1
|
Liu Y, Wang J, Yang J, Xia J, Yu J, Chen D, Huang Y, Yang F, Ruan Y, Xu JF, Pi J. Nanomaterial-mediated host directed therapy of tuberculosis by manipulating macrophage autophagy. J Nanobiotechnology 2024; 22:608. [PMID: 39379986 PMCID: PMC11462893 DOI: 10.1186/s12951-024-02875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a major public health issue worldwide. Mtb has developed complicated strategies to inhibit the immunological clearance of host cells, which significantly promote TB epidemic and weaken the anti-TB treatments. Host-directed therapy (HDT) is a novel approach in the field of anti-infection for overcoming antimicrobial resistance by enhancing the antimicrobial activities of phagocytes through phagosomal maturation, autophagy and antimicrobial peptides. Autophagy, a highly conserved cellular event within eukaryotic cells that is effective against a variety of bacterial infections, has been shown to play a protective role in host defense against Mtb. In recent decades, the introduction of nanomaterials into medical fields open up a new scene for novel therapeutics with enhanced efficiency and safety against different diseases. The active modification of nanomaterials not only allows their attractive targeting effects against the host cells, but also introduce the potential to regulate the host anti-TB immunological mechanisms, such as apoptosis, autophagy or macrophage polarization. In this review, we introduced the mechanisms of host cell autophagy for intracellular Mtb clearance, and how functional nanomaterials regulate autophagy for disease treatment. Moreover, we summarized the recent advances of nanomaterials for autophagy regulations as novel HDT strategies for anti-TB treatment, which may benefit the development of more effective anti-TB treatments.
Collapse
Affiliation(s)
- Yilin Liu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiajun Wang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiayi Yang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jiaqi Yu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| | - Jun-Fa Xu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| | - Jiang Pi
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Wang S, Fang R, Wang H, Li X, Xing J, Li Z, Song N. The role of transcriptional regulators in metal ion homeostasis of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1360880. [PMID: 38529472 PMCID: PMC10961391 DOI: 10.3389/fcimb.2024.1360880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.
Collapse
Affiliation(s)
- Shuxian Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- Drug Innovation Research Center, SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Dalei G, Jena D, Das BR, Das S. Bio-valorization of Tagetes floral waste extract in fabrication of self-healing Schiff-base nanocomposite hydrogels for colon cancer remedy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4330-4347. [PMID: 38097839 DOI: 10.1007/s11356-023-31392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
The drastic boom in floriculture and social events in religious and recreational places has inevitably led to generation of tremendous floral waste across the globe. Marigold (Tagetes erecta) is one of the most common loose flowers offered for the same. Generally discarded, these Tagetes floral wastes could be valorized for biogenic syntheses. In this study, we have utilized the floral extract towards green synthesis of nano ZnO, the formation of which was affirmed from different analytical techniques. Bionanocomposite Schiff-base hydrogel composed of chitosan and dialdehyde pectin was fabricated by the facile strategy of in situ polymer cross-linking, and the ZnO nanoparticles were embedded in the hydrogel matrix. The hydrogel exhibited remarkable self-healing ability. The antioxidant and anti-inflammatory activities were enhanced owing to nano ZnO. Furthermore, it was hemocompatible and biodegradable. A controlled release drug profile for 5-fluorouracil from the hydrogel was accomplished in the colorectum. The exposure of the drug-loaded nanocomposite hydrogel demonstrated improved anticancer effects in HT-29 colon cancer cells. The findings of this study altogether put forth the successful biovalorization of Tagetes floral waste extract for colon cancer remedy.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Debasish Jena
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India.
- Department of Chemistry, Ravenshaw University, Cuttack, Odisha, 753003, India.
| |
Collapse
|
4
|
Daphedar AB, Majani SS, Kaddipudi PJ, Hujaratti RB, Kakkalmeli SB, Shati AA, Alfaifi MY, Elbehairi SEI, Shivamallu C, Jinendra U, Kollur SP. Evaluation of antioxidant and antibacterial activities of silver nanoparticles derived from Limonia acidissima L. fruit extract. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2024; 8:100399. [DOI: 10.1016/j.crgsc.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
5
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
6
|
Geng S, Hao P, Wang D, Zhong P, Tian F, Zhang R, Qiao J, Qiu X, Bao P. Zinc oxide nanoparticles have biphasic roles on Mycobacterium-induced inflammation by activating autophagy and ferroptosis mechanisms in infected macrophages. Microb Pathog 2023; 180:106132. [PMID: 37201638 DOI: 10.1016/j.micpath.2023.106132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
The ability of zinc oxide nanoparticles (ZnONPs) to induce bacteriostasis in Mycobacterium tuberculosis (M. tb) and their roles in regulating the pathogenic activities of immune cells have been reported previously, but the specific mechanisms underlying these regulatory functions remain unclear. This work aimed to determine how ZnONPs play the antibacterial role against M. tb. In vitro activity assays were employed to determine the minimum inhibitory concentrations (MICs) of the ZnONPs against various strains of M. tb (BCG, H37Rv, and clinical susceptible MDR and XDR strains). The ZnONPs had MICs of 0.5-2 mg/L against all tested isolates. In addition, changes in the expression levels of autophagy and ferroptosis-related markers in BCG-infected macrophages exposed to ZnONPs were measured. BCG-infected mice that were administered ZnONPs were used to determine the ZnONPs functions in vivo. ZnONPs decreased the number of bacteria engulfed by the macrophages in a dose-dependent manner, while different doses of ZnONPs also affected inflammation in different directions. Although ZnONPs enhanced the BCG-induced autophagy of macrophages in a dose-dependent manner, only low doses of ZnONPs activated autophagy mechanisms by increasing the levels of pro-inflammatory factors. The ZnONPs also enhanced BCG-induced ferroptosis of macrophages at high doses. Co-administration of a ferroptosis inhibitor with the ZnONPs improved the anti-Mycobacterium activity of ZnONPs in an in vivo mouse model and alleviated acute lung injury caused by ZnONPs. Based on the above findings, we conclude that ZnONPs may act as potential antibacterial agents in future animal and clinical studies.
Collapse
Affiliation(s)
- SiJia Geng
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - PengFei Hao
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - Di Wang
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Pengfei Zhong
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - Fangfang Tian
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Rui Zhang
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Juan Qiao
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China.
| | - Xiaochen Qiu
- Department of General Surgery, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100093, PR China.
| | - Pengtao Bao
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China.
| |
Collapse
|
7
|
Ouzakar S, Skali Senhaji N, Saidi MZ, El Hadri M, El Baaboua A, El Harsal A, Abrini J. Antibacterial and antifungal activity of zinc oxide nanoparticles produced by Phaeodactylum tricornutum culture supernatants and their potential application to extend the shelf life of sweet cherry (Prunus avium L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, Panda P, Rabaan AA, Alshehri AA, Othman B, Alshahrani MA, Alqahtani AS, AL Basha BA, Dhama K. An Insight into Advances in Developing Nanotechnology Based Therapeutics, Drug Delivery, Diagnostics and Vaccines: Multidimensional Applications in Tuberculosis Disease Management. Pharmaceuticals (Basel) 2023; 16:581. [PMID: 37111338 PMCID: PMC10145450 DOI: 10.3390/ph16040581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
| | | | - Ramzan Ahmed
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | | | - Paramjot Panda
- School of Biological Sciences, AIPH University, Bhubaneswar 754001, Odisha, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Baneen Ali AL Basha
- Laboratory Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
9
|
Gautam S, Qureshi KA, Jameel Pasha SB, Dhanasekaran S, Aspatwar A, Parkkila S, Alanazi S, Atiya A, Khan MMU, Venugopal D. Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030541. [PMID: 36978408 PMCID: PMC10044459 DOI: 10.3390/antibiotics12030541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis (MTB) and a significant health concern worldwide. The main threat to the elimination of TB is the development of resistance by MTB to the currently used antibiotics and more extended treatment methods, which is a massive burden on the health care system. As a result, there is an urgent need to identify new, effective therapeutic strategies with fewer adverse effects. The traditional medicines found in South Asia and Africa have a reservoir of medicinal plants and plant-based compounds that are considered another reliable option for human beings to treat various diseases. Abundant research is available for the biotherapeutic potential of naturally occurring compounds in various diseases but has been lagging in the area of TB. Plant-based compounds, or phytoproducts, are being investigated as potential anti-mycobacterial agents by reducing bacterial burden or modulating the immune system, thereby minimizing adverse effects. The efficacy of these phytochemicals has been evaluated through drug delivery using nanoformulations. This review aims to emphasize the value of anti-TB compounds derived from plants and provide a summary of current research on phytochemicals with potential anti-mycobacterial activity against MTB. This article aims to inform readers about the numerous potential herbal treatment options available for combatting TB.
Collapse
Affiliation(s)
- Silvi Gautam
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
- Correspondence: (K.A.Q.); (D.V.)
| | | | - Sugapriya Dhanasekaran
- Department of Molecular Analytics, Institute of Bioinformatics, SSE-SIMATS, Chennai 602105, India
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Samyah Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Divya Venugopal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, India
- Correspondence: (K.A.Q.); (D.V.)
| |
Collapse
|
10
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Fabrication of novel buckypaper metal oxide nano-catalysis glycerol carbonate/MWCNTs membrane for efficient removal of heavy metals. Heliyon 2022; 8:e12633. [PMID: 36643332 PMCID: PMC9834768 DOI: 10.1016/j.heliyon.2022.e12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
This study describes the fabrication of novel buckypaper membranes through the dispersion of multi-walled carbon nanotubes (MWCNTs) in the presence of surfactants metal oxide nano-catalysis Zinc oxide and magnesium oxide (ZnO and MgO) glycerol carbonate separately. Following vacuum filtration of the scattered solutions, self-supporting membranes known as buckypapers (BPs) were produced. The suggested membranes were employed for the efficient removal of heavy metals. The obtained data indicated that the incorporation of both glycerol carbonates prepared by two different nano metal oxides enhanced the permeability of MWCNTs membranes rejection efficiency. The characterization of the synthesized metal oxide nanoparticles, as well as the physicochemical and morphological properties of the membranes, were investigated. The rejection capabilities of membranes for the heavy metal ions were examined. Moreover, the suggested MWCNTs/ZnO nano-catalyst glycerol carbonate BP membrane displayed high rejection efficiency for heavy metals (Cd2+, Cu2+, Co2+, Ni2+, and Pb2+) than that prepared from the MgO nano-catalyst one.
Collapse
|
12
|
Farooq A, Khan UA, Ali H, Sathish M, Naqvi SAH, Iqbal S, Ali H, Mubeen I, Amir MB, Mosa WFA, Baazeem A, Moustafa M, Alrumman S, Shati A, Negm S. Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis gigantea (Giant Milkweed) and Its Biological Applications against Various Bacterial and Fungal Pathogens. Microorganisms 2022; 10:2195. [PMID: 36363787 PMCID: PMC9692802 DOI: 10.3390/microorganisms10112195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Nanotechnology is a burning field of scientific interest for researchers in current era. Diverse plant materials are considered as potential tool in green chemistry based technologies for the synthesis of metal nanoparticles (NPs) to cope with the hazardous effects of synthetic chemicals, leading to severe abiotic climate change issues in today's agriculture. This study aimed to determine the synthesis and characterization of metal-based nanoparticles using extracts of the selected plant Calotropis gigantea and to evaluate the enzyme-inhibition activities and antibacterial and antifungal activity of extracts of metal-based zinc nanoparticles using C. gigantea extracts. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). C. gigantea was examined for antimicrobial activity against clinical isolates of bacteria and fungi. The water, ethanolic, and acetone extracts of C. gigantea were studied for their antagonistic action against bacterial strains (E. coli, S. aureus, P. multocida, and B. subtilis) and selected fungal strains (A. paracistic, F. solani, A. niger, S. ferrugenium, and R. nigricans). In vitro antimicrobial activity was determined by the disc diffusion method, where C. gigantea wastested for AChE and BChE inhibitory activity using Ellman's methodology. The kinetic analysis was performed by the proverbial Berthelot reaction for urease inhibition. The results showed that out of all the extracts tested, ethanolic and water extracts possessed zinc nanoparticles. These extracts showed the maximum zone of inhibition against F. solani and P. multocida and the lowest against S. ferrugenium and B. subtilis. A potential source of AChE inhibitors is certainly provided by the abundance of plants in nature. Numerous phyto-constituents, such as AChE and BChE inhibitors, have been reported in this communication. Water extract was active and has the potential for in vitro AChE and BChE inhibitory activity. The urease inhibition with flower extracts of C. gigantea revealed zinc nanoparticles in water extracts that competitively inhibited urease enzymes. In the case of cholinesterase enzymes, it was inferred that the water extract and zinc nanoparticles have more potential for inhibition of BChE than AChE and urease inhibition. Furthermore, zinc nanoparticles with water extract are active inthe inhibition of the bacterial strains E. coli, S. aureus, and P. multocida and the fungal strains A. paracistic, F. solani, and A. niger.
Collapse
Affiliation(s)
- Ammara Farooq
- The Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Umair A. Khan
- The Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Haider Ali
- School of Bioscience, University of Birmingham, Birmingham B15 2TT, UK
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shehzad Iqbal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haider Ali
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Iqra Mubeen
- State Key Laboratory of Rice Biology, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Bilal Amir
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Alexandria University, Alexandria 21531, Egypt
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Sulaiman Alrumman
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Ali Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Branch in Zagazig, Zagazig 44511, Egypt
| |
Collapse
|
13
|
Khairnar B, Dabhane H, Dashpute R, Girase M, Nalawade P, Gaikwad V. Study of biogenic fabrication of Zinc oxide nanoparticles and their applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Alamdari S, Mirzaee O, Nasiri Jahroodi F, Tafreshi MJ, Ghamsari MS, Shik SS, Ara MHM, Lee KY, Park HH. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. SURFACES AND INTERFACES 2022; 34:102349. [PMID: 36160476 PMCID: PMC9490491 DOI: 10.1016/j.surfin.2022.102349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 05/16/2023]
Abstract
Following the global corona virus pandemic and environmental contamination caused by chemical plastic packaging, awareness of the need for environmentally friendly biofilms and antibacterial coatings is increasing. In this study, a biodegradable hybrid film, comprising of green-synthesized zinc oxide nanoparticles (ZnO NPs) with a chitosan (CS) matrix, was fabricated using a simple casting procedure. The ZnO NPs were synthesized using wild Mentha pulegium extract, and the synthesized NPs and films were characterized using different approaches. The structural, morphological, mechanical, antibacterial, and optical properties, as well as the hydrophilicity, of the prepared samples were investigated using various techniques. Gas chromatography-mass spectrometry measurements revealed the presence of phenolic compounds in the M. pulegium extract. In addition, a strong coordination connection between Zn2+ and the chitosan matrix was confirmed, which resulted in a good dispersion of ZnO in the chitosan film. The surface of the composite films was transparent, smooth, and uniform, and the flexible bio-based hybrid films exhibited significant antibacterial and antioxidant characteristics, strong visible emission in the 480 nm region, and UV-blocking properties. The ZnO/CS films displayed a potential to extend the shelf life of fruits by up to eight days when stored at 23°C, and also acted as an acceptable barrier against oxygen and water. The biodegradable ZnO/CS film is expected to keep fruit fresher than general chemical plastic films and be used for the packaging of active ingredients.
Collapse
Affiliation(s)
- Sanaz Alamdari
- Faculty of Physics, Semnan University, P.O. Box:35195‑363, Semnan, Iran
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Omid Mirzaee
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | | | | | - Morteza Sasani Ghamsari
- Photonics & Quantum Technologies Research School, Nuclear Science, and Technology Research Institute, Tehran, 11155-3486, Iran
| | | | - Mohammad Hossein Majles Ara
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Kyu-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
15
|
George BP, Rajendran NK, Houreld NN, Abrahamse H. Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. Molecules 2022; 27:molecules27206862. [PMID: 36296460 PMCID: PMC9611499 DOI: 10.3390/molecules27206862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rubus fairholmianus (RF) has widely been used to treat various ailments, including pain, diabetes, and cancer. Zinc oxide nanoparticles (ZnO NPs) have drawn attention in modern healthcare applications. Hence, we designed this study to synthesize zinc oxide (ZnO) nanoparticles using R. fairholmianus root extract to investigate its synergistic cytotoxic effect on MCF-7 cells and explore the possible cell death mechanism. ZnO NPs were synthesized via green synthesis using R. fairholmianus root extract, and the effect on MCF-7 cells was determined by looking at cellular morphology, proliferation, cytotoxicity, apoptosis, and reactive oxygen species (ROS). The results showed that cellular proliferation was reduced following treatment with R. fairholmianus capped zinc oxide nanoparticles (RFZnO NPs), while cytotoxicity and ROS were increased. There was also an increase in apoptosis as indicated by the significant increase in cytoplasmic cytochrome c and caspase 3/7 (markers of apoptosis), as well as increased levels of pro-apoptotic proteins (p53, Bax) and decreased levels of anti-apoptotic protein (Bcl-2). In conclusion, these results showed that RFZnO NPs induce apoptosis in breast cancer cells via a mitochondria-mediated caspase-dependent apoptotic pathway and suggest the use of acetone root extract of R. fairholmianus for the treatment of cancer-related ailments.
Collapse
|
16
|
Nhu VTT, Dat ND, Tam LM, Phuong NH. Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1108-1119. [PMID: 36262177 PMCID: PMC9551207 DOI: 10.3762/bjnano.13.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) were successfully synthesized by a green method using rosin and zinc chloride as salt precursors. The phase structure, morphology, and particle size of ZnO were determined by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The fabricated ZnO NP samples are crystalline with a grain size of 30-100 nm. The ZnO NPs were used as catalysts for the photodegradation of methylene blue (MB) and methyl orange (MO) under visible and UV light. The results indicate that the prepared ZnO material excellently removed MB and MO (c initial = 10 mg/L) with efficiencies of 100% and 82.78%, respectively, after 210 min under UV radiation with a ZnO NP dose of 2 g/L. The photocatalyst activity of the synthesized material was also tested under visible light radiation with the same conditions; however, it achieved lower efficiencies. In addition, ZnO NPs were also tested regarding their antibacterial activity, and the results showed that the prepared ZnO samples had the highest (i.e., 100%) antibacterial efficiency against E. coli.
Collapse
Affiliation(s)
- Vo Thi Thu Nhu
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le-Minh Tam
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Hoang Phuong
- HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Haque S, Faidah H, Ashgar SS, Abujamel TS, Mokhtar JA, Almuhayawi MS, Harakeh S, Singh R, Srivastava N, Gupta VK. Green Synthesis of Zn(OH) 2/ZnO-Based Bionanocomposite using Pomegranate Peels and Its Application in the Degradation of Bacterial Biofilm. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3458. [PMID: 36234586 PMCID: PMC9565895 DOI: 10.3390/nano12193458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ability and potency of bacterial species to form biofilms, which show antibiotic resistance thereby avoiding antibiotic surfaces, is a major cause of prolonged infections. Various advanced approaches have been employed to prevent or damage bacterial biofilms, formed by a variety of bacterial strains, to help prevent the associated infectious disease. In this context, zinc-based nanostructures have been recognized as a potential antibiotic agent against a broad spectrum of bacterial communities. As a result, a sustainable and green synthesis method was adapted in the present study to synthesize a Zn(OH)2/ZnO-based bionanocomposite, in which aqueous extracts of waste pomegranate peels (Punica granatum) were employed as a natural bioreducing agent to prepare the bionanocomposite at room temperature. Furthermore, FT-IR, XRD, DLS, UV-Visible, PL spectroscopy, FE-SEM, and TEM were used to characterize the green route synthesized a Zn(OH)2/ZnO bionanocomposite. The average crystallite size was determined using the Scherrer relation to be 38 nm, and the DLS results indicated that the Zn(OH)2/ZnO bionanocomposite had a hydrodynamic size of 170 nm. On the other hand, optical properties investigated through UV-Vis and PL spectroscopy explored the energy bandgap between 2.80 and 4.46 eV, corresponding to the three absorption edges, and it covered the blue spectrum when the sample was excited at 370 nm. Furthermore, the impact of this green route synthesized a Zn(OH)2/ZnO bionanocomposite on the biofilm degradation efficiency of the pathogenic bacterial strain Bacillus subtilis PF_1 using the Congored method was investigated. The Congored assay clearly explored the biofilm degradation efficiency in the presence of a 50 mg/mL and 75 mg/mL concentration of the Zn(OH)2/ZnO bionanocomposite against the bacterial strain Bacillus subtilis PF_1 grown for 24 h. This study can be further applied to the preparation of bionanocomposites following a low-cost green synthesis approach, and thus prepared nanostructures can be exploited as advanced antimicrobial agents, which could be of great interest to prevent various infectious diseases.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Sami S. Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jawahir A. Mokhtar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Saad Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| |
Collapse
|
18
|
Bio-fabricated zinc oxide and cry protein nanocomposites: Synthesis, characterization, potentiality against Zika, malaria and West Nile virus vector's larvae and their impact on non-target organisms. Int J Biol Macromol 2022; 224:699-712. [DOI: 10.1016/j.ijbiomac.2022.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
19
|
Sakthivel S, Dhanapal AR, Paulraj LP, Gurusamy A, Venkidasamy B, Thiruvengadam M, Govindasamy R, Shariati MA, Bouyahya A, Zengin G, Hasan MM, Burkov P. Antibacterial activity of seed aqueous extract of Citrus limon (L.) mediated synthesis ZnO NPs: An impact on Zebrafish ( Danio rerio) caudal fin development. Heliyon 2022; 8:e10406. [PMID: 36119882 PMCID: PMC9475272 DOI: 10.1016/j.heliyon.2022.e10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Among the different metal oxide nanoparticles, zinc oxide nanoparticles have gained significant importance due to their antibacterial properties against clinically pathogenic bacteria during the organal development. In the present study, biogenic zinc oxide nanoparticles were synthesized using seed extract of Citrus limon by a simple, cost-effective, and green chemistry approach. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Dynamic Light Scattering, and Scanning Electron Microscopy. Next, the antimicrobial activity of ZnO NPs was tested against clinically pathogenic bacteria, i.e., Pseudomonas fluorescens, Escherichia coli, Enterobacter aerogenes, and Bacillus subtilis. Followed by, ZnO NPs were evaluated for the development of caudal fin in Zebrafish. The UV-Vis spectram result showed a band at 380 nm and FTIR results confirmed the ZnO NPs. The average crystallite size of the ZnO NPs was 52.65 ± 0.5 nm by the Debye Scherrer equation and SEM showed spherical-shaped particles. A zone of inhibition around ZnO NPs applied to P. fluorescens indicates sensitive to ZnO NPs followed by B. subtilis. Among the four different bacterial pathogens, E. aerogenes was the most susceptible compared to the other three pathogens. The calculated sub-lethal concentration of ZnO NPs at 96 h was 153.8 mg/L with a 95% confidence limit ranging from 70.62 to 214.18 mg/L, which was used with partially amputated zebrafish caudal fin growth. A significant (p < 0.5) development (95%) in the amputated caudal fin was detected at 12 days post-amputation. Low concentrated ZnO NPs can reduce developmental malformation. Collectively, suggested results strongly proved that lemon seed-mediated synthesized ZnO NPs had a good pathogenic barrier for bacterial infection during the external organal development for the first time.
Collapse
Affiliation(s)
- Selvakumar Sakthivel
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India
| | - Anand Raj Dhanapal
- Centre for Plant Tissue Culture and Central Instrumentation Laboratory, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Lilly Pushpa Paulraj
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India
| | - Annadurai Gurusamy
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Seoul, 05029, South Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Mohammad Ali Shariati
- K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, 109004, Russian Federation
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Pavel Burkov
- Institute of Veterinary Medicine, South Ural State Agrarian University, 13 Gagarin St., Troitsk, Chelyabinsk Region, 457100, Russian Federation
| |
Collapse
|
20
|
Anticancer, anti-diabetic, antimicrobial activity of zinc oxide nanoparticles: A comparative analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Jarvin M, Kumar SA, Rosaline DR, Foletto EL, Dotto GL, Inbanathan SSR. Remarkable sunlight-driven photocatalytic performance of Ag-doped ZnO nanoparticles prepared by green synthesis for degradation of emerging pollutants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57330-57344. [PMID: 35349064 DOI: 10.1007/s11356-022-19796-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In this work, Ag-doped ZnO nanoparticles (NPs) were synthesized by a simple green method using a toxic agent-free route for photocatalytic purposes, toward methylene blue (MB) removal in water under sunlight irradiation. The effects of operating parameters, such as catalyst dosage, dye concentration, and pH, on the MB removal efficiency, were investigated. The presence of Ag on the ZnO structure resulted in superior catalytic activity compared to the pure ZnO sample. High removal efficiency for MB, corresponding to 95%, was obtained in 30 min of reaction time only, using Ag-doped ZnO NPs. This result can be related to its smaller bandgap energy (1.92 eV) when compared to the ZnO sample (2.85 eV). The material presented a satisfactory level of reusability after three consecutive cycles. In addition, a reaction mechanism for MB photodegradation onto Ag-doped ZnO NPs under sunlight irradiation was suggested. Overall, the catalyst prepared via the green route in this work exhibited excellent photocatalytic activity under sunlight for MB degradation in an aqueous solution.
Collapse
Affiliation(s)
- Mariyadhas Jarvin
- Post Graduate and Research Department of Physics, The American College, Madurai, 625002, Tamil Nadu, India
| | - Sundararajan Ashok Kumar
- Post Graduate and Research Department of Physics, The American College, Madurai, 625002, Tamil Nadu, India
| | - Daniel Rani Rosaline
- Post Graduate and Research Department of Chemistry, Lady Doak College, Madurai, 625002, Tamil Nadu, India
| | - Edson Luiz Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | | |
Collapse
|
22
|
Álvarez-Chimal R, García-Pérez VI, Álvarez-Pérez MA, Tavera-Hernández R, Reyes-Carmona L, Martínez-Hernández M, Arenas-Alatorre JÁ. Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
24
|
Eco-friendly synthesis of zinc oxide nanoparticles using Rivina humilis leaf extract and their biomedical applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Sharma A, Nagraik R, Sharma S, Sharma G, Pandey S, Azizov S, Chauhan PK, Kumar D. Green synthesis of ZnO nanoparticles using Ficus palmata: Antioxidant, antibacterial and antidiabetic studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
26
|
Evaluation of antimycobacterial, antioxidant, and anticancer activities of CuO nanoparticles through cobalt doping. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02156-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Biswas A, Changmai B, Vanlalveni C, Lalfakzuala R, Nath S, Lalthazuala Rokhum S. Biosynthesis of triangular-shape ZnO nanoparticles using Tecoma stans and its antimicrobial activity. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1999271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aayushi Biswas
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, India
| | - Bishwajit Changmai
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, India
| | - C. Vanlalveni
- Department of Botany, Mizoram University, Aizawl, Mizoram, India
| | - R. Lalfakzuala
- Department of Botany, Mizoram University, Aizawl, Mizoram, India
| | - Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, India
- Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Abomuti MA, Danish EY, Firoz A, Hasan N, Malik MA. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. BIOLOGY 2021; 10:1075. [PMID: 34827068 PMCID: PMC8614830 DOI: 10.3390/biology10111075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
The facile bio-fabrication of zinc oxide (ZnO) nanoparticles (NPs) is described in this study using an aqueous leaf extract of Salvia officinalis L. as an efficient stabilizing/capping agent. Biosynthesis of nanomaterials using phytochemicals present in the plants has received great attention and is gaining significant importance as a possible alternative to the conventional chemical methods. The properties of the bio-fabricated ZnONPs were examined by different techniques, such as UV-visible spectroscopy, X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric/differential scanning calorimetry analysis (TGA/DTG). The photocatalytic activity of ZnONPs was investigated against methyl orange (MO) under UV light irradiation. Under optimum experimental conditions, ZnONPs exhibited 92.47% degradation of MO. Furthermore, the antifungal activity of bio-fabricated ZnONPs was determined against different clinical Candida albicans isolates following standard protocols of broth microdilution and disc diffusion assay. The susceptibility assay revealed that ZnONPs inhibit the growth of all the tested fungal isolates at varying levels with MIC values ranging from 7.81 to 1.95 µg/mL. Insight mechanisms of antifungal action appeared to be originated via inhibition of ergosterol biosynthesis and the disruption of membrane integrity. Thus, it was postulated that bio-fabricated ZnONPs have sustainable applications in developing novel antifungal agents with multiple drug targets. In addition, ZnONPs show efficient photocatalytic efficiency without any significant catalytic loss after the catalyst was recycled and reused multiple times.
Collapse
Affiliation(s)
- May Abdullah Abomuti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ekram Y. Danish
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box. 2097, Jazan, Saudi Arabia;
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| |
Collapse
|
29
|
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021; 13:1662. [PMID: 34683954 PMCID: PMC8540056 DOI: 10.3390/pharmaceutics13101662] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Hittanahallikoppal G. Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Natarajamurthy Shilpa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Sudarshana B. Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Nataraju Angaswamy
- Department of Biochemistry, Karnataka State Open University, Mukthagangotri, Mysuru 570006, Karnataka, India;
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| |
Collapse
|
30
|
Dhiman S, Varma A, Goel A. Biofabricated nanoscale ZnO and their prospective in disease suppression and crop growth of Brassica species: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Nanocarriers-based immobilization of enzymes for industrial application. 3 Biotech 2021; 11:427. [PMID: 34603907 DOI: 10.1007/s13205-021-02953-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
Nanocarriers-based immobilization strategies are a novel concept in the enhancement of enzyme stability, shelf life and efficiency. A wide range of natural and artificial supports have been assessed for their efficacy in enzyme immobilization. Nanomaterials epitomize unique and fascinating matrices for enzyme immobilization. These structures include carbon nanotubes, superparamagnetic nanoparticles and nanofibers. These nano-based supports offer stable attachment of enzymes, thus ensuring their reusability in diverse industrial applications. This review attempts to encompass recent developments in the critical role played by nanotechnology towards the improvement of the practical applicability of microbial enzymes. Nanoparticles are increasingly being used in combination with various polymers to facilitate enzyme immobilization. These endeavors are proving to be conducive for enzyme-catalyzed industrial operations. In recent years the diversity of nanomaterials has grown tremendously, thus offering endless opportunities in the form of novel combinations for various biotransformation experimentations. These nanocarriers are advantageous for both free enzymes and whole-cell immobilization, thus demonstrating to be relatively effective in several fermentation procedures.
Collapse
|
32
|
Behzad F, Sefidgar E, Samadi A, Lin W, Pouladi I, Pi J. An overview of zinc oxide nanoparticles produced by plant extracts for anti-tuberculosis treatments. Curr Med Chem 2021; 29:86-98. [PMID: 34126883 DOI: 10.2174/0929867328666210614122109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (MTB), is a fatal infectious disease that kills millions of lives worldwide. The emergence of drug-resistant and multidrug-resistant cases is regarded as one of the most challenging threats to TB control due to the low cure rate. Therefore, TB and drug-resistant TB epidemics urge us to explore more effective therapies. The increasing knowledge of nanotechnology has extended to some nanomedicines for disease treatment in the clinic, which also provides novel possibilities for nano-based medicines for TB treatment. Zinc oxide nanoparticles (ZnO NPs) have gained increasing attention for anti-bacterial uses based on their strong ability to induce reactive oxidative species (ROS) and release bactericidal Zinc ions (Zn2+), which are expected to act as novel strategies for TB and drug-resistant TB treatment. Some active herbal medicines from plant extracts have been widely reported to show attractive anti-bacterial activity for infectious treatment, including TB. Here, we summarize the synthesis of ZnO NPs using plant extracts (green synthesized ZnO NPs) and further discuss their potentials for anti-TB treatments. This is the first review article discussing the anti-TB activity of ZnO NPs produced using plant extracts, which might contribute to the further applications of green synthesized ZnO NPs for anti-TB and drug-resistant TB treatment.
Collapse
Affiliation(s)
- Farahnaz Behzad
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Sefidgar
- Department of Biological Sciences٫ Institute for Advanced Studies in Basic Sciences٫ Zanjan, Iran
| | - Azam Samadi
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Wensen Lin
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Iman Pouladi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
33
|
Prasad AR, Williams L, Garvasis J, Shamsheera K, Basheer SM, Kuruvilla M, Joseph A. Applications of phytogenic ZnO nanoparticles: A review on recent advancements. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
da Silva PB, Araújo VHS, Fonseca-Santos B, Solcia MC, Ribeiro CM, da Silva IC, Alves RC, Pironi AM, Silva ACL, Victorelli FD, Fernandes MA, Ferreira PS, da Silva GH, Pavan FR, Chorilli M. Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Curr Med Chem 2021; 28:1906-1956. [PMID: 32400324 DOI: 10.2174/0929867327666200513080719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.
Collapse
Affiliation(s)
- Patricia Bento da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | - Bruno Fonseca-Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Mariana Cristina Solcia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Renata Carolina Alves
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Andressa Maria Pironi
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Mariza Aires Fernandes
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Paula Scanavez Ferreira
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Gilmar Hanck da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Marlus Chorilli
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| |
Collapse
|
35
|
Gonçalves RA, Toledo RP, Joshi N, Berengue OM. Green Synthesis and Applications of ZnO and TiO 2 Nanostructures. Molecules 2021; 26:2236. [PMID: 33924397 PMCID: PMC8068979 DOI: 10.3390/molecules26082236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, oxide nanostructures have been continuously evaluated and used in many technological applications. The advancement of the controlled synthesis approach to design desired morphology is a fundamental key to the discipline of material science and nanotechnology. These nanostructures can be prepared via different physical and chemical methods; however, a green and ecofriendly synthesis approach is a promising way to produce these nanostructures with desired properties with less risk of hazardous chemicals. In this regard, ZnO and TiO2 nanostructures are prominent candidates for various applications. Moreover, they are more efficient, non-toxic, and cost-effective. This review mainly focuses on the recent state-of-the-art advancements in the green synthesis approach for ZnO and TiO2 nanostructures and their applications. The first section summarizes the green synthesis approach to synthesize ZnO and TiO2 nanostructures via different routes such as solvothermal, hydrothermal, co-precipitation, and sol-gel using biological systems that are based on the principles of green chemistry. The second section demonstrates the application of ZnO and TiO2 nanostructures. The review also discusses the problems and future perspectives of green synthesis methods and the related issues posed and overlooked by the scientific community on the green approach to nanostructure oxides.
Collapse
Affiliation(s)
- Rosana A. Gonçalves
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| | - Rosimara P. Toledo
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| | - Nirav Joshi
- São Carlos Institute of Physics, University of São Paulo, 369, São Carlos, Sao Paulo 13560-970, Brazil
| | - Olivia M. Berengue
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| |
Collapse
|
36
|
Bhatti MA, Tahira A, Chandio AD, Almani KF, Bhatti AL, Waryani B, Nafady A, Ibupoto ZH. Enzymes and phytochemicals from neem extract robustly tuned the photocatalytic activity of ZnO for the degradation of malachite green (MG) in aqueous media. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04391-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Multifunctional applications of Nickel oxide (NiO) nanoparticles synthesized by facile green combustion method using Limonia acidissima natural fruit juice. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Lin D, Li W, Feng X, Chen Y, Tao X, Luo Y, Xia X, Huang B, Qian Q, Chen Q. Boosting low temperature propane oxidation on bamboo-mediated biosynthesis of LaCoO3 via the optimized chelating effect. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Alzahabi KH, Usmani O, Georgiou TK, Ryan MP, Robertson BD, Tetley TD, Porter AE. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci 2020; 4:581-600. [PMID: 33315067 PMCID: PMC7752053 DOI: 10.1042/etls20190154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023]
Abstract
Tuberculosis (TB) is caused by a bacterial infection that affects a number of human organs, primarily the lungs, but also the liver, spleen, and spine, causing key symptoms of fever, fatigue, and persistent cough, and if not treated properly, can be fatal. Every year, 10 million individuals become ill with active TB resulting with a mortality approximating 1.5 million. Current treatment guidelines recommend oral administration of a combination of first-line anti-TB drugs for at least 6 months. While efficacious under optimum conditions, 'Directly Observed Therapy Short-course' (DOTS) is not without problems. The long treatment time and poor pharmacokinetics, alongside drug side effects lead to poor patient compliance and has accelerated the emergence of multi-drug resistant (MDR) organisms. All this, combined with the limited number of newly discovered TB drugs to treat MDR-TB and shorten standard therapy time, has highlighted the need for new targeted drug delivery systems. In this respect, there has been recent focus on micro- and nano-particle technologies to prepare organic or/and metal particles loaded with TB drugs to enhance their efficacy by targeted delivery via the inhaled route. In this review, we provide a brief overview of the current epidemiology of TB, and risk factors for progression of latent stage tuberculosis (LTBI) to the active TB. We identify current TB treatment regimens, newly discovered TB drugs, and identify studies that have used micro- or nano-particles technologies to design a reliable inhalation drug delivery system to treat TB more effectively.
Collapse
Affiliation(s)
- Khaled H Alzahabi
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Omar Usmani
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Theoni K Georgiou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, U.K
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, U.K
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, U.K
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, U.K
| |
Collapse
|
40
|
Biofabrication of Zinc Oxide Nanoparticles from Two Different Zinc Sources and Their Antimicrobial Activity. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
|
42
|
Abstract
In the current era of globalization, synthetic dyes are one of the key factors of water pollution. Photocatalysis constitutes a promising technology for the treatment of wastewater, especially to those containing hard-to-remove organic compounds. Zinc oxide nanoparticles (ZnONPs) play a vital role as a photocatalyst material. This research highlights the synthesized ZnONPs with roselle flower and oil palm leaf extract. The extracts and sodium hydroxide (NaOH) act as reducing agents during the synthesis process. Synthesis without the addition of plant extract is used as blank control for the experiment. Structural and optical studies of the three variants of ZnONPs were performed. High purity of ZnONPs with element Zn and O was obtained. The size of the three variants of ZnONPs was from 10–15 nm and found in agglomerated spherical shape. Large band gap, 3.2 eV was obtained by UV-Vis and high thermal stability was proven by TGA. Oxygen vacancies that assist in the degradation phenomenon were found in ZnONPs. Five percent of ZnONPs with the presence of 10 W UV light could effectively degrade 10 ppm MO in 5 h and MB in 3 h. Besides, high antioxidant properties and low toxicity demonstrated the ability of ZnONPs to be used as photocatalysts. In conclusion, ZnONPs can be further developed for pharmaceutical and industrial use.
Collapse
|
43
|
The potential control strategies of membrane fouling and performance in membrane photocatalytic reactor (MPR) for treating palm oil mill secondary effluent (POMSE). Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Simões MF, Ottoni CA, Antunes A. Mycogenic Metal Nanoparticles for the Treatment of Mycobacterioses. Antibiotics (Basel) 2020; 9:E569. [PMID: 32887358 PMCID: PMC7559022 DOI: 10.3390/antibiotics9090569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Mycobacterial infections are a resurgent and increasingly relevant problem. Within these, tuberculosis (TB) is particularly worrying as it is one of the top ten causes of death in the world and is the infectious disease that causes the highest number of deaths. A further concern is the on-going emergence of antimicrobial resistance, which seriously limits treatment. The COVID-19 pandemic has worsened current circumstances and future infections will be more incident. It is urgent to plan, draw solutions, and act to mitigate these issues, namely by exploring new approaches. The aims of this review are to showcase the extensive research and application of silver nanoparticles (AgNPs) and other metal nanoparticles (MNPs) as antimicrobial agents. We highlight the advantages of mycogenic synthesis, and report on their underexplored potential as agents in the fight against all mycobacterioses (non-tuberculous mycobacterial infections as well as TB). We propose further exploration of this field.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| |
Collapse
|
45
|
Vijayakumar S, Nilavukkarasi M, Sakthivel B. Bio-synthesized zinc oxide nanoparticles for anti-tuberculosis agent: Scientifically unexplored. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Yaghubi Kalurazi T, Jafari A. Evaluation of magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance Mycobacterium tuberculosis. Indian J Tuberc 2020; 68:195-200. [PMID: 33845951 DOI: 10.1016/j.ijtb.2020.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The current study has evaluated the MICs and MBCs of ZnONPs, MgONPs, and MgONPs-ZnONPs against H37Rv Mtb and MDR-Mtb. METHODS Mixture, magnesium oxide nanoparticles (NPs) and zinc oxide (MgONPs-ZnONPs) were prepared. The microplate alamar blue (MABA) assay and the proportion method were used to evaluate of anti-tubercular activity against MDR-MTB. MTT test was done to MgONPs-ZnONPs against Vero and HepG2 cell lines. RESULTS The MIC of MgONPs and ZnONPs were 0.195 and 0.468 μg mL-1 against 104 of H37Rv Mtb. As well, 0.166 μg mL-1 of MgONPs-ZnONPs was able to inhibit 10-4 H37Rv Mtb. The MIC of MgONPs against 104 concentrations of MDR-Mtb was 12.5 μg mL-1. The MIC of MgONPs/ZnONPs against 104 concentrations of MDR-Mtb reached to 0.664 μg mL-1. The MBC value of ZnONPs increased to 1.875 μg mL-1 against 10-4 concentrations of MDR-Mtb. Testing showed that the MBCs of MgONPs/ZnONPs reached to 1.328 μg mL-1 against 104 concentrations of MDR-Mtb. The IC50 against MDR-TB was 0.779 μg mL-1 for ZnONPs and 0.883 μg mL-1 for MgONPs-ZnONPs. The MgONPs-ZnONPs was not toxic to Vero cell lines however ZnONPs could inhibit the Vero and HepG2 cell lines. CONCLUSION We found that ZnONPs and mixture MgONPs-ZnONPs not only have higher bactericide behavior but might have also synergistic effects against MDR-TB.
Collapse
Affiliation(s)
- Tofigh Yaghubi Kalurazi
- Department of Health, Nutrition & Infectious Diseases, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Jafari
- Inflammatory Lung Disease Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
47
|
Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103620] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plants are one of the best sources to obtain a variety of natural surfactants in the field of green synthesizing material. Sambucus ebulus, which has unique natural properties, has been considered a promising material in traditional Asian medicine. In this context, zinc oxide nanoparticles (ZnO NPs) were prepared using S. ebulus leaf extract, and their physicochemical properties were investigated. X-ray diffraction (XRD) results revealed that the prepared ZnO NPs are highly crystalline, having a wurtzite crystal structure. The average crystallite size of prepared NPs was around 17 nm. Green synthesized NPs showed excellent absorption in the UV region as well as strong yellow-orange emission at room temperature. Prepared nanoparticles exhibited good antibacterial activity against various organisms and a passable photocatalytic degradation of methylene blue dye pollutants. The obtained results demonstrated that the biosynthesized ZnO NPs reveal interesting characteristics for various potential applications in the future.
Collapse
|
48
|
H. Attia G, S. Alyami H, A.A. Orabi M, H. Gaara A, A. El Raey M. Antimicrobial Activity of Silver and Zinc Nanoparticles Mediated by Eggplant Green Calyx. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.236.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Ul Haq Y, Murtaza I, Mazhar S, Ahmad N, Qarni AA, Ul Haq Z, Khan SA, Iqbal M. Investigation of improved dielectric and thermal properties of ternary nanocomposite PMMA/MXene/ZnO fabricated by in‐situ bulk polymerization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yasir Ul Haq
- Spintronics Laboratory, Department of PhysicsInternational Islamic University Islamabad Pakistan
| | - Imran Murtaza
- Spintronics Laboratory, Department of PhysicsInternational Islamic University Islamabad Pakistan
| | - Sadaf Mazhar
- Institute of Chemical Sciences, University of Peshawar Peshawar Pakistan
| | - Naeem Ahmad
- Spintronics Laboratory, Department of PhysicsInternational Islamic University Islamabad Pakistan
| | - Awais A. Qarni
- Department of ChemistryChemnitz Technical University Chemnitz Germany
| | - Zeeshan Ul Haq
- Department of PhysicsUniversity of Peshawar Peshawar Pakistan
| | - Shahid A. Khan
- Institute of Chemical Sciences, University of Peshawar Peshawar Pakistan
| | - Mahmood Iqbal
- Pakistan Council of Scientific and Industrial Research Laboratories Complex Peshawar Pakistan
| |
Collapse
|
50
|
Ansari MA, Murali M, Prasad D, Alzohairy MA, Almatroudi A, Alomary MN, Udayashankar AC, Singh SB, Asiri SMM, Ashwini BS, Gowtham HG, Kalegowda N, Amruthesh KN, Lakshmeesha TR, Niranjana SR. Cinnamomum verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and Their Antibacterial Potentiality. Biomolecules 2020; 10:E336. [PMID: 32092985 PMCID: PMC7072335 DOI: 10.3390/biom10020336] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/20/2023] Open
Abstract
Cinnamomum verum plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.25-3.28 eV. Fourier transmission infrared spectroscopy shows the presence of Zn-O bond within the wave number of 500 cm-1. SEM images show the specific agglomeration of particles which was also confirmed by TEM studies. The green synthesized ZnO-NPs inhibited the growth of Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 125 µg mL-1 and 62.5 µg mL-1, respectively. The results indicate the prepared ZnO-NPs can be used as a potential antimicrobial agent against harmful pathogens.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (H.G.G.); (N.K.); (K.N.A.)
| | - Daruka Prasad
- Department of Physics, B.M.S. Institute of Technology, Bangalore 560 064, India;
| | - Mohammad A. Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (M.A.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (M.A.A.); (A.A.)
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia;
| | | | - Sudarshana Brijesh Singh
- Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru- 570 006, Karnataka, India; (A.C.U.); (S.B.S.)
| | - Sarah Mousa Maadi Asiri
- Department of Biophysics, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | | | - Hittanahallikoppal Gajendramurthy Gowtham
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (H.G.G.); (N.K.); (K.N.A.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (H.G.G.); (N.K.); (K.N.A.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (H.G.G.); (N.K.); (K.N.A.)
| | - Thimappa Ramachandrappa Lakshmeesha
- Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru- 570 006, Karnataka, India; (A.C.U.); (S.B.S.)
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | | |
Collapse
|