1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
3
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. Research on the anti-aging mechanisms of Panax ginseng extract in mice: a gut microbiome and metabolomics approach. Front Pharmacol 2024; 15:1415844. [PMID: 38966558 PMCID: PMC11222675 DOI: 10.3389/fphar.2024.1415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, β-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Chen L, Lei X, Mahnke K. Adenosine and Its Receptors in the Pathogenesis and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2024; 25:5810. [PMID: 38891997 PMCID: PMC11172165 DOI: 10.3390/ijms25115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory skin diseases highlight inflammation as a central driver of skin pathologies, involving a multiplicity of mediators and cell types, including immune and non-immune cells. Adenosine, a ubiquitous endogenous immune modulator, generated from adenosine triphosphate (ATP), acts via four G protein-coupled receptors (A1, A2A, A2B, and A3). Given the widespread expression of those receptors and their regulatory effects on multiple immune signaling pathways, targeting adenosine receptors emerges as a compelling strategy for anti-inflammatory intervention. Animal models of psoriasis, contact hypersensitivity (CHS), and other dermatitis have elucidated the involvement of adenosine receptors in the pathogenesis of these conditions. Targeting adenosine receptors is effective in attenuating inflammation and remodeling the epidermal structure, potentially showing synergistic effects with fewer adverse effects when combined with conventional therapies. What is noteworthy are the promising outcomes observed with A2A agonists in animal models and ongoing clinical trials investigating A3 agonists, underscoring a potential therapeutic approach for the management of inflammatory skin disorders.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany; (L.C.)
| |
Collapse
|
5
|
Lassoued N, Yero A, Jenabian MA, Soret R, Pilon N. Efficient enzyme-free method to assess the development and maturation of the innate and adaptive immune systems in the mouse colon. Sci Rep 2024; 14:11063. [PMID: 38744932 PMCID: PMC11094196 DOI: 10.1038/s41598-024-61834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
Collapse
Affiliation(s)
- Nejia Lassoued
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
| | - Alexis Yero
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Salgado CL, Corea AFM, Covre LP, Fonseca-Martins AMD, Falqueto A, Guedes HLDM, Rossi-Bergmann B, Gomes DCO. Intranasal delivery of LaAg vaccine improves immunity of aged mice against visceral Leishmaniasis. Acta Trop 2024; 252:107125. [PMID: 38280636 DOI: 10.1016/j.actatropica.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
There are no approved vaccines yet for human visceral leishmaniasis (VL), the most severe form of the leishmaniasis clinical manifestations that is fatal in over 95 % of untreated cases. It is well-accepted that immunological changes during aging have deleterious impact on the efficacy of vaccines and response to infections. In this work, we compared the response of young and aged mice to intranasal vaccination with killed Leishmania amazonensis promastigote antigens (LaAg) that were then challenged with L. infantum infection, a species that causes visceral leishmaniasis. Intranasal vaccination with LaAg induced a similar reduction in parasitism and hepatosplenomegaly in both young and aged mice compared to their unvaccinated counterparts. Following infection, there was also a less prominent inflammatory profile particularly in the vaccinated aged group, with lower production of TNF-α and nitrite compared to the respective unvaccinated group. Interestingly, the LaAg intranasal vaccination promoted increased production of IFN-γ that was observed in both young- and aged vaccinated groups. Additionally, CD4+ and CD8+T cells from both vaccinated groups presented decreased expression of the inhibitory receptors PD-1 and KLRG1 compared to their unvaccinated controls. Interestingly, a strong positive correlation was observed between the expression of both inhibitory receptors PD-1 and KLRG1 and parasitism, which was more conspicuous in the unvaccinated-aged mice than in the others. Overall, this study helps define new strategies to improve vaccine effectiveness and provides a perspective for prophylactic alternatives against leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Division of Medicine, University College London, London, United Kingdom
| | | | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Cláudio Oliviera Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil.
| |
Collapse
|
7
|
Wei L, Pan Y, Guo Y, Zhu Y, Jin H, Gu Y, Li C, Wang Y, Lin J, Chen Y, Ke C, Xu L. Symbiotic combination of Akkermansia muciniphila and inosine alleviates alcohol-induced liver injury by modulating gut dysbiosis and immune responses. Front Microbiol 2024; 15:1355225. [PMID: 38572243 PMCID: PMC10987824 DOI: 10.3389/fmicb.2024.1355225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Background Alcoholic liver disease (ALD) is exacerbated by disruptions in intestinal microecology and immune imbalances within the gut-liver axis. The present study assesses the therapeutic potential of combining Akkermansia muciniphila (A. muciniphila) with inosine in alleviating alcohol-induced liver injury. Methods Male C57BL/6 mice, subjected to a Lieber-DeCarli diet with 5% alcohol for 4 weeks, served as the alcoholic liver injury model. Various analyzes, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), ELISA, immunochemistry, 16S rRNA gene sequencing, and flow cytometry, were employed to evaluate liver injury parameters, intestinal barrier function, microbiota composition, and immune responses. Results Compared to the model group, the A. muciniphila and inosine groups exhibited significantly decreased alanine aminotransferase, aspartate aminotransferase, and lipopolysaccharide (LPS) levels, reduced hepatic fat deposition and neutrophil infiltration, alleviated oxidative stress and inflammation, and increased expression of intestinal tight junction proteins (Claudin-1, Occludin, and ZO-1). These effects were further pronounced in the A. muciniphila and inosine combination group compared to individual treatments. While alcohol feeding induced intestinal dysbiosis and gut barrier disruption, the combined treatment reduced the abundance of harmful bacteria (Oscillibacter, Escherichia/Shigella, and Alistipes) induced by alcohol consumption, promoting the growth of butyrate-producing bacteria (Akkermansia, Lactobacillus, and Clostridium IV). Flow cytometry revealed that alcohol consumption reduced T regulatory (Treg) populations while increasing those of T-helper (Th) 1 and Th17, which were restored by A. muciniphila combined with inosine treatment. Moreover, A. muciniphila and inosine combination increased the expression levels of intestinal CD39, CD73, and adenosine A2A receptor (A2AR) along with enhanced proportions of CD4+CD39+Treg and CD4+CD73+Treg cells in the liver and spleen. The A2AR antagonist KW6002, blocked the beneficial effects of the A. muciniphila and inosine combination on liver injury in ALD mice. Conclusion This study reveals that the combination of A. muciniphila and inosine holds promise for ameliorating ALD by enhancing the gut ecosystem, improving intestinal barrier function, upregulating A2AR, CD73, and CD39 expression, modulating Treg cells functionality, and regulating the imbalance of Treg/Th17/Th1 cells, and these beneficial effects are partly A2AR-dependent.
Collapse
Affiliation(s)
- Li Wei
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yizhi Pan
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yu Guo
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yin Zhu
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, China
| | - Haoran Jin
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yingying Gu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Chuanshuang Li
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yaqin Wang
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jingjing Lin
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Chunhai Ke
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| |
Collapse
|
8
|
Zhang H, Han K, Li H, Zhang J, Zhao Y, Wu Y, Wang B, Ma J, Luan X. hPMSCs Regulate the Level of TNF-α and IL-10 in Th1 Cells and Improve Hepatic Injury in a GVHD Mouse Model via CD73/ADO/Fyn/Nrf2 Axis. Inflammation 2024; 47:244-263. [PMID: 37833615 DOI: 10.1007/s10753-023-01907-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Mesenchymal stem cells (MSCs) ameliorate graft-versus-host disease (GVHD)-induced tissue damage by exerting immunosuppressive effects. However, the related mechanism remains unclear. Here, we explored the therapeutic effect and mechanism of action of human placental-derived MSCs (hPMSCs) on GVHD-induced mouse liver tissue damage, which shows association with inflammatory responses, fibrosis accompanied by hepatocyte tight junction protein loss, the upregulation of Bax, and the downregulation of Bcl-2. It was observed in GVHD mice and Th1 cell differentiation system that hPMSCs treatment increased IL-10 levels and decreased TNF-α levels in the Th1 subsets via CD73. Moreover, hPMSCs treatment reduced tight junction proteins loss and inhibited hepatocyte apoptosis in the livers of GVHD mice via CD73. ADO level analysis in GVHD mice and the Th1 cell differentiation system showed that hPMSCs could also upregulate ADO levels via CD73. Moreover, hPMSCs enhanced Nrf2 expression and diminished Fyn expression via the CD73/ADO pathway in Th1, TNF-α+, and IL-10+ cells. These results indicated that hPMSCs promoted and inhibited the secretion of IL-10 and TNF-α, respectively, during Th1 cell differentiation through the CD73/ADO/Fyn/Nrf2 axis signaling pathway, thereby alleviating liver tissue injury in GVHD mice.
Collapse
Affiliation(s)
- Hengchao Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Heng Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, 264100, Shandong Province, China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| |
Collapse
|
9
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
10
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Zhou Y, Ju H, Hu Y, Li T, Chen Z, Si Y, Sun X, Shi Y, Fang H. Tregs dysfunction aggravates postoperative cognitive impairment in aged mice. J Neuroinflammation 2023; 20:75. [PMID: 36932450 PMCID: PMC10022212 DOI: 10.1186/s12974-023-02760-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
OBJECTIVES Enhanced neuroinflammation is an important mechanism underlying perioperative neurocognitive disorders. Regulatory T cells (Tregs) play a crucial role in regulating systemic immune responses. The present study was aimed to investigate the participation of Tregs in the development of postoperative cognitive dysfunction (POCD). METHODS Surgery-associated neurocognitive disorder was induced in 18-month-old mice subjected to internal fixation of tibial fracture. Morris water maze was used to examine mice cognitive function. Splenic Tregs were collected for RNA sequencing and flow cytometry. Levels of inflammatory factors in the circulation and hippocampus were measured by enzyme-linked immunosorbent assay. Protein presences of tight junction proteins were detected by immunofluorescence. RESULTS Surgery of internal fixation of tibial fracture induced cognitive impairment in aged mice, accompanied by elevated plasma levels of inflammatory factors and increased circulating Tregs. Transfusion of Tregs from young mice partially restored the structure of the blood-brain barrier and alleviated POCD in aged mice. Compared with young Tregs, differentially expressed genes in aged Tregs were enriched in tumor necrosis factor (TNF) signaling pathway and cytokine-cytokine receptor interaction. Flow cytometry revealed that aged Tregs had blunted functions under basal and stimulated conditions. Blockade of the CD25 epitope protected the blood-brain barrier structure, reduced TNF-α levels in the hippocampus, and improved surgery-associated cognition in aged mice. CONCLUSIONS Blocking peripheral regulatory T cells improves surgery-induced cognitive function in aged mice. Therefore, aged Tregs play an essential role in the occurrence of POCD.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huihui Ju
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Si
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Sun
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum. Trop Med Infect Dis 2022; 8:tropicalmed8010018. [PMID: 36668925 PMCID: PMC9864225 DOI: 10.3390/tropicalmed8010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
High IL-10 levels are pivotal to parasite survival in visceral leishmaniasis (VL). Antigenic stimuli induce IL-10 expression and release of adenosine by CD39/CD73. Due their intrinsic ability to express IL-10 and produce adenosine from extracellular ATP, we evaluated the IL-10, CD39, and CD73 expression by Regulatory T cells (Treg) correlated with VL pathology. Using flow cytometry, Treg cells was analyzed in peripheral blood samples from VL patients (in the presence and absence of Leishmania infantum soluble antigen (SLA)) and healthy individuals (negative endemic control-NEC group), without any treatment. Additionally, IL-10 levels in leukocytes culture supernatant were measured in all groups by ELISA assay. VL patients presented more Treg frequency than NEC group, independently of stimulation. ELISA results demonstrated that SLA induced higher IL-10 expression in the VL group. However, the NEC group had a higher Treg IL-10+ compared to the VL group without stimulation and SLA restored the IL-10 in Treg. Additionally, an increase in Treg CD73+ in the VL group independently of stimuli compared to that in the NEC group was observed. We suggest that Treg are not the main source of IL-10, while the CD73 pathway may be an attempt to modulate the exacerbation of immune response in VL disease.
Collapse
|
13
|
IL-17A drives cognitive aging probably via inducing neuroinflammation and theta oscillation disruption in the hippocampus. Int Immunopharmacol 2022; 108:108898. [DOI: 10.1016/j.intimp.2022.108898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
|
14
|
Cassidy BR, Sonntag WE, Leenen PJM, Drevets DA. Systemic Listeria monocytogenes infection in aged mice induces long-term neuroinflammation: the role of miR-155. Immun Ageing 2022; 19:25. [PMID: 35614490 PMCID: PMC9130456 DOI: 10.1186/s12979-022-00281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Understanding mechanisms of pathologic neuroinflammation is essential for improving outcomes after central nervous system infections. Brain tissue-resident memory T cells (bTRM) are recruited during central nervous system infection and promote pathogen control as well as noxious inflammation. Our prior studies in young mice showed optimal recruitment of CD8+ bTRM during neuroinvasive Listeria monocytogenes (Lm) infection required miR-155, and was significantly inhibited by anti-miR-155 oligonucleotides. Since Lm is an important pathogen in the elderly, we hypothesized anti-miR-155 would also inhibit accumulation of CD8+ bTRM in aged mice infected with Lm. METHODS Young (2 mo) and aged (> 18 mo) male C57BL/6 mice were infected intra-peritoneally with wild-type Lm, or avirulent Lm mutants lacking the genes required for intracellular motility (ΔactA) or phagosomal escape (Δhly), then were given antibiotics. Brain leukocytes and their intracellular cytokine production were quantified by flow cytometry >28d post-infection (p.i.). The role of miR-155 was tested by injecting mice with anti-miR-155 or control oligonucleotides along with antibiotics. RESULTS Aged mice had significantly more homeostatic CD8+ bTRM than did young mice, which did not increase after infection with wild-type Lm despite 50% mortality, whereas young mice suffered no mortality after a larger inoculum. For direct comparison of post-infectious neuroinflammation after the same inoculum, young and aged mice were infected with 107 CFU ΔactA Lm. This mutant caused no mortality and significantly increased CD8+ bTRM 28d p.i. in both groups, whereas bone marrow-derived myeloid cells, particularly neutrophils, increased only in aged mice. Notably, anti-miR-155 reduced accumulation of brain myeloid cells in aged mice after infection, whereas CD8+ bTRM were unaffected. CONCLUSIONS Systemic infection with Lm ΔactA is a novel model for studying infection-induced brain inflammation in aged mice without excessive mortality. CD8+ bTRM increase in both young and aged mice after infection, whereas only in aged mice bone marrow-derived myeloid cells increase long-term. In aged mice, anti-miR-155 inhibits brain accumulation of myeloid cells, but not CD8+ bTRM. These results suggest young and aged mice differ in manifestations and mechanisms of infection-induced neuroinflammation and give insight for developing therapies to ameliorate brain inflammation following severe infection in the elderly.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| | - William E. Sonntag
- grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Pieter J. M. Leenen
- grid.5645.2000000040459992XDepartment of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| |
Collapse
|
15
|
Khairallah C, Chu TH, Qiu Z, Imperato JN, Yang D, Sheridan BS. The accumulation of Vγ4 T cells with aging is associated with an increased adaptive Vγ4 T cell response after foodborne Listeria monocytogenes infection of mice. Immun Ageing 2022; 19:19. [PMID: 35501808 PMCID: PMC9063344 DOI: 10.1186/s12979-022-00275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44hi CD27neg Vγ4 T cells capable of co-producing IL-17A and IFNγ. Therefore, we used this model to evaluate the impact of aging on adaptive Vγ4 T cell responses elicited by foodborne infection. RESULTS Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44hi CD27neg Vγ4 T cell response associated with aging. Moreover, Lm-elicited CD44hi CD27neg Vγ4 T cells maintained diverse functional subsets despite some alterations favoring IL-17A production as mice aged. In contrast to the documented susceptibility of aged mice to intravenous Lm infection, mice contained bacteria after foodborne Lm infection suggesting that elevated bacterial burden was not a major factor driving the increased adaptive CD44hi CD27neg Vγ4 T cell response associated with mouse age. However, CD44hi CD27neg Vγ4 T cells accumulated in naïve mice as they aged suggesting that an increased precursor frequency contributes to the robust Lm-elicited mucosal response observed. Body mass did not appear to have a strong positive association with CD44hi CD27neg Vγ4 T cells within age groups. Although an increased adaptive CD44hi CD27neg Vγ4 T cell response may contribute to foodborne Lm resistance of C57BL/6 mice aged 19 or more months, neither anti-TCRδ or anti-IL-17A treatment impacted Lm colonization after primary infection. These results suggest that γδTCR signaling and IL-17A are dispensable for protection after primary foodborne Lm infection consistent with the role of conventional T cells during the early innate immune response to Lm. CONCLUSIONS Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.
Collapse
Affiliation(s)
- Camille Khairallah
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Timothy H. Chu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Zhijuan Qiu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Jessica N. Imperato
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Daniella Yang
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Brian S. Sheridan
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| |
Collapse
|
16
|
Darwish NF, Tabra SAA, Baiomy NN, Mahmoud HA, Mariah RA, Hablas SA. The implication of adenosine receptor expression in prediction of methotrexate clinical response in Egyptian rheumatoid arthritis patients. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2022. [DOI: 10.1186/s43166-021-00107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Adenosine signaling is now an accepted explanation for the therapeutic mechanism of Methotrexate (MTX) in rheumatoid arthritis (RA). Adenosine receptors categorized into four subclasses: adenosine A1 receptor (ADORA1), adenosine 2a receptor (ADORA2a), adenosine 2b receptor (ADORA2B), and adenosine 3 receptor (ADORA3). Our aim is to check the mRNA expression of two adenosine receptors; ADORA2a and ADORA3 in whole blood cell of RA patients and its relation in prediction of MTX clinical response in Egyptian patients.
Results
There was significant correlation between both ADORA2a and ADORA3 gene expression in RA patients as compared with healthy controls. The expression of ADORA2a and ADORA3 was increased in good and moderate response groups compared to no response group. There was significant correlation between both genes in mRNA expression before and after MTX treatment. Matrix metalloproteinase-3 (MMP3) concentration was significantly decreased after treatment in good and moderate response groups in comparison to non-responder group.
Conclusion
The inflammatory and clinical responses in RA patients which is demonstrated by DAS28 and suppression of MMP3 were regulated by ADORA2a and ADORA3. Their level of expression can predict MTX response and their agonists may offer a novel and effective therapeutic option for RA patients.
Collapse
|
17
|
Expression of Th17/Treg Cells in Peripheral Blood and Related Cytokines of Patients with Ulcerative Colitis of Different Syndrome Types and Correlation with the Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4600947. [PMID: 34603468 PMCID: PMC8486524 DOI: 10.1155/2021/4600947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022]
Abstract
Objective To explore the expression of helper T cells 17 (Th17)/regulatory T cells (Treg) in peripheral blood and related cytokines of patients with different types of ulcerative colitis (UC) and analyze their correlation with the disease. Methods From January 2018 to December 2019, 53 patients diagnosed with UC in our hospital were selected. According to their medical syndromes, they were divided into the damp-heat internal accumulation group (n = 35) and the spleen-kidney yang deficiency group (n = 18). 21 healthy volunteers were selected as the control group. The Mayo scoring standard was used to determine the severity of the patient's condition. The expression levels of Th17/Treg cells and related cytokines in peripheral blood were compared between the groups. Pearson correlation was used to analyze the correlation between the ratio of Th17 and Treg cells in the peripheral blood of UC patients and the ratio of TH17/Treg with Mayo score. Results The peripheral blood Th17 cell ratio and Th17/Treg ratio of the damp-heat internal accumulation and spleen-kidney yang deficiency group were higher than those of the control group; the Treg cell ratio was lower than that of the control group; the peripheral blood Th17 cell ratio and Th17/Treg ratio of the damp-heat internal accumulation group were higher those of the spleen-kidney yang deficiency group; and the proportion of Treg cells was lower than that of the spleen-kidney yang deficiency group (P < 0.05). The expression levels of serum IL-6, IL-17, IL-22, and TNF-α in the damp-heat internal accumulation and spleen-kidney yang deficiency group were higher than those of the control group; IL-10 and TGF-β were lower than those of the control group; the levels of serum IL-6, IL-17, IL-22, and TNF-α in the damp-heat internal accumulation group were higher than those of the spleen-kidney yang deficiency group; and both IL-10 and TGF-β were lower than those of the spleen-kidney yang deficiency group (P < 0.05). The peripheral blood Th17 cell ratio and Th17/Treg ratio in the moderately active period group and severely active period group were higher than those of the lightly active period group; the Treg cell ratio was lower than that of the lightly active period group; the peripheral blood Th17 cell ratio and Th17/Treg ratio in the severely active period group were higher than those in the moderately active period group; and the proportion of Treg cells was lower than that of the moderately active period group. Pearson correlation analysis showed that the proportion of Th17 cells and Th17/Treg in peripheral blood of UC patients were both positively correlated with Mayo score (r = 0.762, r = 0.777, P < 0.001). Treg was negatively correlated with Mayo score (r = -0.790, P < 0.001). Conclusion There are differences in the expression of peripheral blood Th17/Treg cells and related cytokines among UC patients with different syndromes, and the damp-heat content is the most significant. The higher the ratio of Th17 cells in peripheral blood and the degree of Th17/Treg imbalance, the lower the ratio of Treg cells, and the more severe the condition of UC patients, which can provide a preliminary quantitative basis for the TCM classification and severity of the diagnosis of UC.
Collapse
|
18
|
Alam MS, Gangiredla J, Hasan NA, Barnaba T, Tartera C. Aging-Induced Dysbiosis of Gut Microbiota as a Risk Factor for Increased Listeria monocytogenes Infection. Front Immunol 2021; 12:672353. [PMID: 33995413 PMCID: PMC8115019 DOI: 10.3389/fimmu.2021.672353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive foodborne Listeria monocytogenes infection causes gastroenteritis, septicemia, meningitis, and chorioamnionitis, and is associated with high case-fatality rates in the elderly. It is unclear how aging alters gut microbiota, increases risk of listeriosis, and causes dysbiosis post-infection. We used a geriatric murine model of listeriosis as human surrogate of listeriosis for aging individuals to study the effect of aging and L. monocytogenes infection. Aging and listeriosis-induced perturbation of gut microbiota and disease severity were compared between young-adult and old mice. Young-adult and old mice were dosed intragastrically with L. monocytogenes. Fecal pellets were collected pre- and post-infection for microbiome analysis. Infected old mice had higher Listeria colonization in liver, spleen, and feces. Metagenomics analyses of fecal DNA-sequences showed increase in α-diversity as mice aged, and infection reduced its diversity. The relative abundance of major bacterial phylum like, Bacteroidetes and Firmicutes remained stable over aging or infection, while the Verrucomicrobia phylum was significantly reduced only in infected old mice. Old mice showed a marked reduction in Clostridaiceae and Lactobacillaceae bacteria even before infection when compared to uninfected young-adult mice. L. monocytogenes infection increased the abundance of Porphyromonadaceae and Prevotellaceae in young-adult mice, while members of the Ruminococcaceae and Lachnospiraceae family were significantly increased in old mice. The abundance of the genera Blautia and Alistipes were significantly reduced post-infection in young-adult and in old mice as compared to their uninfected counterparts. Butyrate producing, immune-modulating bacterial species, like Pseudoflavonifractor and Faecalibacterium were significantly increased only in old infected mice, correlating with increased intestinal inflammatory mRNA up-regulation from old mice tissue. Histologic analyses of gastric tissues showed extensive lesions in the Listeria-infected old mice, more so in the non-glandular region and fundus than in the pylorus. Commensal species like Lactobacillus, Clostridiales, and Akkermansia were only abundant in infected young-adult mice but their abundance diminished in the infected old mice. Listeriosis in old mice enhances the abundance of butyrate-producing inflammatory members of the Ruminococcaceae/Lachnospiraceae bacteria while reducing/eliminating beneficial commensals in the gut. Results of this study indicate that, aging may affect the composition of gut microbiota and increase the risk of invasive L. monocytogenes infection.
Collapse
Affiliation(s)
- Mohammad S Alam
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Tammy Barnaba
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Carmen Tartera
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
19
|
Inhibition of Listeria monocytogenes growth in turkey fillets by alginate edible coating with Trachyspermum ammi essential oil nano-emulsion. Int J Food Microbiol 2021; 344:109104. [PMID: 33676333 DOI: 10.1016/j.ijfoodmicro.2021.109104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the chemical composition and antibacterial activity of Trachyspermum ammi essential oil (TAEO). Moreover, the present study comparatively investigated TAEO in the forms of emulsion and Nano-emulsion in alginate-based edible coatings against inoculated Listeria monocytogenes in turkey fillets during 12 days in cold storage (at a temperature of 4 ± 1 °C). Alginate solutions with two levels of TAEO (in emulsion and Nano-emulsion forms) were prepared in this study. The bacterial count was performed on days 0, 1, 2, 4, 8, and 12. Based on the obtained results of the current study, a comparison of different treatments with the blank samples (without any coating) showed that the highest considerable result was observed in the samples with Nano-emulsion coating (P < 0.05). Nano-emulsion loaded alginate coating prevented the growth of listeria in turkey fillets even after 12 days of cold storage. According to the findings of this study, the application of alginate edible coatings containing TAEO, especially in Nano-form, can be very effective in controlling the growth of L. monocytogenes, as a foodborne pathogen, during storage; therefore, it is a good choice to be applied in the meat industry.
Collapse
|
20
|
Giuliani AL, Sarti AC, Di Virgilio F. Ectonucleotidases in Acute and Chronic Inflammation. Front Pharmacol 2021; 11:619458. [PMID: 33613285 PMCID: PMC7887318 DOI: 10.3389/fphar.2020.619458] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP, AMP and NAD+. Ectonucleotidases, expressed by virtually all cell types, immune cells included, either as plasma membrane-associated or secreted enzymes, are classified into four main families: 1) nucleoside triphosphate diphosphohydrolases (NTPDases), 2) nicotinamide adenine dinucleotide glycohydrolase (NAD glycohydrolase/ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1), 3) ecto-5′-nucleotidase (NT5E), and 4) ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). Concentration of ATP, UTP and NAD+ can be increased in the extracellular space thanks to un-regulated, e.g., cell damage or cell death, or regulated processes. Regulated processes include secretory exocytosis, connexin or pannexin hemichannels, ATP binding cassette (ABC) transporters, calcium homeostasis modulator (CALMH) channels, the ATP-gated P2X7 receptor, maxi-anion channels (MACs) and volume regulated ion channels (VRACs). Hydrolysis of extracellular purine nucleotides generates adenosine, an important immunosuppressant. Extracellular nucleotides and nucleosides initiate or dampen inflammation via P2 and P1 receptors, respectively. All these agents, depending on their level of expression or activation and on the agonist concentration, are potent modulators of inflammation and key promoters of host defences, immune cells activation, pathogen clearance, tissue repair and regeneration. Thus, their knowledge is of great importance for a full understanding of the pathophysiology of acute and chronic inflammatory diseases. A selection of these pathologies will be briefly discussed here.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Bhalla M, Simmons SR, Abamonte A, Herring SE, Roggensack SE, Bou Ghanem EN. Extracellular adenosine signaling reverses the age-driven decline in the ability of neutrophils to kill Streptococcus pneumoniae. Aging Cell 2020; 19:e13218. [PMID: 32790148 PMCID: PMC7576260 DOI: 10.1111/acel.13218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022] Open
Abstract
The elderly are susceptible to serious infections by Streptococcus pneumoniae (pneumococcus), which calls for a better understanding of the pathways driving the decline in host defense in aging. We previously found that extracellular adenosine (EAD) shaped polymorphonuclear cell (PMN) responses, which are crucial for controlling infection. EAD is produced by CD39 and CD73, and signals via A1, A2A, A2B, and A3 receptors. The objective of this study was to explore the age‐driven changes in the EAD pathway and its impact on PMN function. We found in comparison to young mice, PMNs from old mice expressed significantly less CD73, but similar levels of CD39 and adenosine receptors. PMNs from old mice failed to efficiently kill pneumococci ex vivo; however, supplementation with adenosine rescued this defect. Importantly, transfer of PMNs expressing CD73 from young mice reversed the susceptibility of old mice to pneumococcal infection. To identify which adenosine receptor(s) is involved, we used specific agonists and inhibitors. We found that A1 receptor signaling was crucial for PMN function as inhibition or genetic ablation of A1 impaired the ability of PMNs from young mice to kill pneumococci. Importantly, activation of A1 receptors rescued the age‐associated defect in PMN function. In exploring mechanisms, we found that PMNs from old mice failed to efficiently kill engulfed pneumococci and that A1 receptor controlled intracellular killing. In summary, targeting the EAD pathway reverses the age‐driven decline in PMN antimicrobial function, which has serious implications in combating infections.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology University at Buffalo School of Medicine Buffalo NY USA
| | - Shaunna R. Simmons
- Department of Microbiology and Immunology University at Buffalo School of Medicine Buffalo NY USA
| | - Alexsandra Abamonte
- Department of Microbiology and Immunology University at Buffalo School of Medicine Buffalo NY USA
| | - Sydney E. Herring
- Department of Microbiology and Immunology University at Buffalo School of Medicine Buffalo NY USA
| | - Sara E. Roggensack
- Department of Molecular Biology and Microbiology Tufts University School of Medicine Boston MA USA
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology University at Buffalo School of Medicine Buffalo NY USA
| |
Collapse
|
22
|
Magni G, Ceruti S. Adenosine Signaling in Autoimmune Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090260. [PMID: 32971792 PMCID: PMC7558305 DOI: 10.3390/ph13090260] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The molecular components of the purinergic system (i.e., receptors, metabolizing enzymes and membrane transporters) are widely expressed in the cells of the immune system. Additionally, high concentrations of adenosine are generated from the hydrolysis of ATP in any "danger" condition, when oxygen and energy availability dramatically drops. Therefore, adenosine acts as a retaliatory metabolite to counteract the nucleotide-mediated boost of the immune reaction. Based on this observation, it can be foreseen that the recruitment with selective agonists of the receptors involved in the immunomodulatory effect of adenosine might represent an innovative anti-inflammatory approach with potential exploitation in autoimmune disorders. Quite surprisingly, pro-inflammatory activity exerted by some adenosine receptors has been also identified, thus paving the way for the hypothesis that at least some autoimmune disorders may be caused by a derailment of adenosine signaling. In this review article, we provide a general overview of the roles played by adenosine on immune cells with a specific focus on the development of adenosine-based therapies for autoimmune disorders, as demonstrated by the exciting data from concluded and ongoing clinical trials.
Collapse
|