1
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
2
|
Asteinza Castro IM, Morga AA, Johnson DS. Photobiomodulation therapy combined with static magnetic field in tibial fracture healing of a dog: A case report. Vet Med Sci 2023; 9:591-599. [PMID: 36639946 PMCID: PMC10029867 DOI: 10.1002/vms3.1071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A 10-week-old male, Xoloitzcuintle (Mexican hairless dog), weighing 8.9 kg was presented after its owner accidentally stepped on its paw. The dog presented with acute pain, inflammation and grade IV lameness in the right hind paw. A complete transverse fracture in the right proximal tibia was diagnosed from radiography. The dog underwent a minimally invasive plate osteosynthesis (MIPO) procedure. After surgery, photobiomodulation therapy combined with static magnetic field (PBMT-sMF) was applied twice daily for 21 days. A multi-wavelength PBMT-sMF device was applied at three sites using different frequencies: proximal and distal of the fracture zone (3000 Hz, 40.35 J per site, and 300 s per site) and in the fracture zone (250 Hz, 39.11 J and 300 s per site). Follow up radiographies were performed after surgery and treatment with PBMT-sMF. Eighteen days post-surgery the healing process of bone was advanced. Fifty-five days post-surgery the callus was enlarged. In addition, radiographic union and clinical union was evidenced by closure of the fracture gap. This case report has reported the use of PBMT-sMF in order to accelerate and improve bone healing following a MIPO procedure on a complete transverse fracture in the proximal tibia of a puppy.
Collapse
Affiliation(s)
| | - Armando Amador Morga
- Division of Ortophedic Care, Animal Home Veterinary Hospital, Mexico City, Mexico
| | | |
Collapse
|
3
|
Photobiomodulation stimulates surrounding bone formation and increases stability of titanium alloy miniscrews in ovariectomized rats. Lasers Med Sci 2022; 37:2917-2924. [PMID: 35420398 DOI: 10.1007/s10103-022-03560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The number of older individuals (> 60 years) treated in orthodontic dental practice is constantly growing, and osteoporosis is a common disease within this age range. Orthodontic treatment for this group tends to be challenging, often requiring the use of mini-implants. Mini-implants are important accessories in orthodontic treatment that provide solutions to complex cases. Despite the high level of success, these devices are prone to failure if insufficient bone stability is achieved. This study aimed to evaluate the effects of photobiomodulation on bone neoformation around mini-implants using fluorescence analysis in ovariectomized rats. A total of 12 female rats (Wistar) were ovariectomized and divided into three groups: two groups of low-level laser therapy irradiation in two different protocols, as follows: in the PBM1 group, applications were performed using 2 J, for 20 s each for 48 h, 6 irradiations in total, and in the PBM2 group, a single application of 4 J was performed for 40 s, and the third group represented the control group, and no laser therapy was applied. Each rat received two mini-implants placed immediately behind the upper incisors, and 0 g of force was applied using a NiTi spring. All rats received two bone markers, tetracycline (days 0-4) and alizarin (days 7-10), for 5 days each. Both markers were bound to calcium, allowing visualization of bone neoformation through fluorescence microscopy. After 12 days, euthanasia was performed; the results revealed that both irradiated groups showed significantly greater bone neoformation compared to the control group (p < 0.05). Mini-implant stability was measured in all animals using the Periotest device on day 0 and on the day of euthanasia. A significant increase in stability was observed in the group that received more laser application (p < 0.05). Photobiomodulation had a positive effect on bone neoformation around mini-implants in ovariectomized rats, with an increase in stability when more irradiation was performed.
Collapse
|
4
|
Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation-A Review. BIOLOGY 2020; 9:biology9110409. [PMID: 33238412 PMCID: PMC7700402 DOI: 10.3390/biology9110409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Dental implants are becoming an accepted tool, and thousands of implants are placed every year by specialists and general practitioners. However, more than 10% of bone surgeries and related procedures can show healing complications as a consequence of infections, tissue damage, or inadequate blood supply. In particular, a deficient blood supply impacts on the optimal healing process because of altered oxygen delivery to cells in the wound and a decrease in their energy supply. Researchers showed how red and infrared light affects key cellular pathways by interacting with specific photoacceptors located within the cell, particularly in mitochondria. Low-level laser therapy or photobiomodulation (PBM), as the recent medical subject heading defines it, is based on a light–cell interaction, which modifies cell metabolism by increasing oxygen consumption and ATP production through mitochondria. Although not all aspects of this interconnection are completely described, many in vitro and in vivo studies showed the benefit of PBM in wound defect management. For instance, treatment of bone with PBM results in a greater amount of new-formed osteoblasts and matrix, an increase in collagen synthesis, and microvascular reestablishment. In our review, we highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM for socket preservation is discussed. Abstract Bone defects are the main reason for aesthetic and functional disability, which negatively affect patient’s quality of life. Particularly, after tooth extraction, the bone of the alveolar process resorbs, limiting the optimal prosthetic implant placement. One of the major pathophysiological events in slowly- or non-healing tissues is a blood supply deficiency, followed by a significant decrease in cellular energy amount. The literature shows that photons at the red and infrared wavelengths can interact with specific photoacceptors located within the cell. Through this mechanism, photobiomodulation (PBM) can modify cellular metabolism, by increasing mitochondrial ATP production. Here, we present a review of the literature on the effect of PBM on bone healing, for the management of socket preservation. A search strategy was developed in line with the PRISMA statement. The PubMed and Scholar electronic databases were consulted to search for in vivo studies, with restrictions on the year (<50 years-old), language (English), bone socket preservation, and PBM. Following the search strategy, we identified 269 records, which became 14, after duplicates were removed and titles, abstract and inclusion-, exclusion-criteria were screened. Additional articles identified were 3. Therefore, 17 articles were included in the synthesis. We highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM is discussed.
Collapse
|
5
|
Surazakov A, Klassen A, Gizinger O. The bioenergetics of COVID-19 immunopathology and the therapeutic potential of biophysical radiances. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112083. [PMID: 33221625 PMCID: PMC7659653 DOI: 10.1016/j.jphotobiol.2020.112083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
In developing an effective clinical tool against COVID-19, we need to consider why SARS-CoV-2 infections develop along remarkably different trajectories: from completely asymptomatic to a severe course of disease. In this paper we hypothesize that the progressive exhaustion and loss of lymphocytes associated with severe stages of COVID-19 result from an intracellular energy deficit in an organism which has already been depleted by preexisting chronic diseases, acute psychological stress and the aging process. A bioenergetics view of COVID-19 immunopathology opens a new biophysical opportunity to enhance impaired immune function via proposed pathways of photomagnetic catalysis of ATP synthesis, regenerative photobiomodulation and the ultrasonic acceleration of cell restructuring. Moreover, we suggest that a coherent application of multiple biophysical radiances (coMra) may synergistically enhance energy-matter-information kinetics of basal self-regeneration of cells and thus improve immune function and accelerate recovery. Bioenergetics offers a unifying framework of COVID-19 immunopathology. Functional reserve of immune cells depends on the kinetics of basal housekeeping. Various biophysical stimuli enhance the kinetics of cellular self-regeneration. A coherent application of multiple radiances has potential to treat COVID-19.
Collapse
Affiliation(s)
- Arzhan Surazakov
- Radiant Life Technologies, Ltd., 10 Chalkokondyli Street, Amaral 7, Office 101 Lykavitos, P.C.1071 Nicosia, Cyprus.
| | - Anna Klassen
- No affiliation, Valdayskaya 73, pos. Belmesevo, Barnaul, 656901, Russia
| | - Oksana Gizinger
- Department of Microbiology and Virology, Department of Immunology and Allergology, Medical Institute, RUDN University, Moscow, Russia
| |
Collapse
|
6
|
Silveira VS, Mayer L, Gerhardt de Oliveira M, de Carvalho ALH, Weber JBB. Systemic Effects of Photobiomodulation on the Morphology of the Thyroid and Sublingual Glands: A Study in Rabbits. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:425-430. [PMID: 32667862 DOI: 10.1089/photob.2019.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: To investigate whether photobiomodulation (PBM) applied in a clinical situation with the purpose of improving the healing process of implants placed in the rabbit mandible would cause any morphological change in the thyroid and sublingual glands as a systemic effect of laser irradiation. Methods: Thirty-two New Zealand rabbits were randomly divided into four groups of eight animals each, one control group (CI, nonirradiated animals) and three experimental groups (EI, EII, and EIII) that received PBM postoperatively with an aluminum/gallium/arsenide laser diode (Theralase®) at a wavelength of 830 nm (infrared) and 50 mW output power applied to two irradiation fields per session, for a total of seven sessions. All rabbits underwent surgical extraction of the mandibular left incisor, followed by immediate placement of an osseointegrated implant in the fresh socket. The experimental groups EI, EII, and EIII received PBM at an energy density of 5, 2.5, and 10 J/cm2, respectively, per irradiation field. Results: There was no histomorphometric change in any of the groups. Conclusions: PBM, based on the irradiation protocol used in this study, does not cause morphological changes in the thyroid and sublingual glands when used to stimulate peri-implant bone healing in the rabbit mandible.
Collapse
Affiliation(s)
- Vinícius Salim Silveira
- Advanced Education Program in Oral and Maxillofacial Surgery, Technological Dental School CEEO (FATEC Dental), Igrejinha, Rio Grande do Sul, Brazil
| | - Luciano Mayer
- Oral and Maxillofacial Surgery Department, Graduate Program in Dentistry, School of Dentistry, Universidade Federal da Bahia (UFB), Salvador, Bahia, Brazil.,Graduate Program in Implant Therapy at Associação Gaúcha de Ortodontia (AGOR), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marília Gerhardt de Oliveira
- Grupo Hospitalar Conceição (GHC), National Council for Scientific and Technological Development (CNPq), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luísa Homem de Carvalho
- School of Health and Life Sciences, Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - João Batista Blessmann Weber
- School of Health and Life Sciences, Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Rosso MPDO, Oyadomari AT, Pomini KT, Della Coletta BB, Shindo JVTC, Ferreira Júnior RS, Barraviera B, Cassaro CV, Buchaim DV, Teixeira DDB, Barbalho SM, Alcalde MP, Duarte MAH, Andreo JC, Buchaim RL. Photobiomodulation Therapy Associated with Heterologous Fibrin Biopolymer and Bovine Bone Matrix Helps to Reconstruct Long Bones. Biomolecules 2020; 10:biom10030383. [PMID: 32121647 PMCID: PMC7175234 DOI: 10.3390/biom10030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Bone defects cause aesthetic and functional changes that affect the social, economic and especially the emotional life of human beings. This complication stimulates the scientific community to investigate strategies aimed at improving bone reconstruction processes using complementary therapies. Photobiomodulation therapy (PBMT) and the use of new biomaterials, including heterologous fibrin biopolymer (HFB), are included in this challenge. The objective of the present study was to evaluate the influence of photobiomodulation therapy on bone tibial reconstruction of rats with biomaterial consisting of lyophilized bovine bone matrix (BM) associated or not with heterologous fibrin biopolymer. Thirty male rats were randomly separated into three groups of 10 animals. In all animals, after the anesthetic procedure, a noncritical tibial defect of 2 mm was performed. The groups received the following treatments: Group 1: BM + PBMT, Group 2: BM + HFB and Group 3: BM + HFB + PBMT. The animals from Groups 1 and 3 were submitted to PBMT in the immediate postoperative period and every 48 h until the day of euthanasia that occurred at 14 and 42 days. Analyses by computed microtomography (µCT) and histomorphometry showed statistical difference in the percentage of bone formation between Groups 3 (BM + HB + PBMT) and 2 (BM + HFB) (26.4% ± 1.03% and 20.0% ± 1.87%, respectively) at 14 days and at 42 days (38.2% ± 1.59% and 31.6% ± 1.33%, respectively), and at 42 days there was presence of bone with mature characteristics and organized connective tissue. The µCT demonstrated BM particles filling the defect and the deposition of new bone in the superficial region, especially in the ruptured cortical. It was concluded that the association of PBMT with HFB and BM has the potential to assist in the process of reconstructing bone defects in the tibia of rats.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Aline Tiemi Oyadomari
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Claudia Vilalva Cassaro
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
- Medical School, University Center of Adamantina (UniFAI), Nove de Julho Street, 730-Centro, Adamantina 17800-000, São Paulo, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Murilo Priori Alcalde
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, São Paulo, Brazil;
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
- Correspondence: ; Tel.: +55-14-3235-8226
| |
Collapse
|
8
|
Escudero JSB, Perez MGB, de Oliveira Rosso MP, Buchaim DV, Pomini KT, Campos LMG, Audi M, Buchaim RL. Photobiomodulation therapy (PBMT) in bone repair: A systematic review. Injury 2019; 50:1853-1867. [PMID: 31585673 DOI: 10.1016/j.injury.2019.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Photobiomodulation therapy (PBMT) using low-level laser influences the release of several growth factors involved in the formation of epithelial cells, fibroblasts, collagen and vascular proliferation, besides accelerating the synthesis of bone matrix due to the increased vascularization and lower inflammatory response, with significant increase of osteocytes in the irradiated bone. Considering its properties, beneficial effects and clinical relevance, the aim of this review was to analyze the scientific literature regarding the use of PBMT in the process of bone defect repair. METHODS Electronic search was carried out in PubMed/MEDLINEⓇ and Web of Science databases with combination of the descriptors low-level laser therapy AND bone repair, considering the period of publication until the year 2018. RESULTS The literature search identified 254 references in PubMed/MEDLINE and 204 in Web of Science, of which 33 and 4 were selected, respectively, in accordance with the eligibility requirements. The analysis of researches showed articles using PBMT in several places of experimentation in the subjects, different types of associated biomaterials, stimulatory effects on cell proliferation, besides variations in the parameters of use of laser therapy, mainly in relation to the wavelength and density of energy. Only four articles reported that the laser did not improve the osteogenic properties of a biomaterial. CONCLUSIONS Many studies have shown that PBMT has positive photobiostimulatory effects on bone regeneration, accelerating its process regardless of parameters and the use of biomaterials. However, standardization of its use is still imperfect and should be better studied to allow correct application concerning the utilization protocols.
Collapse
Affiliation(s)
- Jose Stalin Bayas Escudero
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Maria Gabriela Benitez Perez
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil; Medical School, Discipline of Neuroanatomy, University Center of Adamantina (UNIFAI), Adamantina, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Mauro Audi
- Physiotherapy School, University of Marilia (UNIMAR), Marília-SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil.
| |
Collapse
|
9
|
Effect of Electrohydraulic Extracorporeal Shockwave Therapy on the Repair of Bone Defects Grafted With Particulate Allografts. J Craniofac Surg 2019; 30:1298-1302. [PMID: 31166268 DOI: 10.1097/scs.0000000000005213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study determined the effect of electrohydraulic extracorporeal shockwave therapy (ESWT) on the healing of mandible defects repaired using particulate allogenic bone grafts. This study included 20 male Wistar rats aged 12 weeks. In all the animals, a critical-sized defect of 4-mm diameter was created in the mandible and the defect area was filled with particulate allograft. Next, the rats were divided into 2 groups, allograft (G) (n = 10) and allograft + ESWT (GE) (n = 10). On days 3, 5, and 7 after the grafting, rats in the GE group received ESWT involving 200 pulses with an energy flux density of 0.19 mJ/mm. Five rats in each group were sacrificed at the end of week 4 and at the end of week 8. Defect areas were examined radiologically by performing high-resolution computed tomography and stereologically by using the Cavalieri method. Obtained data were compared by performing statistical analysis. Radiological evaluation showed that bone density was higher in rats in the G group than in those in the GE group at week 4. In contrast, bone density was higher in rats in the GE group than in those in the G group at week 8. Stereological examination showed that new bone, connective tissue, and capillary volumes were higher in rats in the GE group than in those in the G group at both weeks 4 and 8. The authors' results indicate that repeated doses of ESWT accelerate the healing of bone defects repaired using allogenic bone grafts.
Collapse
|
10
|
Coskun ME, Coskun KA, Tutar Y. Determination of Optimum Operation Parameters for Low-Intensity Pulsed Ultrasound and Low-Level Laser Based Treatment to Induce Proliferation of Osteoblast and Fibroblast Cells. Photomed Laser Surg 2018; 36:246-252. [PMID: 29466082 DOI: 10.1089/pho.2017.4354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mehmet Emre Coskun
- Department of Prosthodontics, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| | - Kubra Acikalin Coskun
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Yusuf Tutar
- Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
11
|
Bayat M, Virdi A, Jalalifirouzkouhi R, Rezaei F. Comparison of effects of LLLT and LIPUS on fracture healing in animal models and patients: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 132:3-22. [PMID: 28688752 DOI: 10.1016/j.pbiomolbio.2017.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022]
Abstract
The aim of this paper is to study the in vivo potency of low-level laser therapy (LLLT) and low intensity pulsed ultrasound (LIPUS) alone, accompanied by bone grafts, or accompanied by other factors on fracture healing in animal models and patients. In this paper, we aim to systematically review the published scientific literature regarding the use of LLLT and LIPUS to accelerate fracture healing in animal models and patients. We searched the PubMed database for the terms LLLT or LIPUS and/or bone, and fracture. Our analysis also suggests that both LIPUS and LLLT may be beneficial to fracture healing in patients, and that LIPUS is more effective. These finding are of considerable importance in those treatments with a LIPUS, as a laser device may reduce healing time. The most clinically relevant impact of the LIPUS treatment could be a significant reduction in the proportion of patients who go on to develop a nonunion. If it is confirmed that the therapeutic influence is true and reliable, patients will obtain benefits from LIPUS and LLLT. Further clinical trials of high methodological quality are needed in order to determine the optimal role of LIPUS and LLLT in fracture healing in patients.
Collapse
Affiliation(s)
- Mohammad Bayat
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Cellular and Molecular Biology Research Center, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amarjit Virdi
- Department of Cell & Molecular Medicine, (formerly, Anatomy and Cell Biology), Rush University Medical Center, 1750 W. Harrison St., Suite 1413A, Chicago, IL 60612, USA.
| | | | - Fatemehalsadat Rezaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yildirimturk S, Sirin Y, Soluk Tekkesin M, Gurler G, Firat D. The effects of low-level laser therapy on the healing of bone defects in streptozotocin-induced diabetic rats: A histological and morphometric evaluation. J COSMET LASER THER 2017. [PMID: 28622041 DOI: 10.1080/14764172.2017.1341048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The aim of the present study was to evaluate the effects of low-level laser therapy (LLLT) on the healing of bone defects in rats with streptozotocin (STZ)-induced DM. METHODS 28 male Sprague-Dawley rats were used in this study. 14 animals received a single dose of STZ intraperitoneally (65 mg/kg) to induce Type I DM, whereas others were injected only with sterile saline solution. Four weeks later, standard bone defects were created in the tibiae of rats. Surgical wounds in one group from each of the diabetic and non-diabetic animals were irradiated with diode laser for every other day for 4 weeks and they were described as DM + LLLT and CONT + LLLT groups, respectively. Remaining two groups received no laser treatment. New bone formation, osteoblast and blood vessel counts were calculated in histologic sections. RESULTS DM group had significantly smaller bone area and lower blood vessel count when compared to DM + LLLT, CONT and CONT + LLLT groups (p < 0.05 for each). CONT and CONT + LLLT groups had significantly larger bone area than DM + LLLT group (p < 0.05 for both). CONCLUSIONS LLLT application promoted vascularization and new bone formation in animals with DM to a limited extent, since it was unable to support the healing process up to the level of non-diabetic animals.
Collapse
Affiliation(s)
- Senem Yildirimturk
- a Faculty of Dentistry , Oral and Maxillofacial Surgery, Istanbul University , Istanbul , Turkey
| | - Yigit Sirin
- a Faculty of Dentistry , Oral and Maxillofacial Surgery, Istanbul University , Istanbul , Turkey
| | | | - Gokhan Gurler
- c Faculty of Dentistry , Oral and Maxillofacial Surgery, Istanbul Medipol University , Istanbul , Turkey
| | - Deniz Firat
- a Faculty of Dentistry , Oral and Maxillofacial Surgery, Istanbul University , Istanbul , Turkey
| |
Collapse
|
13
|
Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci 2016; 32:35-43. [PMID: 27649960 DOI: 10.1007/s10103-016-2080-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Low-level laser therapy (LLLT) induces anti-inflammatory and angiogenic activities in wound healing. However, the mechanism of action and optimal parameters require further clarification. In this study, we investigated the effects of LLLT on wound healing matrix metalloproteinase (MMP)-2 immunoexpression and angiogenic processes. Twenty female Wistar rats were randomly divided into four groups (n = 5) according to the treatments as follows. CG7 and CG14 were control groups at days 7 and 14, respectively, which received physiological saline (0.9 % NaCl daily). LG7 and LG14 were laser therapy groups at days 7 and 14, respectively, which received two (LG7) or four (LG14) LLLT applications (40 mW; 660 nm; 4 J/cm2). A dorsal skin sample in the wound area (measuring 2 cm2) was removed after the experimental period, and then the animals were euthanized. The specimens were processed for qualitative and quantitative histological analyses and measurement of MMP-2 expression in the dermis and epidermis. A persistent crust and moderate number of inflammatory cells were found in CG7 and CG14 groups. In the LG14 group, wounds demonstrated complete re-epithelization at the remodeling phase. Angiogenesis and MMP-2 expression were higher in LLLT-treated groups, particularly the LG14 group, which correlated according to the Spearman correlation test. LLLT improves wound healing by enhancing neocollagenesis, increasing the amount of new vessels formed in the tissue (neoangiogenesis), and modulating MMP-2 expression. Epidermal overexpression of MMP-2 was correlated to angiogenic processes.
Collapse
|
14
|
Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Med Hypotheses 2016; 86:18-29. [DOI: 10.1016/j.mehy.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
|
15
|
Nascimento MFD, Almeida BMD, Cunha JLS, Valois RBV, Pinheiro JC, Ribeiro MAG, Lima SO, Albuquerque-Júnior RLCD. Improvement of bone repair in diabetic rats subjected to ƛ780 nm low-level laser therapy. Acta Cir Bras 2015; 30:660-7. [DOI: 10.1590/s0102-865020150100000002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
|
16
|
Medeiros MAB, do Nascimento LEAG, Lau TCL, Mineiro ALBB, Pithon MM, Sant'Anna EF. Effects of laser vs ultrasound on bone healing after distraction osteogenesis: A histomorphometric analysis. Angle Orthod 2014; 85:555-61. [DOI: 10.2319/061414-431.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ABSTRACT
Objective:
To assess the effects of low-level laser irradiation vs ultrasound irradiation on bone healing after distraction osteogenesis.
Materials and Methods:
Distraction osteogenesis was performed with rapid maxillary expansion devices (Hyrax-Morelli, Sorocaba, São Paulo Brazil) in 24 rabbits (Oryctolagus cuniculus). After a 2-day latency period, the distraction devices were activated for 10 days at a rate of 1 mm/d. Four groups of six animals were treated as follows: (1) control, (2) laser irradiation on the right side, (3) ultrasound irradiation on the right side, and (4) laser irradiation on the right side and ultrasound on the left side. Histomorphometric analysis was used to assess the bone healing area. Analysis of variance was used to perform the statistical analyses.
Results:
The influence of low-intensity laser associated with ultrasound irradiation on bone healing was statistically significant. The analyses showed the greatest amount of bone healing in the jaws of animals in group 4, which received treatment with both ultrasound and laser.
Conclusion:
This study concluded that bone healing is accelerated with the application of laser irradiation. The greatest effects were observed with combined ultrasound and laser treatment.
Collapse
Affiliation(s)
| | | | - Thiago Chon Leon Lau
- Student, Department of Orthodontics, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil; and Visiting Professor, Department of Orthodontics, Universidade Federal do Piauí, UFPI, Brazil
| | - Ana Lys Bezerra Barradas Mineiro
- Professor, Department of Clinical and Surgical Veterinary Medicine, Universidade Federal do Piauí, UFPI, Teresina, Piauí, Brazil
| | - Matheus Melo Pithon
- Professor, Orthodontics Healthy I Department, Southwest Bahia State University, UESB, Jequié, Bahia, Brazil
| | - Eduardo Franzotti Sant'Anna
- Associate Professor of Paediatric Dentistry and Orthodontics, Department of Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Paolillo AR, Paolillo FR, João JP, João HA, Bagnato VS. Synergic effects of ultrasound and laser on the pain relief in women with hand osteoarthritis. Lasers Med Sci 2014; 30:279-86. [PMID: 25239030 DOI: 10.1007/s10103-014-1659-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/09/2014] [Indexed: 11/25/2022]
Abstract
Patients with pain avoid movements, leading to a gradual impairment of their physical condition and functionality. In this context, the use of ultrasound (US) and low-level laser therapy (LLLT) show promising results for nonpharmacological and noninvasive treatment. The aim of this study was evaluated the synergistic effects of the US and the LLLT (new prototype) with or without therapeutic exercises (TE) on pain and grip strength in women with hand osteoarthritis. Forty-five women with hand osteoarthritis, aged 60 to 80 years, were randomly assigned to one of three groups, but 43 women successfully completed the full study. The three groups were as follows: (i) the placebo group which did not perform TE, but the prototype without emitting electromagnetic or mechanical waves was applied (n = 11); (ii) the US + LLLT group which carried out only the prototype (n = 13); and (iii) the TE + US + LLLT group which performed TE before the prototype is applied (n = 13). The parameters of US were frequency 1 MHz; 1.0 W/cm(2) intensity, pulsed mode 1:1 (duty cycle 50%). Regarding laser, the output power of the each laser was fixed at 100 mW leading to an energy value of 18 J per laser. Five points were irradiated per hand, during 3 min per point and 15 min per session. The prototype was applied after therapeutic exercises. The treatments are done once a week for 3 months. Grip strength and pressure pain thresholds (PPT) were measured. Grip strength did not differ significantly for any of the groups (p ≥ 0.05). The average PPT between baseline and 3 months shows significant decrease of the pain sensitivity for both the US + LLLT group (∆ = 30 ± 19 N, p˂0.001) and the TE + US + LLLT group (∆ = 32 ± 13 N, p < 0.001). However, there were no significant differences in average PPT for placebo group (∆ = -0.3 ± 9 N). There was no placebo effect. The new prototype that combines US and LLLT reduced pain in women with hand osteoarthritis.
Collapse
Affiliation(s)
- Alessandra Rossi Paolillo
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400-Centro, CEP 13560-970, São Carlos, SP, Brazil,
| | | | | | | | | |
Collapse
|