1
|
Zhou K, Xia Y. High-Coverage Disulfide Mapping Enabled by Programmable Disulfide-Ene Reaction Integrated onto a Bottom-Up Protein Analysis Workflow. Anal Chem 2024; 96:17396-17404. [PMID: 39425647 DOI: 10.1021/acs.analchem.4c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Mapping disulfide linkages is crucial for characterizing pharmaceutical proteins during drug development and quality control. Traditional bottom-up protein analysis workflows often suffer from incomplete mapping for tryptic peptides consisting of multiple disulfide bonds. Although the employment of a partial reduction of disulfide bonds can improve disulfide mapping, it becomes a bottleneck of analysis because individual tuning is often needed. Herein, we have developed an online disulfide-ene reaction system in which the composition of the reaction solvent can be programmed to achieve optimal partial reduction of tryptic disulfide peptides after liquid chromatography separation. By coupling this system onto a bottom-up protein analysis workflow, high coverage for sequencing (71-83%) and disulfide mapping (84-100%) was achieved for standard proteins consisting of 4-19 disulfide bonds. The analytical capability was further demonstrated by mapping 13 scrambled disulfide bonds in lysozyme and achieving compositional analysis of IgG isotypes (κ and λ) and subclasses (IgG1-IgG4) from human plasma.
Collapse
Affiliation(s)
- Keting Zhou
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
2
|
Ochmann M, Harich J, Ma R, Freibert A, Kim Y, Gopannagari M, Hong DH, Nam D, Kim S, Kim M, Eom I, Lee JH, Yorke BA, Kim TK, Huse N. UV photochemistry of the L-cystine disulfide bridge in aqueous solution investigated by femtosecond X-ray absorption spectroscopy. Nat Commun 2024; 15:8838. [PMID: 39397016 PMCID: PMC11471820 DOI: 10.1038/s41467-024-52748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge. We observe homolytic bond cleavage upon ultraviolet irradiation and the formation of thiyl radicals as the single primary photoproduct. Ultrafast thiyl decay due to geminate recombination proceeds at a quantum yield of >80 % within 20 ps. These dynamics coincide with the emergence of a secondary product, attributed to the generation of perthiyl radicals. From these findings, we suggest a mechanism of perthiyl radical generation from a vibrationally excited parent molecule that asymmetrically fragments along a carbon-sulfur bond. Our results point toward a dynamic photostability of the disulfide bridge in condensed-phase.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany
| | - Rory Ma
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Antonia Freibert
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany.
| | - Yujin Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Madhusudana Gopannagari
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Da Hye Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Briony A Yorke
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Tae Kyu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany.
| |
Collapse
|
3
|
McGhee HG, Totani R, Plekan O, Coreno M, de Simone M, Mumtaz A, Singh S, Schroeder BC, Curchod BFE, Ingle RA. Core and valence photoelectron spectroscopy of a series of substituted disulfides. J Chem Phys 2024; 161:134303. [PMID: 39356064 DOI: 10.1063/5.0231178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
The valence and core photoelectron spectra of three substituted disulfide systems, α-lipoic acid, trans-4,5-dihydroxy-1,2-dithiane, and di-Boc-cystamine, are presented alongside detailed theoretical analysis based on equation-of-motion coupled-cluster singles doubles for ionization potentials and the nuclear ensemble approach. A comparison of the linear and five- and six-membered ring cyclic structures reveals that the energetic separation of the non-bonding sulfur orbitals can be used to calculate a reliable estimate of the C-S-S-C dihedral angle, even for substituted disulfides, and that the sulfur 2p, oxygen 1s, and valence band photoelectron spectra are a useful site-specific probe of hydrogen bonding.
Collapse
Affiliation(s)
- H G McGhee
- Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - R Totani
- ISM-CNR, Istituto di Struttura dei Materiali, LD2 Unit, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste, I-34149 Basovizza, Trieste, Italy
| | - O Plekan
- ISM-CNR, Istituto di Struttura dei Materiali, LD2 Unit, 34149 Trieste, Italy
| | - M Coreno
- ISM-CNR, Istituto di Struttura dei Materiali, LD2 Unit, 34149 Trieste, Italy
| | - M de Simone
- IOM-CNR, Istituto Officina dei Materiali, 34149 Trieste, Italy
| | - A Mumtaz
- Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - S Singh
- Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - B C Schroeder
- Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - B F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - R A Ingle
- Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
4
|
XUE J, LIU Z, WANG F. [Applications of native mass spectrometry and ultraviolet photodissociation in protein structure and interaction analysis]. Se Pu 2024; 42:681-692. [PMID: 38966976 PMCID: PMC11224945 DOI: 10.3724/sp.j.1123.2024.01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 07/06/2024] Open
Abstract
Dynamic changes in the structures and interactions of proteins are closely correlated with their biological functions. However, the precise detection and analysis of these molecules are challenging. Native mass spectrometry (nMS) introduces proteins or protein complexes into the gas phase by electrospray ionization, and then performs MS analysis under near-physiological conditions that preserve the folded state of proteins and their complexes in solution. nMS can provide information on stoichiometry, assembly, and dissociation constants by directly determining the relative molecular masses of protein complexes through high-resolution MS. It can also integrate various MS dissociation technologies, such as collision-induced dissociation (CID), surface-induced dissociation (SID), and ultraviolet photodissociation (UVPD), to analyze the conformational changes, binding interfaces, and active sites of protein complexes, thereby revealing the relationship between their interactions and biological functions. UVPD, especially 193 nm excimer laser UVPD, is a rapidly evolving MS dissociation method that can directly dissociate the covalent bonds of protein backbones with a single pulse. It can generate different types of fragment ions, while preserving noncovalent interactions such as hydrogen bonds within these ions, thereby enabling the MS analysis of protein structures with single-amino-acid-site resolution. This review outlines the applications and recent progress of nMS and UVPD in protein dynamic structure and interaction analyses. It covers the nMS techniques used to analyze protein-small-molecule ligand interactions, the structures of membrane proteins and their complexes, and protein-protein interactions. The discussion on UVPD includes the analysis of gas-phase protein structures and interactions, as well as alterations in protein dynamic structures, and interactions resulting from mutations and ligand binding. Finally, this review describes the future development prospects for protein analysis by nMS and new-generation advanced extreme UV light sources with higher brightness and shorter pulses.
Collapse
|
5
|
Devitt G, Johnson PB, Hanrahan N, Lane SIR, Vidale MC, Sheth B, Allen JD, Humbert MV, Spalluto CM, Hervé RC, Staples K, West JJ, Forster R, Divecha N, McCormick CJ, Crispin M, Hempler N, Malcolm GPA, Mahajan S. Mechanisms of SARS-CoV-2 Inactivation Using UVC Laser Radiation. ACS PHOTONICS 2024; 11:42-52. [PMID: 38249683 PMCID: PMC10797618 DOI: 10.1021/acsphotonics.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has had a tremendous impact on humanity. Prevention of transmission by disinfection of surfaces and aerosols through a chemical-free method is highly desirable. Ultraviolet C (UVC) light is uniquely positioned to achieve inactivation of pathogens. We report the inactivation of SARS-CoV-2 virus by UVC radiation and explore its mechanisms. A dose of 50 mJ/cm2 using a UVC laser at 266 nm achieved an inactivation efficiency of 99.89%, while infectious virions were undetectable at 75 mJ/cm2 indicating >99.99% inactivation. Infection by SARS-CoV-2 involves viral entry mediated by the spike glycoprotein (S), and viral reproduction, reliant on translation of its genome. We demonstrate that UVC radiation damages ribonucleic acid (RNA) and provide in-depth characterization of UVC-induced damage of the S protein. We find that UVC severely impacts SARS-CoV- 2 spike protein's ability to bind human angiotensin-converting enzyme 2 (hACE2) and this correlates with loss of native protein conformation and aromatic amino acid integrity. This report has important implications for the design and development of rapid and effective disinfection systems against the SARS-CoV-2 virus and other pathogens.
Collapse
Affiliation(s)
- George Devitt
- School
of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Institute
for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Peter B. Johnson
- School
of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Institute
for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Niall Hanrahan
- School
of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Institute
for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Simon I. R. Lane
- School
of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Institute
for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Magdalena C. Vidale
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bhavwanti Sheth
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Joel D. Allen
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Maria V. Humbert
- Clinical
and Experimental Sciences, Faculty of Medicine, University of Southampton,
Sir Henry Wellcome Laboratories, University
Hospital Southampton, Southampton SO16 6YD, United
Kingdom
- University
of Cambridge, MRC Toxicology Unit, Cambridge, CB2 1QR, United Kingdom
| | - Cosma M. Spalluto
- Clinical
and Experimental Sciences, Faculty of Medicine, University of Southampton,
Sir Henry Wellcome Laboratories, University
Hospital Southampton, Southampton SO16 6YD, United
Kingdom
- Southampton
NIHR Biomedical Research Centre, Southampton
General Hospital, Southampton SO16 6YD, United
Kingdom
| | - Rodolphe C. Hervé
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Karl Staples
- Clinical
and Experimental Sciences, Faculty of Medicine, University of Southampton,
Sir Henry Wellcome Laboratories, University
Hospital Southampton, Southampton SO16 6YD, United
Kingdom
- Wessex Investigational
Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
- Southampton
NIHR Biomedical Research Centre, Southampton
General Hospital, Southampton SO16 6YD, United
Kingdom
| | - Jonathan J. West
- Institute
for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, United
Kingdom
| | - Robert Forster
- M Squared
Lasers, Limited, 1 K
Campus, West of Scotland Science Park, Glasgow, G20 0SP, United
Kingdom
| | - Nullin Divecha
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Christopher J. McCormick
- Clinical
and Experimental Sciences, Faculty of Medicine, University of Southampton,
Sir Henry Wellcome Laboratories, University
Hospital Southampton, Southampton SO16 6YD, United
Kingdom
| | - Max Crispin
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Nils Hempler
- M Squared
Lasers, Limited, 1 K
Campus, West of Scotland Science Park, Glasgow, G20 0SP, United
Kingdom
| | - Graeme P. A. Malcolm
- M Squared
Lasers, Limited, 1 K
Campus, West of Scotland Science Park, Glasgow, G20 0SP, United
Kingdom
| | - Sumeet Mahajan
- School
of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Institute
for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Department
of Biotechnology, Inland Norway University
of Applied Sciences, Holsetgata 22, N-2317 Hamar, Norway
| |
Collapse
|
6
|
Wei B, Zenaidee MA, Lantz C, Williams BJ, Totten S, Ogorzalek Loo RR, Loo JA. Top-down mass spectrometry and assigning internal fragments for determining disulfide bond positions in proteins. Analyst 2022; 148:26-37. [PMID: 36399030 PMCID: PMC9772244 DOI: 10.1039/d2an01517j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disulfide bonds in proteins have a substantial impact on protein structure, stability, and biological activity. Localizing disulfide bonds is critical for understanding protein folding and higher-order structure. Conventional top-down mass spectrometry (TD-MS), where only terminal fragments are assigned for disulfide-intact proteins, can access disulfide information, but suffers from low fragmentation efficiency, thereby limiting sequence coverage. Here, we show that assigning internal fragments generated from TD-MS enhances the sequence coverage of disulfide-intact proteins by 20-60% by returning information from the interior of the protein sequence, which cannot be obtained by terminal fragments alone. The inclusion of internal fragments can extend the sequence information of disulfide-intact proteins to near complete sequence coverage. Importantly, the enhanced sequence information that arise from the assignment of internal fragments can be used to determine the relative position of disulfide bonds and the exact disulfide connectivity between cysteines. The data presented here demonstrates the benefits of incorporating internal fragment analysis into the TD-MS workflow for analyzing disulfide-intact proteins, which would be valuable for characterizing biotherapeutic proteins such as monoclonal antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Muhammad A Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Brodbelt JS. Deciphering combinatorial post-translational modifications by top-down mass spectrometry. Curr Opin Chem Biol 2022; 70:102180. [PMID: 35779351 PMCID: PMC9489649 DOI: 10.1016/j.cbpa.2022.102180] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) create vast structural and functional diversity of proteins, ultimately modulating protein function and degradation, influencing cellular signaling, and regulating transcription. The combinatorial patterns of PTMs increase the heterogeneity of proteins and further mediates their interactions. Advances in mass spectrometry-based proteomics have resulted in identification of thousands of proteins and allowed characterization of numerous types and sites of PTMs. Examination of intact proteins, termed the top-down approach, offers the potential to map protein sequences and localize multiple PTMs on each protein, providing the most comprehensive cataloging of proteoforms. This review describes some of the dividends of using mass spectrometry to analyze intact proteins and showcases innovative strategies that have enhanced the promise of top-down proteomics for exploring the impact of combinatorial PTMs in unsurpassed detail.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Watts E, Thyer R, Ellington AD, Brodbelt JS. Integrated Top-Down and Bottom-Up Mass Spectrometry for Characterization of Diselenide Bridging Patterns of Synthetic Selenoproteins. Anal Chem 2022; 94:11175-11184. [PMID: 35930618 DOI: 10.1021/acs.analchem.2c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the rapid acceleration in the design and development of new biotherapeutics, ensuring consistent quality and understanding degradation pathways remain paramount, requiring an array of analytical methods including mass spectrometry. The incorporation of non-canonical amino acids, such as for synthetic selenoproteins, creates additional challenges. A comprehensive strategy to characterize selenoproteins should serve dual purposes of providing sequence confirmation and mapping of selenocysteine bridge locations and the identification of unanticipated side products. In the present study, a combined approach exploiting the benefits of both top-down and bottom-up mass spectrometry was developed. Both electron-transfer/higher-energy collision dissociation and 213 nm ultraviolet photodissociation were utilized to provide complementary information, allowing high quality characterization, localization of diselenide bridges for complex proteins, and the identification of previously unreported selenoprotein dimers.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Hervé M, Boyer A, Brédy R, Allouche AR, Compagnon I, Lépine F. On-the-fly investigation of XUV excited large molecular ions using a high harmonic generation light source. Sci Rep 2022; 12:13191. [PMID: 35915132 PMCID: PMC9343369 DOI: 10.1038/s41598-022-17416-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
We present experiments where extreme ultraviolet femtosecond light pulses are used to photoexcite large molecular ions at high internal energy. This is done by combining an electrospray ionization source and a mass spectrometer with a pulsed light source based on high harmonic generation. This allows one to study the interaction between high energy photons and mass selected ions in conditions that are accessible on large-scale facilities. We show that even without an ion trapping device, systems as large as a protein can be studied. We observe light induced dissociative ionization and proton migration in model systems such as reserpine, insulin and cytochrome c. These results offer new perspectives to perform time-resolved experiments with ultrashort pulses at the heart of the emerging field of attosecond chemistry.
Collapse
Affiliation(s)
- Marius Hervé
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Alexie Boyer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Richard Brédy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France.
| | - Abdul-Rahman Allouche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Isabelle Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Franck Lépine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| |
Collapse
|
10
|
Macias LA, Brodbelt JS. Investigation of Product Ions Generated by 193 nm Ultraviolet Photodissociation of Peptides and Proteins Containing Disulfide Bonds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1315-1324. [PMID: 35736955 DOI: 10.1021/jasms.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disulfide bridges are unique post-translational modifications (PTM) that contribute to protein architecture and modulate function. This PTM, however, challenges top-down mass spectrometry by cyclizing stretches of the protein sequence. In order to produce and release detectable product ions that contribute to the assignment of proteoforms, regions of a protein encapsulated by disulfide bonds require two fragmentation events: cleavage of the protein backbone and cleavage of the disulfide bond. Traditional collisional activation methods do not cleave disulfide bonds efficiently, often leading to low sequence coverage of proteins that incorporate this feature. To address this challenge, we have evaluated the fragmentation pathways enabled by 193 nm ultraviolet photodissociation (UVPD) and UVPD coupled to electron transfer dissociation for the characterization of protein structures incorporating disulfide bonds. Cleavage of disulfide bonds by either approach results in S-S and C-S dissociation products that result from a combination of homolytic cleavage and hydrogen-transfer processes. Characterization of these product ions elevates interpretation of complex top-down spectra of proteins that incorporate disulfide bonds.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Bui TKN, Mawatari K, Emoto T, Fukushima S, Shimohata T, Uebanso T, Akutagawa M, Kinouchi Y, Takahashi A. UV-LED irradiation reduces the infectivity of herpes simplex virus type 1 by targeting different viral components depending on the peak wavelength. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112410. [PMID: 35193038 DOI: 10.1016/j.jphotobiol.2022.112410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is an enveloped virus that mainly infects humans. Given its high global prevalence, disinfection is critical for reducing the risk of infection. Ultraviolet-light-emitting diodes (UV-LEDs) are eco-friendly irradiating modules with different peak wavelengths, but the molecules degraded by UV-LED irradiation have not been clarified. To identify the target viral molecules of UV-LEDs, we exposed HSV-1 suspensions to UV-LED irradiation at wavelengths of 260-, 280-, 310-, and 365-nm and measured viral DNA, protein, and lipid damage and infectivity in host cells. All UV-LEDs substantially reduced by inhibiting host cell transcription, but 260- and 280-nm UV-LEDs had significantly stronger virucidal efficiency than 310- and 365-nm UV-LEDs. Meanwhile, 260- and 280-nm UV-LEDs induced the formation of viral DNA photoproducts and the degradation of viral proteins and some phosphoglycerolipid species. Unlike 260- and 280-nm UV-LEDs, 310- and 365-nm UV-LEDs decreased the viral protein levels, but they did not drastically change the levels of viral DNA photoproducts and lipophilic metabolites. These results suggest that UV-LEDs reduce the infectivity of HSV-1 by targeting different viral molecules based on the peak wavelength. These findings could facilitate the optimization of UV-LED irradiation for viral inactivation.
Collapse
Affiliation(s)
- Thi Kim Ngan Bui
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan.
| | - Takahiro Emoto
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Shiho Fukushima
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan; Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama, Fukui 917-0003, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Masatake Akutagawa
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Yohsuke Kinouchi
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| |
Collapse
|
12
|
Turek AK, Sak MH, Miller SJ. Kinetic Analysis of a Cysteine-Derived Thiyl-Catalyzed Asymmetric Vinylcyclopropane Cycloaddition Reflects Numerous Attractive Noncovalent Interactions. J Am Chem Soc 2021; 143:16173-16183. [PMID: 34553915 DOI: 10.1021/jacs.1c07323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kinetic studies of a vinylcyclopropane (VCP) cycloaddition, catalyzed by peptide-based thiyl radicals, are described. Reactions were analyzed by using reaction progress kinetic analysis, revealing that ring-opening of the VCP is both rate- and enantio-determining. These conclusions are further corroborated by studies involving racemic and enantiopure VCP starting material. Noncovalent interactions play key roles throughout: both the peptide catalyst and VCP exhibit unproductive self-aggregation, which appears to be disrupted by binding between the catalyst and VCP. This in turn explains the requirement for the key catalyst feature, a substituent at the 4-position of the proline residue, which is required for both turnover/rate and selectivity.
Collapse
Affiliation(s)
- Amanda K Turek
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Marcus H Sak
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
13
|
Innovative finding of 266-nm laser regulating CD90 levels in SDSCs. Sci Rep 2021; 11:13932. [PMID: 34230598 PMCID: PMC8260621 DOI: 10.1038/s41598-021-93508-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
We used light to irradiate skin-derived stem cells and tried to find any cellular protein alterations 24 h after illumination. A 266-nm laser with four intensities was used, and of the nine cell markers that were surveyed in our trials, only CD90 was downregulated at an intensity of 20 μJ for 10 s. Repeated illuminations from the 266-nm laser at seven intensities revealed that CD90 expression was downregulated 14.6–28.8%, depending on light intensity. The maximal effect was noted at an intensity of 30 μJ for 2 s. This innovative finding reveals that a 266-nm laser can regulate protein expression in skin-derivative stem cells.
Collapse
|
14
|
Physicochemical properties of Grass pea (Lathyrus sativus L.) protein nanoparticles fabricated by cold atmospheric-pressure plasma. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Yang X, Xia Y. Mapping Complex Disulfide Bonds via Implementing Photochemical Reduction Online with Liquid Chromatography-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:307-314. [PMID: 33136395 DOI: 10.1021/jasms.0c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assigning disulfide linkage is a crucial task for protein identification. The current bottom-up proteomics workflow has limitations in characterizing peptide digests containing multiple disulfide bonds due to the difficulty of controlling partial reduction via conventional chemical reduction methods. Previously, our lab reported the development of an acetone/2-propanol (IPA) photoinitiating system for rapid (on second time scale) and tunable disulfide bond reduction. Herein, we incorporated this reaction system onto a liquid chromatography-mass spectrometry (LC-MS) system for bottom-up protein analysis applications. The photochemical reduction reaction was implemented in a flow microreactor which allowed for up to 15 s 254 nm UV irradiation. The microreactor was installed post LC separation and right before electrospray ionization, while a T-junction was used to introduce the photoinitiating solution to the LC eluent before entering the microreactor. The degree of disulfide reduction was tunable from partial reduction to complete reduction for peptides containing one or multiple disulfide bonds. Significantly improved sequence coverage was obtained from complete disulfide reduction, while assignment of the disulfide connectivity was facilitated from partial disulfide reduction when coupled with tandem mass spectrometry via collision-induced dissociation. As a proof-of-concept test, trypsin digests of lysozyme (four disulfide bonds) and bovine serum albumin (BSA, 17 disulfide bonds) were analyzed by the LC-MS system coupled with online reduction. Sequence coverage was improved from 35% to 100% and 13% to 87% for lysozyme and BSA, respectively. All four disulfide bonds of lysozyme were determined. For BSA, nine disulfide bonds were characterized and eight adjacent disulfide bonds were narrowed down.
Collapse
Affiliation(s)
- Xiaoyue Yang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Gammelgaard S, Petersen SB, Haselmann KF, Nielsen PK. Direct Ultraviolet Laser-Induced Reduction of Disulfide Bonds in Insulin and Vasopressin. ACS OMEGA 2020; 5:7962-7968. [PMID: 32309706 PMCID: PMC7161042 DOI: 10.1021/acsomega.9b04375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/24/2020] [Indexed: 05/05/2023]
Abstract
Ultraviolet (UV) light has been shown to induce reduction of disulfide bonds in proteins in solution. The photoreduction is proposed to be a result of electron donation from excited Tyr or Trp residues. In this work, a powerful UV femtosecond laser was used to generate photoreduced products, while the hypothesis of Tyr/Trp mediation was studied with spectroscopy and mass spectrometry. With limited irradiation times of 3 min or less at 280 nm, the laser-induced reduction in arginine vasopressin and human insulin led to significant yields of ∼3% stable reduced product. The photogenerated thiols required acidic pH for stabilization, while neutral pH primarily caused scrambling and trisulfide formation. Interestingly, there was no direct evidence that Tyr/Trp mediation was a required criterion for the photoreduction of disulfide bonds. Intermolecular electron transfer remained a possibility for insulin but was ruled out for vasopressin. We propose that an additional mechanism should be increasingly considered in UV light-induced reduction of disulfide bonds in solution, in which a single UV photon is directly absorbed by the disulfide bond.
Collapse
Affiliation(s)
- Simon
K. Gammelgaard
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department
of Health Science and Technology, Aalborg
University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Steffen B. Petersen
- Department
of Health Science and Technology, Aalborg
University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Kim F. Haselmann
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- . Tel: (+45) 3079 0375
| |
Collapse
|
17
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Shaw JB, Liu W, Vasil′ev YV, Bracken CC, Malhan N, Guthals A, Beckman JS, Voinov VG. Direct Determination of Antibody Chain Pairing by Top-down and Middle-down Mass Spectrometry Using Electron Capture Dissociation and Ultraviolet Photodissociation. Anal Chem 2020; 92:766-773. [PMID: 31769659 PMCID: PMC7819135 DOI: 10.1021/acs.analchem.9b03129] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One challenge associated with the discovery and development of monoclonal antibody (mAb) therapeutics is the determination of heavy chain and light chain pairing. Advances in MS instrumentation and MS/MS methods have greatly enhanced capabilities for the analysis of large intact proteins yielding much more detailed and accurate proteoform characterization. Consequently, direct interrogation of intact antibodies or F(ab')2 and Fab fragments has the potential to significantly streamline therapeutic mAb discovery processes. Here, we demonstrate for the first time the ability to efficiently cleave disulfide bonds linking heavy and light chains of mAbs using electron capture dissociation (ECD) and 157 nm ultraviolet photodissociation (UVPD). The combination of intact mAb, Fab, or F(ab')2 mass, intact LC and Fd masses, and CDR3 sequence coverage enabled determination of heavy chain and light chain pairing from a single experiment and experimental condition. These results demonstrate the potential of top-down and middle-down proteomics to significantly streamline therapeutic antibody discovery.
Collapse
Affiliation(s)
- Jared B. Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Weijing Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Yury V. Vasil′ev
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Carter C. Bracken
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Neha Malhan
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Adrian Guthals
- Mapp Biopharmaceutical Inc., 6160 Lusk Boulevard #105, San Diego, California 92121, United States
| | - Joseph S. Beckman
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Valery G. Voinov
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
19
|
Adhikari S, Xia Y, McLuckey SA. Top-Down Analysis of Disulfide-Linked Proteins Using Photoinduced Radical Reactions and ET-DDC. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 444:116173. [PMID: 31372092 PMCID: PMC6675022 DOI: 10.1016/j.ijms.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Top-down characterization of proteins via tandem mass spectrometry (MS/MS) can be challenging due to the presence of multiple disulfide bond linkages; which significantly inhibit the backbone cleavage efficiency for the formation of structurally informative fragment ions. In this study, we present a strategy of pairing a solution-phase photoinitiating system with dipolar direct current induced collisional activation of electron transfer products (ET-DDC) of proteins for a top-down MS/MS approach. The photoinitiating system allows for a rapid scission of all the disulfide linkages in the protein (on the time scale of seconds) with high efficiency (near to complete reduction); while ET-DDC collisional activation improves the fragmentation efficiency for the protein via broadband activation of all the first-generation charge reduced precursor ions (e.g., electron transfer no-dissociation or ETnoD products) from electron transfer reactions over a wide mass-to-charge range. As a result, this approach enabled the generation of extensive sequence informative fragment ion yields for a rapid and enhanced structural characterization of disulfide-linked proteins.
Collapse
Affiliation(s)
- Sarju Adhikari
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Address reprint requests to: Dr. Scott A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
20
|
Palacio Lozano DC, Gavard R, Arenas-Diaz JP, Thomas MJ, Stranz DD, Mejía-Ospino E, Guzman A, Spencer SEF, Rossell D, Barrow MP. Pushing the analytical limits: new insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power. Chem Sci 2019; 10:6966-6978. [PMID: 31588263 PMCID: PMC6764280 DOI: 10.1039/c9sc02903f] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023] Open
Abstract
A new strategy has been developed for characterization of the most challenging complex mixtures to date, using a combination of custom-designed experiments and a new data pre-processing algorithm. In contrast to traditional methods, the approach enables operation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with constant ultrahigh resolution at hitherto inaccessible levels (approximately 3 million FWHM, independent of m/z). The approach, referred to as OCULAR, makes it possible to analyze samples that were previously too complex, even for high field FT-ICR MS instrumentation. Previous FT-ICR MS studies have typically spanned a broad mass range with decreasing resolving power (inversely proportional to m/z) or have used a single, very narrow m/z range to produce data of enhanced resolving power; both methods are of limited effectiveness for complex mixtures spanning a broad mass range, however. To illustrate the enhanced performance due to OCULAR, we show how a record number of unique molecular formulae (244 779 elemental compositions) can be assigned in a single, non-distillable petroleum fraction without the aid of chromatography or dissociation (MS/MS) experiments. The method is equally applicable to other areas of research, can be used with both high field and low field FT-ICR MS instruments to enhance their performance, and represents a step-change in the ability to analyze highly complex samples.
Collapse
Affiliation(s)
- Diana Catalina Palacio Lozano
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
- Department of Chemistry , Universidad Industrial de Santander , Bucaramanga , Colombia
| | - Remy Gavard
- Molecular Analytical Science Centre of Doctoral Training , University of Warwick , Coventry , CV4 7AL , UK
| | - Juan P Arenas-Diaz
- Department of Chemistry , Universidad Industrial de Santander , Bucaramanga , Colombia
| | - Mary J Thomas
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
- Molecular Analytical Science Centre of Doctoral Training , University of Warwick , Coventry , CV4 7AL , UK
| | | | - Enrique Mejía-Ospino
- Department of Chemistry , Universidad Industrial de Santander , Bucaramanga , Colombia
| | - Alexander Guzman
- Instituto Colombiano del Petróleo , Ecopetrol , Piedecuesta , Colombia
| | - Simon E F Spencer
- Department of Statistics , University of Warwick , Coventry , CV4 7AL , UK
| | - David Rossell
- Department of Economics & Business , Universitat Pompeu Fabra , Barcelona 08005 , Spain
| | - Mark P Barrow
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| |
Collapse
|
21
|
Schnorr K, Bhattacherjee A, Oosterbaan KJ, Delcey MG, Yang Z, Xue T, Attar AR, Chatterley AS, Head-Gordon M, Leone SR, Gessner O. Tracing the 267 nm-Induced Radical Formation in Dimethyl Disulfide Using Time-Resolved X-ray Absorption Spectroscopy. J Phys Chem Lett 2019; 10:1382-1387. [PMID: 30835480 DOI: 10.1021/acs.jpclett.9b00159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Disulfide bonds are pivotal for the structure, function, and stability of proteins, and understanding ultraviolet (UV)-induced S-S bond cleavage is highly relevant for elucidating the fundamental mechanisms underlying protein photochemistry. Here, the near-UV photodecomposition mechanisms in gas-phase dimethyl disulfide, a prototype system with a S-S bond, are probed by ultrafast transient X-ray absorption spectroscopy. The evolving electronic structure during and after the dissociation is simultaneously monitored at the sulfur L1,2,3-edges and the carbon K-edge with 100 fs (FWHM) temporal resolution using the broadband soft X-ray spectrum from a femtosecond high-order harmonics light source. Dissociation products are identified with the help of ADC and RASPT2 electronic-structure calculations. Rapid dissociation into two CH3S radicals within 120 ± 30 fs is identified as the major relaxation pathway after excitation with 267 nm radiation. Additionally, a 30 ± 10% contribution from asymmetric CH3S2 + CH3 dissociation is indicated by the appearance of CH3 radicals, which is, however, at least partly the result of multiphoton excitation.
Collapse
Affiliation(s)
- Kirsten Schnorr
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Aditi Bhattacherjee
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Katherine J Oosterbaan
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Mickaël G Delcey
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Zheyue Yang
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tian Xue
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Andrew R Attar
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Adam S Chatterley
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Stephen R Leone
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Physics , University of California , Berkeley , California 94720 , United States
| | - Oliver Gessner
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
22
|
Xiao Y, Li M, Larocque R, Zhang F, Malhotra A, Chen J, Linhardt RJ, Konermann L, Xu D. Dimerization interface of osteoprotegerin revealed by hydrogen-deuterium exchange mass spectrometry. J Biol Chem 2018; 293:17523-17535. [PMID: 30254073 DOI: 10.1074/jbc.ra118.004489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/20/2018] [Indexed: 01/13/2023] Open
Abstract
Previous structural studies of osteoprotegerin (OPG), a crucial negative regulator of bone remodeling and osteoclastogenesis, were mostly limited to the N-terminal ligand-binding domains. It is now known that the three C-terminal domains of OPG also play essential roles in its function by mediating OPG dimerization, OPG-heparan sulfate (HS) interactions, and formation of the OPG-HS-receptor activator of nuclear factor κB ligand (RANKL) ternary complex. Employing hydrogen-deuterium exchange MS methods, here we investigated the structure of full-length OPG in complex with HS or RANKL in solution. Our data revealed two noteworthy aspects of the OPG structure. First, we found that the interconnection between the N- and C-terminal domains is much more rigid than previously thought, possibly because of hydrophobic interactions between the fourth cysteine-rich domain and the first death domain. Second, we observed that two hydrophobic clusters located in two separate C-terminal domains directly contribute to OPG dimerization, likely by forming a hydrophobic dimerization interface. Aided by site-directed mutagenesis, we further demonstrated that an intact dimerization interface is essential for the biological activity of OPG. Our study represents an important step toward deciphering the structure-function relationship of the full-length OPG protein.
Collapse
Affiliation(s)
- Yiming Xiao
- From the Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Miaomiao Li
- the Department of Oral Biology, University of Buffalo, Buffalo, New York 14214, and
| | - Rinzhi Larocque
- the Department of Oral Biology, University of Buffalo, Buffalo, New York 14214, and
| | - Fuming Zhang
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Anju Malhotra
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jianle Chen
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J Linhardt
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Lars Konermann
- From the Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada,
| | - Ding Xu
- the Department of Oral Biology, University of Buffalo, Buffalo, New York 14214, and
| |
Collapse
|
23
|
Zhan L, Liu Y, Xie X, Xiong C, Nie Z. Heat-Induced Rearrangement of the Disulfide Bond of Lactoglobulin Characterized by Multiply Charged MALDI-TOF/TOF Mass Spectrometry. Anal Chem 2018; 90:10670-10675. [DOI: 10.1021/acs.analchem.8b02563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lingpeng Zhan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National Center for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
24
|
Rush MJ, Riley NM, Westphall MS, Coon JJ. Top-Down Characterization of Proteins with Intact Disulfide Bonds Using Activated-Ion Electron Transfer Dissociation. Anal Chem 2018; 90:8946-8953. [PMID: 29949341 PMCID: PMC6434944 DOI: 10.1021/acs.analchem.8b01113] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we report the fragmentation of disulfide linked intact proteins using activated-ion electron transfer dissociation (AI-ETD) for top-down protein characterization. This fragmentation method is then compared to the alternative methods of beam-type collisional activation (HCD), electron transfer dissociation (ETD), and electron transfer and higher-energy collision dissociation (EThcD). We analyzed multiple precursor charge states of the protein standards bovine insulin, α-lactalbumin, lysozyme, β-lactoglobulin, and trypsin inhibitor. In all cases, we found that AI-ETD provides a boost in protein sequence coverage information and the generation of fragment ions from within regions enclosed by disulfide bonds. AI-ETD shows the largest improvement over the other techniques when analyzing highly disulfide linked and low charge density precursor ions. This substantial improvement is attributed to the concurrent irradiation of the gas phase ions while the electron-transfer reaction is taking place, mitigating nondissociative electron transfer, helping unfold the gas phase protein during the electron transfer event, and preventing disulfide bond reformation. We also show that AI-ETD is able to yield comparable sequence coverage information when disulfide bonds are left intact relative to proteins that have been reduced and alkylated. This work demonstrates that AI-ETD is an effective fragmentation method for the analysis of proteins with intact disulfide bonds, dramatically enhancing sequence ion generation and total sequence coverage compared to HCD and ETD.
Collapse
Affiliation(s)
- Matthew J.P. Rush
- Genome Center of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nicholas M. Riley
- Genome Center of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | - Joshua J. Coon
- Genome Center of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
25
|
Quick MM, Crittenden CM, Rosenberg JA, Brodbelt JS. Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Anal Chem 2018; 90:8523-8530. [PMID: 29902373 PMCID: PMC6050148 DOI: 10.1021/acs.analchem.8b01556] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Deciphering disulfide bond patterns in proteins remains a significant challenge. In the present study, interlinked disulfide bonds connecting peptide chains are homolytically cleaved with 193 nm ultraviolet photodissociation (UVPD). Analysis of insulin showcased the ability of UVPD to cleave multiple disulfide bonds and provide sequence coverage of the peptide chains in the same MS/MS event. For proteins containing more complex disulfide bonding patterns, an approach combining partial reduction and alkylation mitigated disulfide scrambling and allowed assignment of the array of disulfide bonds. The 4 disulfide bonds of lysozyme and the 19 disulfide bonds of serotransferrin were characterized through LC/UVPD-MS analysis of nonreduced and partially reduced protein digests.
Collapse
|
26
|
Cramer CN, Kelstrup CD, Olsen JV, Haselmann KF, Nielsen PK. Generic Workflow for Mapping of Complex Disulfide Bonds Using In-Source Reduction and Extracted Ion Chromatograms from Data-Dependent Mass Spectrometry. Anal Chem 2018; 90:8202-8210. [DOI: 10.1021/acs.analchem.8b01603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christian N. Cramer
- Protein Engineering, Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian D. Kelstrup
- Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jesper V. Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim F. Haselmann
- Protein Engineering, Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Protein Engineering, Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| |
Collapse
|
27
|
Khatri K, Pu Y, Klein JA, Wei J, Costello CE, Lin C, Zaia J. Comparison of Collisional and Electron-Based Dissociation Modes for Middle-Down Analysis of Multiply Glycosylated Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1075-1085. [PMID: 29663256 PMCID: PMC6004259 DOI: 10.1007/s13361-018-1909-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 05/12/2023]
Abstract
Analysis of singly glycosylated peptides has evolved to a point where large-scale LC-MS analyses can be performed at almost the same scale as proteomics experiments. While collisionally activated dissociation (CAD) remains the mainstay of bottom-up analyses, it performs poorly for the middle-down analysis of multiply glycosylated peptides. With improvements in instrumentation, electron-activated dissociation (ExD) modes are becoming increasingly prevalent for proteomics experiments and for the analysis of fragile modifications such as glycosylation. While these methods have been applied for glycopeptide analysis in isolated studies, an organized effort to compare their efficiencies, particularly for analysis of multiply glycosylated peptides (termed here middle-down glycoproteomics), has not been made. We therefore compared the performance of different ExD modes for middle-down glycopeptide analyses. We identified key features among the different dissociation modes and show that increased electron energy and supplemental activation provide the most useful data for middle-down glycopeptide analysis. Graphical Abstract.
Collapse
Affiliation(s)
- Kshitij Khatri
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Yi Pu
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Joshua A Klein
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Juan Wei
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Cheng Lin
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA.
- Boston University Medical Campus, 670 Albany St., Suite 504, Boston, MA, 02118, USA.
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA.
- Program in Bioinformatics, Boston University, Boston, MA, USA.
- Boston University Medical Campus, 670 Albany St., Suite 504, Boston, MA, 02118, USA.
| |
Collapse
|
28
|
Rathore D, Faustino A, Schiel J, Pang E, Boyne M, Rogstad S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics 2018; 15:431-449. [DOI: 10.1080/14789450.2018.1469982] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Deepali Rathore
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anneliese Faustino
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - John Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Eric Pang
- Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Boyne
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- COUR Pharmaceuticals Development Company, Northbrook, IL, USA
| | - Sarah Rogstad
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
29
|
Sekowski S, Terebka M, Veiko A, Lapshina E, Sulkowska U, Zavodnik IB, Abdulladjanova N, Mavlyanov S, Roszkowska A, Zamaraeva M. Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin—theoretical and experimental studies. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Schmit PO, Vialaret J, Wessels HJ, van Gool AJ, Lehmann S, Gabelle A, Wood J, Bern M, Paape R, Suckau D, Kruppa G, Hirtz C. Towards a routine application of Top-Down approaches for label-free discovery workflows. J Proteomics 2018; 175:12-26. [DOI: 10.1016/j.jprot.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
31
|
Li P, Kreft I, Jackson GP. Top-Down Charge Transfer Dissociation (CTD) of Gas-Phase Insulin: Evidence of a One-Step, Two-Electron Oxidation Mechanism. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:284-296. [PMID: 28786096 PMCID: PMC5803485 DOI: 10.1007/s13361-017-1700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 05/03/2023]
Abstract
Top-down analyses of protonated insulin cations of charge states of 4+, 5+, or 6+ were performed by exposing the isolated precursor ions to a beam of helium cations with kinetic energy of more than 6 keV, in a technique termed charge transfer dissociation (CTD). The ~100 ms charge transfer reaction resulted in approximately 20% conversion efficiency to other intact charge exchange products (CTnoD), and a range of low abundance fragment ions. To increase backbone and sulfide cleavages, and to provide better structural information than straightforward MS2 CTD, the CTnoD oxidized products were isolated and subjected to collisional activation at the MS3 level. The MS3 CTD/CID reaction effectively broke the disulfide linkages, separated the two chains, and yielded more structurally informative fragment ions within the inter-chain cyclic region. CTD also provided doubly oxidized intact product ions at the MS2 level, and resonance ejection of the singly oxidized product ion revealed that the doubly oxidized product originates directly from the isolated precursor ion and not from consecutive CTD reactions of a singly oxidized intermediate. MS4 experiments were employed to help identify potential radical cations and diradical cations, but the results were negative or inconclusive. Nonetheless, the two-electron oxidation process is a demonstration of the very large potential energy (>20 eV) available through CTD, and is a notable capability for a 3D ion trap platform. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Pengfei Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Iris Kreft
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, 26506-6121, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, 26506-6121, USA.
| |
Collapse
|
32
|
Cho E, Witt M, Hur M, Jung MJ, Kim S. Application of FT-ICR MS Equipped with Quadrupole Detection for Analysis of Crude Oil. Anal Chem 2017; 89:12101-12107. [DOI: 10.1021/acs.analchem.7b02644] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Eunji Cho
- Department
of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Matthias Witt
- Bruker Daltonik
GmbH, Fahrenheitrasse 4, 28359 Bremen, Germany
| | - Manhoi Hur
- Department
of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Center
for Metabolic Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Maeng-Joon Jung
- Department
of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sunghwan Kim
- Department
of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Green-Nano Materials
Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Xu W, Jimenez RB, Mowery R, Luo H, Cao M, Agarwal N, Ramos I, Wang X, Wang J. A Quadrupole Dalton-based multi-attribute method for product characterization, process development, and quality control of therapeutic proteins. MAbs 2017; 9:1186-1196. [PMID: 28805536 PMCID: PMC5627594 DOI: 10.1080/19420862.2017.1364326] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.
Collapse
Affiliation(s)
- Weichen Xu
- a Analytical Sciences, MedImmune , One MedImmune Way, Gaithersburg , MD USA
| | - Rod Brian Jimenez
- a Analytical Sciences, MedImmune , One MedImmune Way, Gaithersburg , MD USA
| | - Rachel Mowery
- b Cell Culture and Fermentation Sciences, MedImmune , One MedImmune Way, Gaithersburg , MD USA
| | - Haibin Luo
- c Purification Process Sciences, MedImmune ; One MedImmune Way, Gaithersburg , MD USA
| | - Mingyan Cao
- a Analytical Sciences, MedImmune , One MedImmune Way, Gaithersburg , MD USA
| | - Nitin Agarwal
- b Cell Culture and Fermentation Sciences, MedImmune , One MedImmune Way, Gaithersburg , MD USA
| | - Irina Ramos
- c Purification Process Sciences, MedImmune ; One MedImmune Way, Gaithersburg , MD USA
| | - Xiangyang Wang
- a Analytical Sciences, MedImmune , One MedImmune Way, Gaithersburg , MD USA
| | - Jihong Wang
- a Analytical Sciences, MedImmune , One MedImmune Way, Gaithersburg , MD USA
| |
Collapse
|
34
|
Durand KL, Tan L, Stinson CA, Love-Nkansah CB, Ma X, Xia Y. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1099-1108. [PMID: 28194735 DOI: 10.1007/s13361-017-1595-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kirt L Durand
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Lei Tan
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Craig A Stinson
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | | | - Xiaoxiao Ma
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Yu Xia
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
35
|
Holden DD, Brodbelt JS. Improving Performance Metrics of Ultraviolet Photodissociation Mass Spectrometry by Selective Precursor Ejection. Anal Chem 2016; 89:837-846. [PMID: 28105830 DOI: 10.1021/acs.analchem.6b03777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Confident protein identifications derived from high-throughput bottom-up and top-down proteomics workflows depend on acquisition of thousands of tandem mass spectrometry (MS/MS) spectra with adequate signal-to-noise and accurate mass assignments of the fragment ions. Ultraviolet photodissociation (UVPD) using 193 nm photons has proven to be well-suited for activation and fragmentation of peptides and proteins in ion trap mass spectrometers, but the spectral signal-to-noise ratio (S/N) is typically lower than that obtained from collisional activation methods. The lower S/N is attributed to the dispersion of ion current among numerous fragment ion channels (a,b,c,x,y,z ions). In addition, frequently UVPD is performed such that a relatively large population of precursor ions remains undissociated after the UV photoactivation period in order to prevent overdissociation into small uninformative or internal fragment ions. Here we report a method to improve spectral S/N and increase the accuracy of mass assignments of UVPD mass spectra via resonance ejection of undissociated precursor ions after photoactivation. This strategy, termed precursor ejection UVPD or PE-UVPD, allows the ion trap to be filled with more ions prior to UVPD while at the same time alleviating the space charge problems that would otherwise contribute to the skewing of mass assignments and reduction of S/N. Here we report the performance gains by implementation of PE-UVPD for peptide analysis in an ion trap mass spectrometer.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
36
|
Holden DD, Makarov A, Schwartz JC, Sanders JD, Zhuk E, Brodbelt JS. Ultraviolet Photodissociation Induced by Light‐Emitting Diodes in a Planar Ion Trap. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dustin D. Holden
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Austin TX 78712 USA
| | - Alexander Makarov
- Thermo Fisher Scientific (Bremen) GmbH Hanna-Kunath-Strasse 11 28199 Bremen Germany
| | - Jae C. Schwartz
- Thermo Fisher Scientific Inc. 355 River Oaks Pkwy San Jose CA 95134 USA
| | - James D. Sanders
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Austin TX 78712 USA
| | - Eugene Zhuk
- Thermo Fisher Scientific Inc. 355 River Oaks Pkwy San Jose CA 95134 USA
| | - Jennifer S. Brodbelt
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Austin TX 78712 USA
| |
Collapse
|
37
|
Holden DD, Makarov A, Schwartz JC, Sanders JD, Zhuk E, Brodbelt JS. Ultraviolet Photodissociation Induced by Light-Emitting Diodes in a Planar Ion Trap. Angew Chem Int Ed Engl 2016; 55:12417-21. [PMID: 27605434 DOI: 10.1002/anie.201605850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/02/2016] [Indexed: 11/09/2022]
Abstract
The first application of light-emitting diodes (LEDs) for ultraviolet photodissociation (UVPD) mass spectrometry is reported. LEDs provide a compact, low cost light source and have been incorporated directly into the trapping cell of an Orbitrap mass spectrometer. MS/MS efficiencies of over 50 % were obtained using an extended irradiation period, and UVPD was optimized by modulating the ion trapping parameters to maximize the overlap between the ion cloud and the irradiation volume.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX, 78712, USA
| | - Alexander Makarov
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath-Strasse 11, 28199, Bremen, Germany
| | - Jae C Schwartz
- Thermo Fisher Scientific Inc., 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX, 78712, USA
| | - Eugene Zhuk
- Thermo Fisher Scientific Inc., 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX, 78712, USA.
| |
Collapse
|
38
|
Switzar L, Nicolardi S, Rutten JW, Oberstein SAJL, Aartsma-Rus A, van der Burgt YEM. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:50-8. [PMID: 26369777 PMCID: PMC4686567 DOI: 10.1007/s13361-015-1258-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 05/04/2023]
Abstract
Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.
Collapse
Affiliation(s)
- Linda Switzar
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
- , Albinusdreef 2, Postzone S3, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Julie W Rutten
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|