1
|
Will A, Oliinyk D, Bleiholder C, Meier F. Peptide collision cross sections of 22 post-translational modifications. Anal Bioanal Chem 2023; 415:6633-6645. [PMID: 37758903 PMCID: PMC10598134 DOI: 10.1007/s00216-023-04957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Recent advances have rekindled the interest in ion mobility as an additional dimension of separation in mass spectrometry (MS)-based proteomics. Ion mobility separates ions according to their size and shape in the gas phase. Here, we set out to investigate the effect of 22 different post-translational modifications (PTMs) on the collision cross section (CCS) of peptides. In total, we analyzed ~4300 pairs of matching modified and unmodified peptide ion species by trapped ion mobility spectrometry (TIMS). Linear alignment based on spike-in reference peptides resulted in highly reproducible CCS values with a median coefficient of variation of 0.26%. On a global level, we observed a redistribution in the m/z vs. ion mobility space for modified peptides upon changes in their charge state. Pairwise comparison between modified and unmodified peptides of the same charge state revealed median shifts in CCS between -1.4% (arginine citrullination) and +4.5% (O-GlcNAcylation). In general, increasing modified peptide masses were correlated with higher CCS values, in particular within homologous PTM series. However, investigating the ion populations in more detail, we found that the change in CCS can vary substantially for a given PTM and is partially correlated with the gas phase structure of its unmodified counterpart. In conclusion, our study shows PTM- and sequence-specific effects on the cross section of peptides, which could be further leveraged for proteome-wide PTM analysis.
Collapse
Affiliation(s)
- Andreas Will
- Functional Proteomics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Denys Oliinyk
- Functional Proteomics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32304, USA
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
2
|
Dilger JM, Martin TM, Wilkins BP, Bohrer BC, Thoreson KM, Fedick PW. Detection and toxicity modeling of anthraquinone dyes and chlorinated side products from a colored smoke pyrotechnic reaction. CHEMOSPHERE 2022; 287:131845. [PMID: 34523441 PMCID: PMC10058345 DOI: 10.1016/j.chemosphere.2021.131845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 05/20/2023]
Abstract
"Green" pyrotechnics seek to remove known environmental pollutants and health hazards from their formulations. This chemical engineering approach often focuses on maintaining performance effects upon replacement of objectionable ingredients, yet neglects the chemical products formed by the exothermic reaction. In this work, milligram quantities of a lab-scale pyrotechnic red smoke composition were functioned within a thermal probe for product identification by pyrolysis-gas chromatography-mass spectrometry. Thermally decomposed ingredients and new side product derivatives were identified at lower relative abundances to the intact organic dye (as the engineered sublimation product). Side products included chlorination of the organic dye donated by the chlorate oxidizer. Machine learning quantitative structure-activity relationship models computed impacts to health and environmental hazards. High to very high toxicities were predicted for inhalation, mutagenicity, developmental, and endocrine disruption for common military pyrotechnic dyes and their analogous chlorinated side products. These results underscore the need to revise objectives of "green" pyrotechnic engineering.
Collapse
Affiliation(s)
- Jonathan M Dilger
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, IN, 47522, USA.
| | - Todd M Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Benjamin P Wilkins
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, IN, 47522, USA
| | - Brian C Bohrer
- Department of Chemistry, University of Southern Indiana, 8600 University Blvd., Evansville, IN, 47712, USA
| | - Kelly M Thoreson
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, IN, 47522, USA
| | - Patrick W Fedick
- Naval Air Warfare Center Weapons Division, 1900 N. Knox Road, China Lake, CA, 93555, USA
| |
Collapse
|
3
|
Wu XF, Qi X, wang W, Xu RR. Palladium-Catalyzed Cascade Heck-type Thiocarbonylation for the Synthesis of Functionalized Thioesters. Org Chem Front 2022. [DOI: 10.1039/d2qo00096b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed cascade Heck-type cyclization and carbonylation reaction has been developed for the synthesis of functionalized thioesters. With arylsulfonyl chlorides as odorless and readily available sulfur source, a variety of...
Collapse
|
4
|
Qi X, Bao ZP, Wu XF. Palladium-catalyzed carbonylative transformation of aryl iodides and sulfonyl chlorides: convenient access to thioesters. Org Chem Front 2020. [DOI: 10.1039/d0qo00158a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A palladium-catalyzed carbonylative transformation of aryl iodides and sulfonyl chlorides to thioesters has been studied.
Collapse
Affiliation(s)
- Xinxin Qi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhi-Peng Bao
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
5
|
Maleki H, Karanji AK, Majuta S, Maurer MM, Valentine SJ. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:230-241. [PMID: 28956290 PMCID: PMC5942887 DOI: 10.1007/s13361-017-1798-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 05/11/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate (in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Ahmad K Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Sandra Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Megan M Maurer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
6
|
Kaszycki JL, Shvartsburg AA. A Priori Intrinsic PTM Size Parameters for Predicting the Ion Mobilities of Modified Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:294-302. [PMID: 27975328 DOI: 10.1007/s13361-016-1553-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
The rising profile of ion mobility spectrometry (IMS) in proteomics has driven the efforts to predict peptide cross-sections. In the simplest approach, these are derived by adding the contributions of all amino acid residues and post-translational modifications (PTMs) defined by their intrinsic size parameters (ISPs). We show that the ISPs for PTMs can be calculated from properties of constituent atoms, and introduce the "impact scores" that govern the shift of cross-sections from the central mass-dependent trend for unmodified peptides. The ISPs and scores tabulated for 100 more common PTMs enable predicting the domains for modified peptides in the IMS/MS space that would guide subproteome investigations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Julia L Kaszycki
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | | |
Collapse
|
7
|
Annibal A, Riemer T, Jovanovic O, Westphal D, Griesser E, Pohl EE, Schiller J, Hoffmann R, Fedorova M. Structural, biological and biophysical properties of glycated and glycoxidized phosphatidylethanolamines. Free Radic Biol Med 2016; 95:293-307. [PMID: 27012418 PMCID: PMC5937679 DOI: 10.1016/j.freeradbiomed.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/05/2016] [Accepted: 03/12/2016] [Indexed: 12/17/2022]
Abstract
Glycation and glycoxidation of proteins and peptides have been intensively studied and are considered as reliable diagnostic biomarkers of hyperglycemia and early stages of type II diabetes. However, glucose can also react with primary amino groups present in other cellular components, such as aminophospholipids (aminoPLs). Although it is proposed that glycated aminoPLs can induce many cellular responses and contribute to the development and progression of diabetes, the routes of their formation and their biological roles are only partially revealed. The same is true for the influence of glucose-derived modifications on the biophysical properties of PLs. Here we studied structural, signaling, and biophysical properties of glycated and glycoxidized phosphatidylethanolamines (PEs). By combining high resolution mass spectrometry and nuclear magnetic resonance spectroscopy it was possible to deduce the structures of several intermediates indicating an oxidative cleavage of the Amadori product yielding glycoxidized PEs including advanced glycation end products, such as carboxyethyl- and carboxymethyl-ethanolamines. The pro-oxidative role of glycated PEs was demonstrated and further associated with several cellular responses including activation of NFκB signaling pathways. Label free proteomics indicated significant alterations in proteins regulating cellular metabolisms. Finally, the biophysical properties of PL membranes changed significantly upon PE glycation, such as melting temperature (Tm), membrane surface charge, and ion transport across the phospholipid bilayer.
Collapse
Affiliation(s)
- Andrea Annibal
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany; Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Thomas Riemer
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität Leipzig, Germany
| | - Olga Jovanovic
- Institute of Physiology, Pathophysiology and Biophysics; University of Veterinary Medicine Vienna, Austria
| | - Dennis Westphal
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - Eva Griesser
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics; University of Veterinary Medicine Vienna, Austria
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany.
| |
Collapse
|
8
|
Glover MS, Dilger JM, Acton MD, Arnold RJ, Radivojac P, Clemmer DE. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:786-94. [PMID: 26860087 PMCID: PMC5750047 DOI: 10.1007/s13361-016-1343-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 05/12/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.
Collapse
Affiliation(s)
- Matthew S Glover
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Jonathan M Dilger
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
- Spectrum Warfare Systems Department, NSWC Crane Division, Crane, IN, 47522, USA
| | - Matthew D Acton
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Randy J Arnold
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
- AB SCIEX, Vaughan, ON, L4K 4V8, Canada
| | - Predrag Radivojac
- Department of Computer Science and Informatics, Indiana University, Bloomington, IN, 47405, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|