisome assembly and progression.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany.
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Malik IT, Pereira R, Vielberg M, Mayer C, Straetener J, Thomy D, Famulla K, Castro H, Sass P, Groll M, Brötz‐Oesterhelt H. Functional Characterisation of ClpP Mutations Conferring Resistance to Acyldepsipeptide Antibiotics in Firmicutes. Chembiochem 2020; 21:1997-2012. [PMID: 32181548 PMCID: PMC7496096 DOI: 10.1002/cbic.201900787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Acyldepsipeptide (ADEP) is an exploratory antibiotic with a novel mechanism of action. ClpP, the proteolytic core of the caseinolytic protease, is deregulated towards unrestrained proteolysis. Here, we report on the mechanism of ADEP resistance in Firmicutes. This bacterial phylum contains important pathogens that are relevant for potential ADEP therapy. For Staphylococcus aureus, Bacillus subtilis, enterococci and streptococci, spontaneous ADEP-resistant mutants were selected in vitro at a rate of 10-6 . All isolates carried mutations in clpP. All mutated S. aureus ClpP proteins characterised in this study were functionally impaired; this increased our understanding of the mode of operation of ClpP. For molecular insights, crystal structures of S. aureus ClpP bound to ADEP4 were determined. Well-resolved N-terminal domains in the apo structure allow the pore-gating mechanism to be followed. The compilation of mutations presented here indicates residues relevant for ClpP function and suggests that ADEP resistance will occur at a lower rate during the infection process.
Collapse
Affiliation(s)
- Imran T. Malik
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Rebeca Pereira
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
- Laboratory of AntibioticsBiochemistryEducation and Molecular modelingDepartment of Molecular and Cell BiologyFederal Fluminense UniversityOuteiro São João Batista, CentroNiterói24210130Rio de JaneiroBrazil
| | - Marie‐Theres Vielberg
- Center for Integrated Protein Science at the Department of ChemistryTechnical University MunichLichtenbergstrasse 485748GarchingGermany
| | - Christian Mayer
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Dhana Thomy
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Kirsten Famulla
- Institute for Pharmaceutical Biology and BiotechnologyUniversity of DüsseldorfUniversitätsstrasse 1, Building 26.23.40225DüsseldorfGermany
| | - Helena Castro
- Laboratory of AntibioticsBiochemistryEducation and Molecular modelingDepartment of Molecular and Cell BiologyFederal Fluminense UniversityOuteiro São João Batista, CentroNiterói24210130Rio de JaneiroBrazil
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Michael Groll
- Center for Integrated Protein Science at the Department of ChemistryTechnical University MunichLichtenbergstrasse 485748GarchingGermany
| | - Heike Brötz‐Oesterhelt
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| |
Collapse
|
10
|
Cell Division Protein FtsZ Is Unfolded for N-Terminal Degradation by Antibiotic-Activated ClpP. mBio 2020; 11:mBio.01006-20. [PMID: 32605984 PMCID: PMC7327170 DOI: 10.1128/mbio.01006-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acyldepsipeptide (ADEP) antibiotics effectively kill multidrug-resistant Gram-positive pathogens, including vancomycin-resistant enterococcus, penicillin-resistant Streptococcus pneumoniae (PRSP), and methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial activity of ADEP depends on a new mechanism of action, i.e., the deregulation of bacterial protease ClpP that leads to bacterial self-digestion. Our data allow new insights into the mode of ADEP action by providing a molecular explanation for the distinct bacterial phenotypes observed at low versus high ADEP concentrations. In addition, we show that ClpP alone, in the absence of any unfoldase or energy-consuming system, and only activated by the small molecule antibiotic ADEP, leads to the unfolding of the cell division protein FtsZ. Antibiotic acyldepsipeptides (ADEPs) deregulate ClpP, the proteolytic core of the bacterial Clp protease, thereby inhibiting its native functions and concomitantly activating it for uncontrolled proteolysis of nonnative substrates. Importantly, although ADEP-activated ClpP is assumed to target multiple polypeptide and protein substrates in the bacterial cell, not all proteins seem equally susceptible. In Bacillus subtilis, the cell division protein FtsZ emerged to be particularly sensitive to degradation by ADEP-activated ClpP at low inhibitory ADEP concentrations. In fact, FtsZ is the only bacterial protein that has been confirmed to be degraded in vitro as well as within bacterial cells so far. However, the molecular reason for this preferred degradation remained elusive. Here, we report the unexpected finding that ADEP-activated ClpP alone, in the absence of any Clp-ATPase, leads to an unfolding and subsequent degradation of the N-terminal domain of FtsZ, which can be prevented by the stabilization of the FtsZ fold via nucleotide binding. At elevated antibiotic concentrations, importantly, the C terminus of FtsZ is notably targeted for degradation in addition to the N terminus. Our results show that different target structures are more or less accessible to ClpP, depending on the ADEP level present. Moreover, our data assign a Clp-ATPase-independent protein unfolding capability to the ClpP core of the bacterial Clp protease and suggest that the protein fold of FtsZ may be more flexible than previously anticipated.
Collapse
|
11
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
12
|
Matos de Opitz CL, Sass P. Tackling antimicrobial resistance by exploring new mechanisms of antibiotic action. Future Microbiol 2020; 15:703-708. [DOI: 10.2217/fmb-2020-0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Germany
| |
Collapse
|
13
|
The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci. Sci Rep 2019; 9:14129. [PMID: 31575885 PMCID: PMC6773864 DOI: 10.1038/s41598-019-50505-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
Clp proteases play a central role in bacterial physiology and, for some bacterial species, are even essential for survival. Also due to their conservation among bacteria including important human pathogens, Clp proteases have recently attracted considerable attention as antibiotic targets. Here, we functionally reconstituted and characterized the ClpXP protease of Chlamydia trachomatis (ctClpXP), an obligate intracellular pathogen and the causative agent of widespread sexually transmitted diseases in humans. Our in vitro data show that ctClpXP is formed by a hetero-tetradecameric proteolytic core, composed of two distinct homologs of ClpP (ctClpP1 and ctClpP2), that associates with the unfoldase ctClpX via ctClpP2 for regulated protein degradation. Antibiotics of the ADEP class interfere with protease functions by both preventing the interaction of ctClpX with ctClpP1P2 and activating the otherwise dormant proteolytic core for unregulated proteolysis. Thus, our results reveal molecular insight into ctClpXP function, validating this protease as an antibacterial target.
Collapse
|