1
|
Galaktionov KV, Gonchar A, Postanogova D, Miroliubov A, Bodrov SY. Parvatrema spp. (Digenea, Gymnophallidae) with parthenogenetic metacercariae: diversity, distribution and host specificity in the palaearctic. Int J Parasitol 2024; 54:333-355. [PMID: 38452965 DOI: 10.1016/j.ijpara.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
There are several species of gymnophallid digeneans in the genus Parvatrema that are unique in developing metacercariae that reproduce by parthenogenesis in the second intermediate host. Transmission of these digeneans takes place in coastal ecosystems of the North Pacific and North Atlantic seas. The first intermediate hosts are bivalves, the second ones are gastropods, and the definitive hosts are migratory birds. We integrated data accumulated over 25 years of research and differentiated a complex of five closely related species. They differ in the molluscan second intermediate hosts, distribution ranges, and life cycles patterns. The type I life cycle includes two generations of parthenogenetic metacercariae, followed by development of metacercariae which are invasive for the definitive host. In the type II life cycle, the number of generations of parthenogenetic metacercariae is unlimited, and they can also produce cercariae. These cercariae emerge into the environment and can infect new individuals of the second intermediate host. We conclude that the type I life cycle is a derived option that has evolved as a better fit to transmission in the unstable conditions in the intertidal zone. Another evolutionary trend in Parvatrema is transition from inhabiting the extrapallial space of the gastropod second intermediate host to endoparasitism in its mantle and internal organs. rDNA sequence analysis highlighted that Parvatrema spp. with parthenogenetic metacercariae form a monophyletic clade and suggested the Pacific origin of the group, with two transfers to the North Atlantic and colonisation of new second intermediate host species. Apparently the group formed in the late Pliocene-Pleistocene and diversified as a result of recurrent isolation in inshore refugia during glacial periods. We argue that parthenogenetic metacercariae in Parvatrema may serve as a model for early digenean evolution, demonstrating the first steps of adopting the molluscan first intermediate host and becoming tissue parasites.
Collapse
Affiliation(s)
- Kirill V Galaktionov
- Laboratory of Parasitic Worms and Protists, Zoological Institute, Russian Academy of Sciences, Russia; Department of Invertebrate Zoology, Saint Petersburg University, Russia
| | - Anna Gonchar
- Laboratory of Parasitic Worms and Protists, Zoological Institute, Russian Academy of Sciences, Russia; Department of Invertebrate Zoology, Saint Petersburg University, Russia.
| | - Daria Postanogova
- Laboratory of Parasitic Worms and Protists, Zoological Institute, Russian Academy of Sciences, Russia; Department of Invertebrate Zoology, Saint Petersburg University, Russia
| | - Aleksei Miroliubov
- Laboratory of Parasitic Worms and Protists, Zoological Institute, Russian Academy of Sciences, Russia; Department of Invertebrate Zoology, Saint Petersburg University, Russia
| | - Semen Yu Bodrov
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute, Russian Academy of Sciences, Russia
| |
Collapse
|
2
|
Crawford KE, Hedtke SM, Doyle SR, Kuesel AC, Armoo S, Osei-Atweneboana MY, Grant WN. Genome-based tools for onchocerciasis elimination: utility of the mitochondrial genome for delineating Onchocerca volvulus transmission zones. Int J Parasitol 2024; 54:171-183. [PMID: 37993016 DOI: 10.1016/j.ijpara.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
National programs in Africa have expanded their objectives from control of onchocerciasis (river blindness) as a public health problem to elimination of parasite transmission, motivated by the reduction of Onchocerca volvulus infection prevalence in many African meso- and hyperendemic areas due to mass drug administration of ivermectin (MDAi). Given the large, contiguous hypo-, meso-, and hyperendemic areas, sustainable elimination of onchocerciasis in sub-Saharan Africa requires delineation of geographic boundaries for parasite transmission zones, so that programs can consider the risk of parasite re-introduction through vector or human migration from areas with ongoing transmission when making decisions to stop MDAi. We propose that transmission zone boundaries can be delineated by characterising the parasite genetic population structure within and between potential zones. We analysed whole mitochondrial genome sequences of 189 O. volvulus adults to determine the pattern of genetic similarity across three West African countries: Ghana, Mali, and Côte d'Ivoire. Population genetic structure indicates that parasites from villages near the Pru, Daka, and Black Volta rivers in central Ghana belong to one parasite population, indicating that the assumption that river basins constitute individual transmission zones is not supported by the data. Parasites from Mali and Côte d'Ivoire are genetically distinct from those from Ghana. This research provides the basis for developing tools for elimination programs to delineate transmission zones, to estimate the risk of parasite re-introduction via vector or human movement when intervention is stopped in one area while transmission is ongoing in others, to identify the origin of infections detected post-treatment cessation, and to investigate whether persisting prevalence despite ongoing interventions in one area is due to parasites imported from others.
Collapse
Affiliation(s)
- Katie E Crawford
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Shannon M Hedtke
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia.
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Annette C Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Samuel Armoo
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Mike Y Osei-Atweneboana
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Saijuntha W, Andrews RH, Sithithaworn P, Petney TN. Opisthorchis viverrini Life Cycle, Distribution, Systematics, and Population Genetics. Recent Results Cancer Res 2023; 219:7-25. [PMID: 37660329 DOI: 10.1007/978-3-031-35166-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Opisthorchis viverrini plays a key role as the carcinogenic liver fluke causing bile duct cancer in Southeast Asia. A comprehensive understanding of its life cycle, distribution, systematics, and population genetics is critically important as they underpin the effective development and establishment of future prevention and control programs that center on opisthorchiasis and cholangiocarcinoma. This chapter provides detailed information concerning the basic biology and updated information of O. viverrini related to its host life cycle, transmission route via raw, partially cooked or fermented freshwater cyprinid fish, endemic areas, and the discovery of new foci. Previous sequential studies over the last two decades on the phylogenetic and systematic relationships, genetic variation, and population genetics of O. viverrini as well as its snail intermediate host Bithynia spp. are presented and discussed, which have led to the currently known complex species level systematics and population genetics framework of this host-parasite system. Additionally, further directions for comprehensive research are suggested to provide a more complete understanding of liver fluke, O. viverrini-related cholangiocarcinoma.
Collapse
Affiliation(s)
- Weerachai Saijuntha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand.
| | - Ross H Andrews
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Trevor N Petney
- Departments of Zoology and Paleontology and Evolution, State Museum of Natural History Karlsruhe, Erbprinzenstrasse 13, 76133, Karlsruhe, Germany
| |
Collapse
|
4
|
Keeney DB, Cobb SA, Jadin RC, Orlofske SA. Atypical life cycle does not lead to inbreeding or selfing in parasites despite clonemate accumulation in intermediate hosts. Mol Ecol 2022; 32:1777-1790. [PMID: 36579456 DOI: 10.1111/mec.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Many parasites utilize asexual and sexual reproduction and multiple hosts to complete their life cycles. How these taxa avoid inbreeding is an essential question for understanding parasite evolution and ecology. Aquatic trematodes that require multiple host species may benefit from diverse genetic parasite assemblages accumulating within second intermediate hosts prior to sexual reproduction in definitive hosts. However, Cotylurus species are able to utilize the same snail species as first and second intermediate hosts, potentially resulting in the accumulation of genetically identical clones (clonemates) prior to sexual reproduction. In this study, we developed and analysed novel microsatellite loci to determine if clones are accumulating within snail hosts prior to ingestion by bird hosts and the effects this could have on parasite inbreeding. Contrary to previous studies of aquatic trematodes, significantly large numbers of clonemates were present within snails, but full-sibs were not. Genetic structure was present over a relatively small geographical scale despite the use of vagile definitive hosts. Phylogenetic analysis identified the Cotylurus sp. clones as belonging to a single species. Despite the presence of clones within snails, mating between clones/selfing was not common and heterozygosity is maintained within individuals. Potential issues with clones mating may be mitigated by the presence of snails with numerous clones, the consumption of many snails by bird hosts and parasite clone recognition/avoidance. Use of the same host species for multiple life stages may have advantages when parasites are able to avoid inbreeding and the required hosts are common.
Collapse
Affiliation(s)
- Devon B Keeney
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York, USA
| | - Sarah A Cobb
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert C Jadin
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA.,Department of Biology, Museum of Natural History, University of Wisconsin - Stevens Point, Stevens Point, Wisconsin, USA
| | - Sarah A Orlofske
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA.,Department of Biology, Museum of Natural History, University of Wisconsin - Stevens Point, Stevens Point, Wisconsin, USA
| |
Collapse
|
5
|
Criscione CD, Hulke JM, Goater CP. Trematode Clone Abundance Distributions: An Eco-Evolutionary Link between Parasite Transmission and Parasite Mating Systems. J Parasitol 2022; 108:565-576. [DOI: 10.1645/22-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Charles D. Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, Texas 77843
| | - Jenna M. Hulke
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, Texas 77843
| | - Cameron P. Goater
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
6
|
Molecular characteristics and genetic diversity of Fasciola hepatica from sheep in Xinjiang, China. J Vet Res 2022; 66:199-207. [PMID: 35892103 PMCID: PMC9281526 DOI: 10.2478/jvetres-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Fasciola hepatica is a trematode infecting ruminants worldwide and occasionally affecting other animal species, including humans. It causes significant economic losses. Geographic distribution and patterns of infection must be considered before control and management measures are developed for this parasite. DNA molecular markers are useful for the identification of flukes and elucidation of their genetic evolution. Therefore, the population structure of F. hepatica was studied using this method in sheep in Xinjiang, China. Material and Methods The molecular characteristics, genetic relationships within the population and dispersal patterns of F. hepatica isolates were analysed based on the cox1 and nad1 genes. The population structure of F. hepatica from three regions of Xinjiang was explored and a neutrality test was conducted. Results The cox1 and nad1 genes have 21 and 42 variable sites, respectively, which can be classified into 34 and 33 haplotypes. Median-joining network and phylogenetic tree analyses showed that there was no significant variation in F. hepatica isolates between the three geographical regions. Analysis of variance revealed that the genetic variation of F. hepatica was mainly present within the populations. The neutrality test indicated that the populations were relatively stable but the Hami population may have undergone short-term expansion. Conclusion This study revealed for the first time the molecular characteristics, genetic diversity and dispersal patterns of F. hepatica isolates from sheep in Xinjiang, thus providing new insights into the genetic variation and haplotype diversity of F. hepatica from indigenous sheep.
Collapse
|
7
|
Saijuntha W, Andrews RH, Sithithaworn P, Petney TN. Current assessment of the systematics and population genetics of Opisthorchis viverrini sensu lato (Trematoda: Opisthorchiidae) and its first intermediate host Bithynia siamensis sensu lato (Gastropoda: Bithyniidae) in Thailand and Southeast Asia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105182. [PMID: 34902557 DOI: 10.1016/j.meegid.2021.105182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The group 1 carcinogen, the liver fluke Opisthorchis viverrini is the causative agent of opisthorchiasis and subsequent bile duct cancer (cholangiocarcinoma; CCA), which is an important public health problem in Southeast Asia. Bithynia snails are known to be the sole intermediate host of O. viverrini, and distributed throughout endemic areas of opisthorchiasis. Since 2001, the genetic variation investigation of O. viverrini has progressively been investigated. Comprehensive genetic variation studies of O. viverrini and Bithynia snails were undertaken and consecutively published in 2007 by Saijuntha and colleagues. These studies provided genetic evidence that O. viverrini and Bithynia snails are both species complex with evidence of co-evolution. Later, several studies have provided data in support of this finding, and have continuously to date reinforced that both O. viverrini and Bithynia are species complexes. Moreover, studies have shown that genetic variation of O. viverrini is related to geographical, temporal, fish host species including geographical genetic variation of its snail host, Bithynia siamensis sensu lato. This is significant and important in our understanding of the evolution and phylogenetic relationships between species within the O. viverrini and Bithynia species complexes. A comprehensive knowledge of the systematics and population genetics of O. viverrini and Bithynia snails provides a sound basis to instigate and develop effective prevention and control programs targeting opisthorchiasis and CCA in the endemic areas of Southeast Asia. Thus, this review examines the historical series of investigations of the systematics and population genetics of O. viverrini including Bithynia spp. in Southeast Asia since molecular genetic investigations commenced some 20 years ago.
Collapse
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand.
| | - Ross H Andrews
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Medicine, St Mary's Campus, Imperial College London, United Kingdom
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Trevor N Petney
- Departments of Zoology and Paleontology and Evolution, State Museum of Natural History Karlsruhe, Erbprinzenstrasse 13, 76133 Karlsruhe, Germany
| |
Collapse
|
8
|
Janecka MJ, Rovenolt F, Stephenson JF. How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale? Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03089-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Torres R, Hurtado C, Pérez-Macchi S, Bittencourt P, Freschi C, de Mello VVC, Machado RZ, André MR, Müller A. Occurrence and Genetic Diversity of Babesia caballi and Theileria equi in Chilean Thoroughbred Racing Horses. Pathogens 2021; 10:714. [PMID: 34200433 PMCID: PMC8226895 DOI: 10.3390/pathogens10060714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to serologically and molecularly survey Babesia caballi and Theileria equi in thoroughbred horses from racecourses in Chile. Additionally, the genetic diversity of the positive samples was assessed. A total of 286 thoroughbred horses from the Santiago and Valparaíso racecourses had their serum samples submitted to an ELISA for B. caballi and T. equi, and 457 samples (from the Santiago, Valparaíso, and Concepción racecourses) were tested with nested PCRs for the B. caballi 48 KDa rhoptry protein (RAP-1) and T. equi 18S rRNA genes. Selected RAP-1 and 18S positive products were sequenced to perform phylogenetic and haplotype analyses. An overall seroprevalence of 35.6% was observed for these Chilean racecourses: 23.7% for T. equi, 8.4% for B. caballi, and 3.5% for both agents. Overall, a 53.6% occurrence by nPCR was detected for the three Chilean racecourses: 44.2% for T. equi, 5.4% for B. caballi, and 3.9% for both agents. Phylogenetic analysis of T. equi and B. caballi showed genetic proximity with sequences previously detected in other countries. Haplotype analysis revealed a low diversity among the Chilean sequences, which may have originated from those reported in Brazil, Israel, or Cuba. Babesia caballi and T. equi were detected for the first time in Chilean thoroughbred horses.
Collapse
Affiliation(s)
- Reinaldo Torres
- Instituto de Ciencias Clinicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.T.); (C.H.)
| | - Claudio Hurtado
- Instituto de Ciencias Clinicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.T.); (C.H.)
| | - Sandra Pérez-Macchi
- Departamento de Patologia Clinica Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional de Asunción, San Lorenzo 1114, Paraguay;
| | - Pedro Bittencourt
- Biomedical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis;
| | - Carla Freschi
- IMUNODOT Diagnostico, Jaboticabal 14887-042, SP, Brazil;
| | - Victoria Valente Califre de Mello
- Departamento de Patologia, Reproducao e Saude Unica, Faculdade de Ciencias Agrarias e Veterinarias, Universidade Estadual Paulista, (FCAV/UNESP), Jaboticabal 14884-900, SP, Brazil; (V.V.C.d.M.); (R.Z.M.); (M.R.A.)
| | - Rosangela Zacarias Machado
- Departamento de Patologia, Reproducao e Saude Unica, Faculdade de Ciencias Agrarias e Veterinarias, Universidade Estadual Paulista, (FCAV/UNESP), Jaboticabal 14884-900, SP, Brazil; (V.V.C.d.M.); (R.Z.M.); (M.R.A.)
| | - Marcos Rogério André
- Departamento de Patologia, Reproducao e Saude Unica, Faculdade de Ciencias Agrarias e Veterinarias, Universidade Estadual Paulista, (FCAV/UNESP), Jaboticabal 14884-900, SP, Brazil; (V.V.C.d.M.); (R.Z.M.); (M.R.A.)
| | - Ananda Müller
- Instituto de Ciencias Clinicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.T.); (C.H.)
- Biomedical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis;
| |
Collapse
|
10
|
López-Jiménez A, Hernández-Mena DI, Solórzano-García B, García-Varela M. Exploring the genetic structure of Parastrigea diovadena Dubois and Macko, 1972 (Digenea: Strigeidae), an endoparasite of the white ibis, Eudocimus albus, from the Neotropical region of Mexico. Parasitol Res 2021; 120:2065-2075. [PMID: 34031714 DOI: 10.1007/s00436-021-07185-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/05/2021] [Indexed: 11/28/2022]
Abstract
Parastrigea diovadena Dubois and Macko, 1972, is an allogenic trematode species that infects the intestine of white ibis. This widely distributed Neotropical species has been studied poorly, and nothing is known about its population genetic structure. In the current study, we attempt to fill this gap for the first time and to explore the genetic diversity in P. diovadena populations from three biogeographic provinces (Sierra Madre Oriental, Sierra Madre Occidental, and Sierra Madre del Sur) in the Neotropical region of Mexico. Newly generated sequences of the internal transcribed spacers (ITS) from ribosomal DNA and cytochrome c oxidase subunit 1 (cox 1) from mitochondrial DNA were compared with sequences available from the GenBank data set. Phylogenetic analyses performed with the ITS and cox 1 data sets using maximum likelihood and Bayesian inference unequivocally showed that new sequences of P. diovadena recovered from the white ibis formed a clade with other sequences of specimens previously identified as P. diovadena. The intraspecific genetic divergence among the isolates was very low, ranging from 0 to 0.38% for ITS and from 0 to 1.5% for cox 1, and in combination with the phylogenetic trees confirmed that the isolates belonged to the same species. The cox 1 haplotype network (star-shaped) inferred with 62 sequences revealed 36 haplotypes. The most frequent haplotype (H3, n = 18) corresponded to specimens from all the populations (except Tecolutla, Veracruz). In addition to the common haplotype, we identified four other shared haplotypes (H2, H9, H12, and H14) and 31 unique haplotypes (singlets). In addition, high haplotype diversity (Hd = 0.913), low nucleotide diversity (Pi = 0.0057), and null genetic differentiation or population structure (Fst = 0.0167) were found among the populations from the three biogeographic provinces. The results suggest that the biology of the definitive host has played a key role in the population genetic structure of Parastrigea diovadena in the Neotropical region of Mexico.
Collapse
Affiliation(s)
- Alejandra López-Jiménez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP. 04510, México City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, CP. 04510, México City, México
| | - David Iván Hernández-Mena
- Centro de Investigación Y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Mérida, Antigua Carretera Progreso Km. 6, Cordemex, 97310, Mérida, Yucatán, México
| | - Brenda Solórzano-García
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México (ENES-Mérida), Km 4.5 Carretera Mérida-Tetiz, Ucú, Yucatán, México
| | - Martín García-Varela
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP. 04510, México City, México.
| |
Collapse
|
11
|
Paiva F, Pauli N, Briski E. Are juveniles as tolerant to salinity stress as adults? A case study of Northern European, Ponto‐Caspian and North American species. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Filipa Paiva
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany
- MARE – Marine and Environmental Sciences Centre Quinta do Lorde Marina Caniçal Portugal
| | - Nora‐Charlotte Pauli
- Institute for Chemistry and Biology of the Marine Environment Carl‐von‐Ossietzky Universität Oldenburg Oldenburg Germany
| | | |
Collapse
|
12
|
Clonemate cotransmission supports a role for kin selection in a puppeteer parasite. Proc Natl Acad Sci U S A 2020; 117:5970-5976. [PMID: 32123093 DOI: 10.1073/pnas.1922272117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Host manipulation by parasites is a fascinating evolutionary outcome, but adaptive scenarios that often accompany even iconic examples in this popular field of study are speculative. Kin selection has been invoked as a means of explaining the evolution of an altruistic-based, host-manipulating behavior caused by larvae of the lancet fluke Dicrocoelium dendriticum in ants. Specifically, cotransmission of larval clonemates from a snail first host to an ant second host is presumed to lead to a puppeteer parasite in the ant's brain that has clonemates in the ant abdomen. Clonal relatedness between the actor (brain fluke) and recipients (abdomen flukes) enables kin selection of the parasite's host-manipulating trait, which facilitates transmission of the recipients to the final host. However, the hypothesis that asexual reproduction in the snail leads to a high abundance of clonemates in the same ant is untested. Clonal relationships between the manipulator in the brain and the nonmanipulators in the abdomen are also untested. We provide empirical data on the lancet fluke's clonal diversity within its ant host. In stark contrast to other trematodes, which do not exhibit the same host-manipulating behavioral trait, the lancet fluke has a high abundance of clonemates. Moreover, our data support existing theory that indicates that the altruistic behavior can evolve even in the presence of multiple clones within the same ant host. Importantly, our analyses conclusively show clonemate cotransmission into ants, and, as such, we find support for kin selection to drive the evolution and maintenance of this iconic host manipulation.
Collapse
|
13
|
Hedtke SM, Kuesel AC, Crawford KE, Graves PM, Boussinesq M, Lau CL, Boakye DA, Grant WN. Genomic Epidemiology in Filarial Nematodes: Transforming the Basis for Elimination Program Decisions. Front Genet 2020; 10:1282. [PMID: 31998356 PMCID: PMC6964045 DOI: 10.3389/fgene.2019.01282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites via human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in Onchocerca volvulus, the filarial nematode that causes onchocerciasis, and Wuchereria bancrofti, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Annette C. Kuesel
- Unicef/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Katie E. Crawford
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Patricia M. Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | - Michel Boussinesq
- Unité Mixte Internationale 233 "TransVIHMI", Institut de Recherche pour le Développement (IRD), INSERM U1175, University of Montpellier, Montpellier, France
| | - Colleen L. Lau
- Department of Global Health, Research School of Population Health, Australian National University, Acton, ACT, Australia
| | - Daniel A. Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Warwick N. Grant
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
14
|
Preliminary Evidence for the Occurrence of β-tubulin Isotype 3 Polymorphisms in Fasciola Hepatica Isolates in Cattle and Sheep in Turkey. Helminthologia 2019; 56:87-92. [PMID: 31662679 PMCID: PMC6799569 DOI: 10.2478/helm-2019-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/24/2019] [Indexed: 11/28/2022] Open
Abstract
Fasciolosis caused by Fasciola hepatica is a common parasitic disease of livestock especially sheep and cattle. In this study molecular characterization of β-tubulin isotype 3 gene in Fasciola hepatica isolates from cattle and sheep in Turkey was carried out. For this purpose a total of 80 adult Fasciola hepatica isolates were collected from 20 sheep and 20 cattle in Kayseri and Erzurum provinces. PCR-RFLP was performed on β-tubulin isotype 3 gene and MboII revealed two fragments of approximately 350 bp and 390 bp, whereas HphI enzyme yielded 210, 340 and 540 bp bands, HindII yielded 380 and 450 bp bands in all samples. A total of 80 isolates were tested by SSCP and all of them presented the same band profiles. Six samples (4 sheep and 2 cattle) were randomly selected and DNA sequence of a 935 bp coding fragment of β-tubulin isotype 3 was performed. Sheep samples were more polymorphic than the cattle. This β-tubulin isotype 3 gene polymorphism of F.hepatica isolates from sheep and cattle of two distinct geographical areas of Turkey have been investigated for the first time.
Collapse
|
15
|
Estimating effective population size for a cestode parasite infecting three-spined sticklebacks. Parasitology 2019; 146:883-896. [PMID: 30720409 DOI: 10.1017/s0031182018002226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Remarkably few attempts have been made to estimate contemporary effective population size (Ne) for parasitic species, despite the valuable perspectives it can offer on the tempo and pace of parasite evolution as well as coevolutionary dynamics of host-parasite interactions. In this study, we utilized multi-locus microsatellite data to derive single-sample and temporal estimates of contemporary Ne for a cestode parasite (Schistocephalus solidus) as well as three-spined stickleback hosts (Gasterosteus aculeatus) in lakes across Alaska. Consistent with prior studies, both approaches recovered small and highly variable estimates of parasite and host Ne. We also found that estimates of host Ne and parasite Ne were sensitive to assumptions about population genetic structure and connectivity. And, while prior work on the stickleback-cestode system indicates that physiographic factors external to stickleback hosts largely govern genetic variation in S. solidus, our findings indicate that stickleback host attributes and factors internal to the host - namely body length, genetic diversity and infection - shape contemporary Ne of cestode parasites.
Collapse
|
16
|
Assessment of the global pattern of genetic diversity in Echinococcus multilocularis inferred by mitochondrial DNA sequences. Vet Parasitol 2018; 262:30-41. [PMID: 30389009 DOI: 10.1016/j.vetpar.2018.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The aim of this review was to assess our current knowledge on phylogeography and global genetic structure of Echinococcus multilocularis populations originating from rodents, wild canid hosts, and human. Six bibliographic databases were searched from 1990 to 2017, identifying a total of 110 publications. The cytochrome c oxidase subunit 1 (cox1) and cytochrome b (cytb) sequences of E. multilocularis from Asia, Europe, and North Americas were analyzed to estimate the diversity and neutrality indices, and genetic differentiation. A total of 69 (cox1, 36.7%) and 16 haplotypes (cytb, 19.2%) were grouped into various geographical clades. A parsimonious haplotype network demonstrated a star-like feature with haplo-groups Em2 (Asia: 36%), Em105 (Eastern Tibetan plateau: 4.8%), Em46 (Europe: 9.1%), Em73, (Europe: 2.7%) and Em92 (North Americas: 4.3%) as the most common haplotypes. A relatively high level of genetic diversity was detected in rodent-derived E. multilocularis isolates (Haplotype diversity: 0.944), wild canids (Hd: 0.912), and human origin (Hd: 0.704). The highest number of haplotypes (n = 59) and the highest haplotype diversity (0.969) were identified in the Asian and European populations, respectively. Cladistic phylogenetic tree indicated the European clade has a sister relationship with the Asian clade. However, some North American haplotypes were assigned to the European clade together with haplotypes from Poland. The statistically significant Fst values indicated that E. multilocularis populations of Asian-European, Asian-North American, and European-North American origins were genetically differentiated (Fst: 0.22624 to 0.43059). An occurrence of distinct parasite populations suggests that E. multilocularis derived from glacial refugia have been plausibly sustained by indigenous hosts during the Pleistocene Epoch.
Collapse
|
17
|
Greeff JM, Reid K, Gagjee JR, Clift SJ, de Waal PJ. Population genetic structure of the parasitic nematode Spirocerca lupi in South Africa. Vet Parasitol 2018; 258:64-69. [DOI: 10.1016/j.vetpar.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
|
18
|
Spatial and genetic structure of directly-transmitted parasites reflects the distribution of their specific amphibian hosts. POPUL ECOL 2018. [DOI: 10.1007/s10144-018-0605-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation. ADVANCES IN PARASITOLOGY 2018; 100:155-208. [PMID: 29753338 DOI: 10.1016/bs.apar.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets.
Collapse
|
20
|
Solórzano-García B, Gasca-Pineda J, Poulin R, Pérez-Ponce de León G. Lack of genetic structure in pinworm populations from New World primates in forest fragments. Int J Parasitol 2017; 47:941-950. [PMID: 28855143 DOI: 10.1016/j.ijpara.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Microevolutionary processes in parasites are driven by factors related to parasite biology, host abundance and dispersal, and environmental conditions. Here, we test the prediction that isolation of host populations results in reduced genetic diversity and high differentiation among parasite populations. We conducted a population genetic analysis of two pinworms, Trypanoxyuris minutus and Trypanoxyuris atelis, commonly found parasitizing howler and spider monkeys in tropical rainforests across south-eastern Mexico, whose populations are currently isolated due to anthropogenic habitat loss and fragmentation. Mitochondrial DNA was employed to assess parasite genetic patterns, as well as to analyse their demography and population history. Both pinworm species showed high haplotype diversity but, unexpectedly, lower nucleotide diversity than that reported for other parasites. No genetic differentiation or population structure was detected in either pinworm species despite habitat loss, fragmentation and host isolation. Several scenarios are discussed that could help to explain the genetic panmixia found in both pinworm species, including higher than expected primate inter-fragment dispersal movements, and passive dispersal facilitating gene flow between parasite populations. The results suggest that large population sizes of parasites could be helping them to cope with the isolation and fragmentation of populations, delaying the effects of genetic drift. The present study highlights the complexity of the drivers that intervene in the evolutionary processes of parasites. Detailed genetic studies are needed, both in host and parasite populations, to assess the effects that habitat perturbation and environmental changes could have on the evolutionary dynamics of pinworms and primates.
Collapse
Affiliation(s)
- Brenda Solórzano-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, A.P. 70-153, C.P. 04510 México D.F., Mexico; Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico
| | - Jaime Gasca-Pineda
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California Sur 22860, Mexico
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Gerardo Pérez-Ponce de León
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, A.P. 70-153, C.P. 04510 México D.F., Mexico.
| |
Collapse
|
21
|
Barkman TJ, Klooster MR, Gaddis KD, Franzone B, Calhoun S, Manickam S, Vessabutr S, Sasirat S, Davis CC. Reading between the vines: Hosts as islands for extreme holoparasitic plants. AMERICAN JOURNAL OF BOTANY 2017; 104:1382-1389. [PMID: 29885244 DOI: 10.3732/ajb.1700117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/08/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Partitioning of population genetic variation in plants may be affected by numerous factors including life history and dispersal characteristics. In parasitic plants, interactions with host populations may be an additional factor influencing partitioning. To test for hierarchical population genetic patterns related to obligate endoparasitism, we studied three species of Rafflesiaceae, which grow as extremely reduced endophytes infecting Tetrastigma vines in Southeast Asia. METHODS Microsatellite markers were developed and multilocus genotypes were determined for Rafflesia cantleyi, Rafflesia tuan-mudae, and Sapria himalayana and each of their Tetrastigma hosts. Relatedness among parasite individuals was estimated, and AMOVAs were used to determine levels of population genetic subdivision. KEY RESULTS Microsatellite genotypes for 340 paired parasite and host samples revealed that host vines were infected by numerous Rafflesiaceae individuals that may spread for up to 14 m within stem tissues. Surprisingly, Rafflesiaceae parasites within a given host are significantly more closely related to each other than individuals of the same species in other host individuals. The pattern of hierarchical population genetic subdivision we detected across species is likely due to limited seed dispersal with reinfection of natal host vines. CONCLUSIONS These findings demonstrate common population genetic patterns between animal and plant parasites, potentially indicating advantages of close relatives infecting hosts. This study also has important conservation implications for Rafflesiaceae since our data suggest that destruction of a single infected host vine could result in large genetic losses.
Collapse
Affiliation(s)
- Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 USA
| | - Matthew R Klooster
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
- Biology and Environmental Studies Programs, Centre College, Danville, Kentucky 40422 USA
| | - Keith D Gaddis
- National Aeronautics and Space Administration, Washington, D.C. 20546 USA
| | - Brian Franzone
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
| | - Sondra Calhoun
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
| | - Sugumaran Manickam
- Rimba Ilmu Botanic Garden, Institute of Biological Sciences, University of Malaya 50603 Kuala Lumpur, Malaysia
| | | | | | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
| |
Collapse
|
22
|
Effects of the Ordering of Natural Selection and Population Regulation Mechanisms on Wright-Fisher Models. G3-GENES GENOMES GENETICS 2017; 7:2095-2106. [PMID: 28500051 PMCID: PMC5499119 DOI: 10.1534/g3.117.041038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We explore the effect of different mechanisms of natural selection on the evolution of populations for one- and two-locus systems. We compare the effect of viability and fecundity selection in the context of the Wright-Fisher model with selection under the assumption of multiplicative fitness. We show that these two modes of natural selection correspond to different orderings of the processes of population regulation and natural selection in the Wright-Fisher model. We find that under the Wright-Fisher model these two different orderings can affect the distribution of trajectories of haplotype frequencies evolving with genetic recombination. However, the difference in the distribution of trajectories is only appreciable when the population is in significant linkage disequilibrium. We find that as linkage disequilibrium decays the trajectories for the two different models rapidly become indistinguishable. We discuss the significance of these findings in terms of biological examples of viability and fecundity selection, and speculate that the effect may be significant when factors such as gene migration maintain a degree of linkage disequilibrium.
Collapse
|
23
|
van Paridon BJ, Colwell DD, Goater CP, Gilleard JS. Population genetic analysis informs the invasion history of the emerging trematode Dicrocoelium dendriticum into Canada. Int J Parasitol 2017; 47:845-856. [PMID: 28668324 DOI: 10.1016/j.ijpara.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/05/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Parasite distributions are constantly changing due to climate change, local and global movement of animals and humans, as well as land use and habitat change. The trematode Dicrocoelium dendriticum is a relatively recent invader of Canada, being first reported in eastern Canada in the 1930s and western Canada in the 1970s. However, historical records are scarce and its emergence is poorly understood. The establishment of this parasite in Canada provides an interesting opportunity to explore the use of population genetic approaches to help elucidate the invasion history of a relatively recently established helminth parasite. In this study, we compare the genetic diversity and population structure of a number of D. dendriticum populations from western and eastern Canada, and compare these with much longer established European populations. Two independent genetic marker systems were used; a microsatellite marker panel and a cytochrome c oxidase 1 (cox1) mitochondrial (mt)DNA sequence marker. We found distinct differences in both genetic diversity and population structure of the different Canadian populations that provide insights into their invasion histories compared with the European populations. Two populations from British Columbia, Canada - Salt Spring and Vancouver Islands - are of low diversity, show evidence of a population bottleneck and are closely related to each other, suggesting a shared recent history of establishment. These west coast populations are otherwise most closely related to those from eastern Canada and western Europe, and in contrast are genetically divergent from those in Cypress Hills, Alberta, Canada. Although the Alberta parasite population is the most recently reported in Canada, being first identified there in the early 1990s, it was the most genetically diverse of those examined and showed a strong pattern of admixture of genotypes present in western and eastern Europe. Overall, our results are consistent with a model in which western Europe is likely the source of flukes on the east coast of Canada, which were then subsequently translocated to the west coast of Canada. The most recently reported D. dendriticum population in Canada appears to have a different history and likely has multiple origins.
Collapse
Affiliation(s)
- Bradley J van Paridon
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| | - Douglas D Colwell
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Station, Lethbridge, Alberta T1J 4B1, Canada
| | - Cameron P Goater
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Wit J, Gilleard JS. Resequencing Helminth Genomes for Population and Genetic Studies. Trends Parasitol 2017; 33:388-399. [DOI: 10.1016/j.pt.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
25
|
Abstract
Hairworms (Nematomorpha) are a little-known group of parasites, and despite having been represented in the taxonomic literature for over a century, the implementation of molecular genetics in studies of hairworm ecology and evolution lags behind that of other parasitic taxa. In this study, we characterize the genetic diversity of the New Zealand nematomorph fauna and test for genetic structure within the most widespread species found. We provide new mitochondrial and nuclear ribosomal sequence data for three previously described species from New Zealand: Gordius paranensis, Parachordodes diblastus and Euchordodes nigromaculatus. We also present genetic data on a previously reported but undescribed Gordius sp., as well as data from specimens of a new Gordionus sp., a genus new for New Zealand. Phylogenetic analyses of CO1 and nuclear rDNA regions correspond with morphological classification based on scanning electron microscopy, and demonstrate paraphyly of the genus Gordionus and the potential for cryptic species within G. paranensis. Population-level analyses of E. nigromaculatus showed no genetic differentiation among sampling locations across the study area, in contrast to previously observed patterns in known and likely definitive hosts. Taken together, this raises the possibility that factors such as definitive host specificity, intermediate host movement, and passive dispersal of eggs and larvae may influence host-parasite population co-structure in hairworms.
Collapse
|
26
|
Pitaksakulrat O, Kiatsopit N, Laoprom N, Webster BL, Webster JP, Lamberton PHL, Laha T, Andrews RH, Petney TN, Blair D, Carlton EJ, Spear RC, Sithithaworn P. Preliminary genetic evidence of two different populations of Opisthorchis viverrini in Lao PDR. Parasitol Res 2017; 116:1247-1256. [PMID: 28238124 DOI: 10.1007/s00436-017-5401-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 11/28/2022]
Abstract
Opisthorchis viverrini is a major public health concern in Southeast Asia. Various reports have suggested that this parasite may represent a species complex, with genetic structure in the region perhaps being dictated by geographical factors and different species of intermediate hosts. We used four microsatellite loci to analyze O. viverrini adult worms originating from six species of cyprinid fish in Thailand and Lao PDR. Two distinct O. viverrini populations were observed. In Ban Phai, Thailand, only one subgroup occurred, hosted by two different fish species. Both subgroups occurred in fish from That Luang, Lao PDR, but were represented to very different degrees among the fish hosts there. Our data suggest that, although geographical separation is more important than fish host specificity in influencing genetic structure, it is possible that two species of Opisthorchis, with little interbreeding, are present near Vientiane in Lao PDR.
Collapse
Affiliation(s)
- Opal Pitaksakulrat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nadda Kiatsopit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nonglak Laoprom
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of General Science, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Bonnie L Webster
- Department of Life Sciences, Parasites and Vectors Division, Natural History Museum, London, SW7 5BD, UK.,The London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College, Faculty of Medicine (St Mary's Campus), Norfolk Place, London, W2 1PG, UK
| | - Joanne P Webster
- Department of Infectious Disease Epidemiology, Imperial College, Faculty of Medicine (St Mary's Campus), Norfolk Place, London, W2 1PG, UK.,Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hertfordshire, London, AL9 7TA, UK
| | - Poppy H L Lamberton
- Institute of Biodiversity, Animal Health and Comparative Medicine, and Wellcome Centre for Molecular Parasitology, Graham Kerr Building, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ross H Andrews
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Infectious Disease Epidemiology, Imperial College, Faculty of Medicine (St Mary's Campus), Norfolk Place, London, W2 1PG, UK.,Cholangiocarcinoma Screening and Care Program, (CASCAP) Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Trevor N Petney
- Cholangiocarcinoma Screening and Care Program, (CASCAP) Khon Kaen University, Khon Kaen, 40002, Thailand.,Institute of Zoology 1: Ecology and Parasitology, Karlsruhe Institute of Technology, KornblumenStrasse 13, Karlsruhe, Germany
| | - David Blair
- Centre for Tropical Diversity and Climate change, James Cook University, Townsville, Australia
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, 13001 E. 17th Place, B119, Aurora, CO, 8004510, USA
| | - Robert C Spear
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
27
|
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis. Heredity (Edinb) 2016; 117:336-347. [PMID: 27436524 DOI: 10.1038/hdy.2016.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 11/08/2022] Open
Abstract
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).
Collapse
|
28
|
Rahn AK, Krassmann J, Tsobanidis K, MacColl ADC, Bakker TCM. Strong neutral genetic differentiation in a host, but not in its parasite. INFECTION GENETICS AND EVOLUTION 2016; 44:261-271. [PMID: 27421211 DOI: 10.1016/j.meegid.2016.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
Abstract
The genetic diversity and population structure of a parasite with a complex life cycle generally depends on the dispersal by its most motile host. Given that high gene flow is assumed to hinder local adaptation, this can impose significant constraints on a parasite's potential to adapt to local environmental conditions, intermediate host populations, and ultimately to host-parasite coevolution. Here, we aimed to examine the population genetic basis for local host-parasite interactions between the eye fluke Diplostomum lineage 6, a digenean trematode with a multi-host life cycle (including a snail, a fish, and a bird) and its second intermediate host, the three-spined stickleback Gasterosteus aculeatus L. We developed the first microsatellite primers for D. lineage 6 and used them together with published stickleback markers to analyse host and parasite population structures in 19 freshwater lakes, which differ in their local environmental characteristics regarding water chemistry and Diplostomum abundance. Our analyses suggest that one parasite population successfully infects a range of genetically differentiated stickleback populations. The lack of neutral genetic differentiation in D. lineage 6, which could be attributed to the motility of the parasite's definitive host as well as its life cycle characteristics, makes local host-parasite co-adaptations seem more likely on a larger geographical scale than among the lakes of our study site. Our study provides a suitable background for future studies in this system and the first microsatellite primers for a widespread fish parasite.
Collapse
Affiliation(s)
- Anna K Rahn
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany.
| | - Johannes Krassmann
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Kostas Tsobanidis
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Andrew D C MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
29
|
van Paridon BJ, Goater CP, Gilleard JS, Criscione CD. Characterization of nine microsatellite loci for Dicrocoelium dendriticum, an emerging liver fluke of ungulates in North America, and their use to detect clonemates and random mating. Mol Biochem Parasitol 2016; 207:19-22. [DOI: 10.1016/j.molbiopara.2016.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/17/2022]
|
30
|
Griebel J, Gießler S, Yin M, Wolinska J. Parental and hybrid Daphnia
from the D. longispina
complex: long-term dynamics in genetic structure and significance of overwintering modes. J Evol Biol 2016; 29:810-23. [DOI: 10.1111/jeb.12828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/18/2015] [Accepted: 01/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
- J. Griebel
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Berlin Germany
- Department of Biology II; Ludwig Maximilian University Munich; Munich Germany
| | - S. Gießler
- Department of Biology II; Ludwig Maximilian University Munich; Munich Germany
| | - M. Yin
- MOE Key Laboratory of Biodiversity Science and Ecological Engineering; School of Life Science; Fudan University; Shanghai China
| | - J. Wolinska
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Berlin Germany
- Department of Biology, Chemistry and Pharmacy; Institute of Biology; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
31
|
Genetic diversity and population structure of Synthesium pontoporiae (Digenea, Brachycladiidae) linked to its definitive host stocks, the endangered Franciscana dolphin, Pontoporia blainvillei (Pontoporiidae) off the coast of Brazil and Argentina. J Helminthol 2016; 89:19-27. [PMID: 26262593 DOI: 10.1017/s0022149x13000540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pontoporia blainvillei (Gervais and d'Orbigny, 1844) is an endangered small cetacean endemic to South America with four Franciscana Management Areas (FMA) recognized as different population stocks. The role of the intestinal parasite Synthesium pontoporiae (Digenea: Brachycladiidae) as a possible biological marker to differentiate P. blainvillei stocks was evaluated using nuclear and mitochondrial DNA markers. Internal transcribed sequence 1 and 2 (ITS1 and ITS2) regions of S. pontoporiae did not show intraspecific variability. The mitochondrial NADH dehydrogenase subunit 3 (ND3) and cytochrome oxidase subunit I (COI) gene sequences suggested lack of population structure in S. pontoporiae and population expansion. The apparent panmixia of S. pontoporiae may be due to the high mobility of one or more of its intermediary hosts. Alternatively, it may be due to the small sample size. This result is incongruent with the previously proposed FMA.
Collapse
|
32
|
Lagrue C, Joannes A, Poulin R, Blasco-Costa I. Genetic structure and host-parasite co-divergence: evidence for trait-specific local adaptation. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clément Lagrue
- Department of Zoology; University of Otago; Dunedin New Zealand
| | - Arnaud Joannes
- Department of Zoology; University of Otago; Dunedin New Zealand
| | - Robert Poulin
- Department of Zoology; University of Otago; Dunedin New Zealand
| | | |
Collapse
|
33
|
Aemero M, Boissier J, Climent D, Moné H, Mouahid G, Berhe N, Erko B. Genetic diversity, multiplicity of infection and population structure of Schistosoma mansoni isolates from human hosts in Ethiopia. BMC Genet 2015; 16:137. [PMID: 26630932 PMCID: PMC4668696 DOI: 10.1186/s12863-015-0297-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/19/2015] [Indexed: 12/03/2022] Open
Abstract
Background Human intestinal schistosomiasis caused by Schistosoma mansoni and urinary schistosomiasis caused by Schistosoma haematobium are endemic in Ethiopia. Although schistosomes look morphologically uniform, there is variation in infectivity, egg productivity and virulence due to variation in their genetic make. Knowing the genetic diversity and population structure of S. mansoni isolates will enable to understand and consider the possible variability in terms of infectivity, egg productivity and virulence. Methods Between 2010 and 2011, genetic diversity and population structure of Schistosoma mansoni isolates from four endemic areas of Ethiopia was assessed using previously published 11 polymorphic microsatellite loci. Miracidia were hatched from eggs of S. mansoni collected from stools of human subjects residing in Kemissie, Wondo Genet, Ziway and Sille-Elgo villages. DNA was extracted from single miracidium and PCR was run following standard protocol. Allelic polymorphism and population genetic structure was analyzed using different software. Result At a population level (i.e. different villages), the mean number of alleles per locus, allelic richness, expected heterozygosity in Hardy–Weinberg equilibrium and pairwise FST values ranged from 8.5 to 11.5, 3.46–20.8, 0.66–0.73 and 3.57–13.63 %, respectively. All analyzes on population genetic structure reveals strong genetic structuration corresponding to the four sampled villages. At infrapopulation level (i.e. different hosts) the mean number of alleles per locus, allelic richness, expected heterozygosity in Hardy–Weinberg equilibrium and FIS values ranged from 3.09 to 7.55, 1–1.96, 0.59–0.73 and 0.1763–0.4989, respectively. Mean estimated genetically unique adult worm pairs within hosts ranged from 66 to 92 % revealing the occurrence of infection of a single host with genetically unique multiple S. mansoni strains. The data also indicated the occurrence of genetic variation within inter- and intra-hosts. Conclusion High level of genetic diversity and significant population differentiation characterized the S. mansoni isolates of Ethiopia. These results are quite different from previous studies demonstrating that it is difficult to generalize schistosome transmission patterns because epidemiological situation tends to vary. These are important factors to be considered in relation with morbidity, drug resistance or vaccine development.
Collapse
Affiliation(s)
- Mulugeta Aemero
- Microbial, Cellular and Molecular Biology Program Unit, College of Natural Science, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia. .,Department of Biology, College of Natural and Computational Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia.
| | - Jérôme Boissier
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
| | - Deborah Climent
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
| | - Hélène Moné
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
| | - Gabriel Mouahid
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
| | - Nega Berhe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
34
|
Vazquez-Prieto S, Vilas R, Paniagua E, Ubeira FM. Influence of life history traits on the population genetic structure of parasitic helminths: a minireview. Folia Parasitol (Praha) 2015; 62. [DOI: 10.14411/fp.2015.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
|
35
|
Bazsalovicsová E, Králová-Hromadová I, Štefka J, Minárik G, Bokorová S, Pybus M. Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna. Parasit Vectors 2015; 8:288. [PMID: 26017023 PMCID: PMC4469101 DOI: 10.1186/s13071-015-0895-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 12/24/2022] Open
Abstract
Background Population structure and genetic interrelationships of giant liver fluke Fascioloides magna from all enzootic North American regions were revealed in close relation with geographical distribution of its obligate definitive cervid hosts for the first time. Methods Variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamide dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The concatenated data set of both cox1 and nad1 sequences (789 bp) contained 222 sequences that resulted in 50 haplotypes. Genetic data were analysed using Bayesian Inference (BI), Maximum Likelihood (ML) and Analysis of Molecular Variance (AMOVA). Results Phylogenetic analysis revealed two major clades of F. magna, which separated the parasite into western and eastern populations. Western populations included samples from Rocky Mountain trench (Alberta) and northern Pacific coast (British Columbia and Oregon), whereas, the eastern populations were represented by individuals from the Great Lakes region (Minnesota), Gulf coast, lower Mississippi, and southern Atlantic seaboard region (Mississippi, Louisiana, South Carolina, Georgia, Florida) and northern Quebec and Labrador. Haplotype network and results of AMOVA analysis confirmed explicit genetic separation of western and eastern populations of the parasite that suggests long term historical isolation of F. magna populations. Conclusion The genetic makeup of the parasite’s populations correlates with data on historical distribution of its hosts. Based on the mitochondrial data there are no signs of host specificity of F. magna adults towards any definitive host species; the detected haplotypes of giant liver fluke are shared amongst several host species in adjacent populations.
Collapse
Affiliation(s)
- Eva Bazsalovicsová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovakia.
| | | | - Jan Štefka
- Biology Centre AS CR, Institute of Parasitology and Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Gabriel Minárik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, 84215, Bratislava, Slovakia. .,Geneton Ltd., Ilkovičova 3, 84104, Bratislava, Slovakia.
| | - Silvia Bokorová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, 84215, Bratislava, Slovakia.
| | - Margo Pybus
- Alberta Fish and Wildlife Division and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
36
|
Modelling the effects of mass drug administration on the molecular epidemiology of schistosomes. ADVANCES IN PARASITOLOGY 2015; 87:293-327. [PMID: 25765198 DOI: 10.1016/bs.apar.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As national governments scale up mass drug administration (MDA) programs aimed to combat neglected tropical diseases (NTDs), novel selection pressures on these parasites increase. To understand how parasite populations are affected by MDA and how to maximize the success of control programmes, it is imperative for epidemiological, molecular and mathematical modelling approaches to be combined. Modelling of parasite population genetic and genomic structure, particularly of the NTDs, has been limited through the availability of only a few molecular markers to date. The landscape of infectious disease research is being dramatically reshaped by next-generation sequencing technologies and our understanding of how repeated selective pressures are shaping parasite populations is radically altering. Genomics can provide high-resolution data on parasite population structure, and identify how loci may contribute to key phenotypes such as virulence and/or drug resistance. We discuss the incorporation of genetic and genomic data, focussing on the recently sequenced Schistosoma spp., into novel mathematical transmission models to inform our understanding of the impact of MDA and other control methods. We summarize what is known to date, the models that exist and how population genetics has given us an understanding of the effects of MDA on the parasites. We consider how genetic and genomic data have the potential to shape future research, highlighting key areas where data are lacking, and how future molecular epidemiology knowledge can aid understanding of transmission dynamics and the effects of MDA, ultimately informing public health policy makers of the best interventions for NTDs.
Collapse
|
37
|
Chelomina GN, Tatonova YV, Hung NM, Ngo HD. Genetic diversity of the Chinese liver fluke Clonorchis sinensis from Russia and Vietnam. Int J Parasitol 2014; 44:795-810. [DOI: 10.1016/j.ijpara.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 11/24/2022]
|
38
|
Abstract
Parasite virulence, or the damage a parasite does to its host, is measured in terms of both host costs (reductions in host growth, reproduction and survival) and parasite benefits (increased transmission and parasite numbers) in the literature. Much work has shown that ecological and genetic factors can be strong selective forces in virulence evolution. This review uses kin selection theory to explore how variations in host ecological parameters impact the genetic relatedness of parasite populations and thus virulence. We provide a broad overview of virulence and population genetics studies and then draw connections to existing knowledge about natural parasite populations. The impact of host movement (transporting parasites) and host resistance (filtering parasites) on the genetic structure and virulence of parasite populations is explored, and empirical studies of these factors using Plasmodium and trematode systems are proposed.
Collapse
|
39
|
A review of molecular approaches for investigating patterns of coevolution in marine host-parasite relationships. ADVANCES IN PARASITOLOGY 2014; 84:209-52. [PMID: 24480315 DOI: 10.1016/b978-0-12-800099-1.00004-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Parasites and their relationships with hosts play a crucial role in the evolutionary pathways of every living organism. One method of investigating host-parasite systems is using a molecular approach. This is particularly important as analyses based solely on morphology or laboratory studies of parasites and their hosts do not take into account historical evolutionary interactions that can shape the distribution, abundance and population structure of parasites and their hosts. However, the predominant host-parasite coevolution literature has focused on terrestrial hosts and their parasites, and there still is a lack of studies in marine environments. Given that marine systems are generally more open than terrestrial ones, they provide fascinating opportunities for large-scale (as well as small-scale) geographic studies. Further, patterns and processes of genetic structuring and systematics are becoming more available across many different taxa (but especially fishes) in many marine systems, providing an excellent basis for examining whether parasites follow host population/species structure. In this chapter, we first highlight the factors and processes that challenge our ability to interpret evolutionary patterns of coevolution of hosts and their parasites in marine systems at different spatial, temporal and taxonomic scales. We then review the use of the most commonly utilized genetic markers in studying marine host-parasite systems. We give an overview and discuss which molecular methodologies resolve evolutionary relationships best and also discuss the applicability of new approaches, such as next-generation sequencing and studies utilizing functional markers to gain insights into more contemporary processes shaping host-parasite relationships.
Collapse
|
40
|
Valdivia IM, Criscione CD, Cárdenas L, Durán CP, Oliva ME. Does a facultative precocious life cycle predispose the marine trematode Proctoeces cf. lintoni to inbreeding and genetic differentiation among host species? Int J Parasitol 2014; 44:183-8. [PMID: 24447491 DOI: 10.1016/j.ijpara.2013.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 10/25/2022]
Abstract
Intraspecific variability in parasite life cycle complexity (number of hosts and species of hosts in the life cycle) may have an impact how parasite genetic variation is partitioned among individual parasites, host individuals or host species within a given area. Among digenean trematodes, a three-host life cycle is common. However, a few species are precocious and may reach sexual maturity in what is typically regarded as the second intermediate host. The objective of this study was to determine whether a precocious life cycle predisposes digeneans to possible inbreeding or genetic subdivision among host species. As a study system, we used the digenean Proctoeces cf. lintoni whose metacercariae precociously mature (facultative) without a cyst wall in the gonads of multiple sympatric species of keyhole limpets (Fissurella spp.), typically regarded as the second intermediate hosts. Genotyped parasites were collected from four species of limpets and the clingfish Sicyases sanguineus, the third and final host where sexual maturity occurs. We found very high microsatellite diversity, Hardy-Weinberg equilibrium over all genotyped individuals, and little to no genetic structuring among parasites collected from the different host species. The fact that metacercariae do not encyst in the keyhole limpets, coupled with the high mixing potential of an aquatic environment, likely promote panmixia in local populations of P. cf. lintoni.
Collapse
Affiliation(s)
- I M Valdivia
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Isla Teja, Valdivia, Chile; Programa de Doctorado en Ciencias Aplicadas, Mención en Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile.
| | - C D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - L Cárdenas
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Isla Teja, Valdivia, Chile
| | - C P Durán
- Instituto de Ciencias Naturales "Alexander Von Humboldt", Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Av. Angamos 601, P.O. Box 170, Antofagasta, Chile
| | - M E Oliva
- Instituto de Ciencias Naturales "Alexander Von Humboldt", Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Av. Angamos 601, P.O. Box 170, Antofagasta, Chile
| |
Collapse
|
41
|
Elliott T, Muller A, Brockwell Y, Murphy N, Grillo V, Toet HM, Anderson G, Sangster N, Spithill TW. Evidence for high genetic diversity of NAD1 and COX1 mitochondrial haplotypes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (liver fluke) in Australia. Vet Parasitol 2013; 200:90-6. [PMID: 24360656 DOI: 10.1016/j.vetpar.2013.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022]
Abstract
In recent years, the global incidence of Fasciola hepatica (liver fluke) infections exhibiting resistance to triclabendazole (TCBZ) has increased, resulting in increased economic losses for livestock producers and threatening future control. The development of TCBZ resistance and the worldwide discovery of F. hepatica population diversity has emphasized the need to further understand the genetic structure of drug susceptible and resistant Fasciola populations within Australia. In this study, the genetic diversity of liver flukes was estimated by sequencing mitochondrial DNA (mtDNA) encoding the NAD1 (530 bp) and COX1 (420 bp) genes of 208 liver flukes (F. hepatica) collected from three populations: field isolates obtained from abattoirs from New South Wales (NSW) and Victoria (Vic); three TCBZ-resistant fluke populations from NSW and Victoria; and the well-established TCBZ-susceptible Sunny Corner laboratory isolate. Overall nucleotide diversity for all flukes analysed of 0.00516 and 0.00336 was estimated for the NAD1 and COX1 genes respectively. Eighteen distinct haplotypes were established for the NAD1 gene and six haplotypes for the COX1 gene, resulting in haplotype diversity levels of 0.832 and 0.482, respectively. One field isolate showed a similar low level of haplotype diversity as seen in the Sunny Corner laboratory isolate. Analysis of TCBZ-resistant infrapopulations from 3 individual cattle grazing one property revealed considerable sequence parasite diversity between cattle. Analysis of parasite TCBZ-resistant infrapopulations from sheep and cattle revealed haplotypes unique to each host, but no significant difference between parasite populations. Fst analysis of fluke populations revealed little differentiation between the resistant and field populations. This study has revealed a high level of diversity in field and drug resistant flukes in South-Eastern Australia.
Collapse
Affiliation(s)
- T Elliott
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - A Muller
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Y Brockwell
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - N Murphy
- Department of Genetics, La Trobe University, Bundoora, VIC, Australia
| | - V Grillo
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia; Australian Wildlife Health Network, Taronga Zoo, Sydney, NSW, Australia
| | - H M Toet
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - G Anderson
- Virbac (Australia) Pty Ltd., Australia, Milperra, NSW, Australia
| | - N Sangster
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - T W Spithill
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia; School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|
42
|
Gower CM, Gouvras AN, Lamberton PH, Deol A, Shrivastava J, Mutombo PN, Mbuh JV, Norton AJ, Webster BL, Stothard JR, Garba A, Lamine MS, Kariuki C, Lange CN, Mkoji GM, Kabatereine NB, Gabrielli AF, Rudge JW, Fenwick A, Sacko M, Dembelé R, Lwambo NJ, Tchuem Tchuenté LA, Rollinson D, Webster JP. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: implications for epidemiology, evolution and control. Acta Trop 2013; 128:261-74. [PMID: 23041540 DOI: 10.1016/j.actatropica.2012.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
We conducted the first meta-analysis of ten Schistosoma haematobium (one published and nine unpublished) and eight Schistosoma mansoni (two published and six unpublished) microsatellite datasets collected from individual schistosome-infected school-children across six sub-Saharan Africa countries. High levels of genetic diversity were documented in both S. haematobium and S. mansoni. In S. haematobium populations, allelic richness did not differ significantly between the ten schools, despite widely varying prevalences and intensities of infection, but higher levels of heterozygote deficiency were seen in East than in West Africa. In contrast, S. mansoni populations were more diverse in East than West African schools, but heterozygosity levels did not vary significantly with geography. Genetic structure in both S. haematobium and S. mansoni populations was documented, at both a regional and continental scale. Such structuring might be expected to slow the spread to new areas of anti-schistosomal drug resistance should it develop. There was, however, limited evidence of genetic structure at the individual host level, which might be predicted to promote the development or establishment of drug resistance, particularly if it were a recessive trait. Our results are discussed in terms of their potential implications for the epidemiology and evolution of schistosomes as well as their subsequent control across sub-Saharan Africa.
Collapse
|
43
|
French MD, Churcher TS, Basáñez MG, Norton AJ, Lwambo NJ, Webster JP. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Trop 2013; 128:196-205. [PMID: 22440199 DOI: 10.1016/j.actatropica.2012.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/02/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
Detecting potential changes in genetic diversity in schistosome populations following chemotherapy with praziquantel (PZQ) is crucial if we are to fully understand the impact of such chemotherapy with respect to the potential emergence of resistance and/or other evolutionary outcomes of interventions. Doing so by implementing effective, and cost-efficient sampling protocols will help to optimise time and financial resources, particularly relevant to a disease such as schistosomiasis currently reliant on a single available drug. Here we explore the effect on measures of parasite genetic diversity of applying various field sampling approaches, both in terms of the number of (human) hosts sampled and the number of transmission stages (miracidia) sampled per host for a Schistosoma mansoni population in Tanzania pre- and post-treatment with PZQ. In addition, we explore population structuring within and between hosts by comparing the estimates of genetic diversity obtained assuming a 'component population' approach with those using an 'infrapopulation' approach. We found that increasing the number of hosts sampled, rather than the number of miracidia per host, gives more robust estimates of genetic diversity. We also found statistically significant population structuring (using Wright's F-statistics) and significant differences in the measures of genetic diversity depending on the parasite population definition. The relative advantages, disadvantages and, hence, subsequent reliability of these metrics for parasites with complex life-cycles are discussed, both for the specific epidemiological and ecological scenario under study here and for their future application to other areas and schistosome species.
Collapse
|
44
|
Abstract
SUMMARYGene flow maintains the genetic integrity of species over large spatial scales, and dispersal maintains gene flow among separate populations. However, body size is a strong correlate of dispersal ability, with small-bodied organisms being poor dispersers. For parasites, small size may be compensated by using their hosts for indirect dispersal. In trematodes, some species use only aquatic hosts to complete their life cycle, whereas others use birds or mammals as final hosts, allowing dispersal among separate aquatic habitats. We performed the first test of the universality of the type of life cycle as a driver of parasite dispersal, using a meta-analysis of 16 studies of population genetic structure in 16 trematode species. After accounting for the geographic scale of a study, the number of populations sampled, and the genetic marker used, we found the type of life cycle to be the best predictor of genetic structure (Fst): trematode species bound to complete their life cycle within water showed significantly more pronounced genetic structuring than those leaving water through a bird or mammal host. This finding highlights the dependence of parasites on host traits for their dispersal, suggesting that genetic differentiation of parasites reflects the mobility of their hosts.
Collapse
|
45
|
Brusentsov II, Katokhin AV, Brusentsova IV, Shekhovtsov SV, Borovikov SN, Goncharenko GG, Lider LA, Romashov BV, Rusinek OT, Shibitov SK, Suleymanov MM, Yevtushenko AV, Mordvinov VA. Low genetic diversity in wide-spread Eurasian liver fluke Opisthorchis felineus suggests special demographic history of this trematode species. PLoS One 2013; 8:e62453. [PMID: 23634228 PMCID: PMC3636034 DOI: 10.1371/journal.pone.0062453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/21/2013] [Indexed: 01/09/2023] Open
Abstract
Opisthorchis felineus or Siberian liver fluke is a trematode parasite (Opisthorchiidae) that infects the hepato-biliary system of humans and other mammals. Despite its public health significance, this wide-spread Eurasian species is one of the most poorly studied human liver flukes and nothing is known about its population genetic structure and demographic history. In this paper, we attempt to fill this gap for the first time and to explore the genetic diversity in O. felineus populations from Eastern Europe (Ukraine, European part of Russia), Northern Asia (Siberia) and Central Asia (Northern Kazakhstan). Analysis of marker DNA fragments from O. felineus mitochondrial cytochrome c oxidase subunit 1 and 3 (cox1, cox3) and nuclear rDNA internal transcribed spacer 1 (ITS1) sequences revealed that genetic diversity is very low across the large geographic range of this species. Microevolutionary processes in populations of trematodes may well be influenced by their peculiar biology. Nevertheless, we suggest that lack of population genetics structure observed in O. felineus can be primarily explained by the Pleistocene glacial events and subsequent sudden population growth from a very limited group of founders. Rapid range expansion of O. felineus through Asian and European territories after severe bottleneck points to a high dispersal potential of this trematode species.
Collapse
Affiliation(s)
- Ilja I. Brusentsov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V. Katokhin
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina V. Brusentsova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergei V. Shekhovtsov
- Laboratory of Molecular Biotechnology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergei N. Borovikov
- Department of Animal Biotechnology, S.Seifullin Kazakh Agrotechnical University, Astana, Republic of Kazakhstan
| | | | - Lyudmila A. Lider
- Department of Veterinary Medicine, S.Seifullin Kazakh Agrotechnical University, Astana, Republic of Kazakhstan
| | - Boris V. Romashov
- Scientific Department, Voronezh State Biosphere Reserve, Voronezh, Russia
| | - Olga T. Rusinek
- Department of Parasitology, The Baikal Museum at the Irkutsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Listvyanka, Irkutsk, Russia
| | - Samat K. Shibitov
- Department of Epizootological Problems, All-Russian K.I. Skryabin Institute of Helminthology, Moscow, Russia
| | - Marat M. Suleymanov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Yevtushenko
- Department of Parasitology Ichthyopathology and Arachnology, National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkov, Ukraine
| | - Viatcheslav A. Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
46
|
Upstream-downstream gradient in infection levels by fish parasites: a common river pattern? Parasitology 2012; 140:266-74. [PMID: 23058079 DOI: 10.1017/s0031182012001527] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Physical habitat structure can influence the distribution and abundance of organisms. In rivers, stream drift, a common process originating from the unidirectional water flow, favours the displacement and downstream dispersion of invertebrates. This process could also generate a gradient in infection levels, leading to decreasing numbers of parasites per host as one moves upstream from the river mouth. We tested this hypothesis using 4 trematode species infecting the fish Gobiomorphus breviceps in the Manuherikia River (New Zealand). We analysed the abundance of each trematode infrapopulation as a function of distance from the river junction and fish size by generalized linear models. Our results supported the existence of a longitudinal gradient in trematode abundance along the river with a decreasing downstream-to-upstream continuum. This applied to 3 out of the 4 trematode species studied, suggesting that this might be a common pattern in river populations. Thus, the unidirectional river flow and a major process like drift in lotic systems, that influences the dynamics and distribution of invertebrate hosts, can also affect trematodes. Host properties like habitat preference, and parasite traits, particularly those related to transmission mode can influence the strength of the observed gradient, as may other environmental and biotic factors.
Collapse
|
47
|
Testing local-scale panmixia provides insights into the cryptic ecology, evolution, and epidemiology of metazoan animal parasites. Parasitology 2012; 139:981-97. [PMID: 22475053 DOI: 10.1017/s0031182012000455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When every individual has an equal chance of mating with other individuals, the population is classified as panmictic. Amongst metazoan parasites of animals, local-scale panmixia can be disrupted due to not only non-random mating, but also non-random transmission among individual hosts of a single host population or non-random transmission among sympatric host species. Population genetics theory and analyses can be used to test the null hypothesis of panmixia and thus, allow one to draw inferences about parasite population dynamics that are difficult to observe directly. We provide an outline that addresses 3 tiered questions when testing parasite panmixia on local scales: is there greater than 1 parasite population/species, is there genetic subdivision amongst infrapopulations within a host population, and is there asexual reproduction or a non-random mating system? In this review, we highlight the evolutionary significance of non-panmixia on local scales and the genetic patterns that have been used to identify the different factors that may cause or explain deviations from panmixia on a local scale. We also discuss how tests of local-scale panmixia can provide a means to infer parasite population dynamics and epidemiology of medically relevant parasites.
Collapse
|
48
|
Vilas R, Vázquez-Prieto S, Paniagua E. Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance. INFECTION GENETICS AND EVOLUTION 2011; 12:45-52. [PMID: 22036705 DOI: 10.1016/j.meegid.2011.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/06/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Twelve polymorphic genetic markers, eight allozymic loci and four microsatellites, were used to characterize 20 infrapopulations of Fasciola hepatica (all flukes from 10 individual cattle and 10 sheep) from 11 farms in Northwest Spain. Results suggest different patterns of population genetic structure depending on the host species. Individuals identified as clones were much more frequent in sheep. The common presence of clones and its nonrandom occurrence among individual hosts suggests clumped transmission of liver flukes in sheep. After reducing significant repeated multilocus genotypes to one unique copy within infrapopulations, results show relatively high levels of gene diversity within infrapopulations from cattle and sheep (0.411 and 0.360 on average, respectively). However, parasites of sheep appear to show significantly more structured variation at the infrapopulation level (Standardized F(ST)=0.087 and 0.170 for parasites of cattle and sheep, respectively). Compared to the parasites from cattle, results suggest that populations from sheep show lower levels of gene flow, higher degree of aggregate transmission, higher probability of mating within clones, and lower parasitic load. These differences have implications for the evolution of anthelmintic resistance because they affect the effective population size and the degree of inbreeding. The development and rapid spread of resistance seems likely in the parasites of cattle because populations from the study area are characterized by high gene flow. However, results also suggest that the efficient selection of a new recessive advantageous mutation would be favored in parasites of sheep due to a greater potential for inbreeding.
Collapse
Affiliation(s)
- Román Vilas
- Departamento de Xenética, Universidade de Santiago de Compostela, Facultade de Veterinaria, Campus de Lugo, 27002 Lugo, Spain.
| | | | | |
Collapse
|
49
|
Lymbery AJ, Thompson RCA. The molecular epidemiology of parasite infections: tools and applications. Mol Biochem Parasitol 2011; 181:102-16. [PMID: 22027028 DOI: 10.1016/j.molbiopara.2011.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Molecular epidemiology, broadly defined, is the application of molecular genetic techniques to the dynamics of disease in a population. In this review, we briefly describe molecular and analytical tools available for molecular epidemiological studies and then provide an overview of how they can be applied to better understand parasitic disease. A range of new molecular tools have been developed in recent years, allowing for the direct examination of parasites from clinical or environmental samples, and providing access to relatively cheap, rapid, high throughput molecular assays. At the same time, new analytical approaches, in particular those derived from coalescent theory, have been developed to provide more robust estimates of evolutionary processes and demographic parameters from multilocus, genotypic data. To date, the primary application of molecular epidemiology has been to provide specific and sensitive identification of parasites and to resolve taxonomic issues, particularly at the species level and below. Population genetic studies have also been used to determine the extent of genetic diversity among populations of parasites and the degree to which this diversity is associated with different host cycles or epidemiologically important phenotypes. Many of these studies have also shed new light on transmission cycles of parasites, particularly the extent to which zoonotic transmission occurs, and on the prevalence and importance of mixed infections with different parasite species or intraspecific variants (polyparasitism). A major challenge, and one which is now being addressed by an increasing number of studies, is to find and utilize genetic markers for complex traits of epidemiological significance, such as drug resistance, zoonotic potential and virulence.
Collapse
Affiliation(s)
- A J Lymbery
- Fish Health Unit, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch WA 6150, Australia.
| | | |
Collapse
|
50
|
Criscione CD, Vilas R, Paniagua E, Blouin MS. More than meets the eye: detecting cryptic microgeographic population structure in a parasite with a complex life cycle. Mol Ecol 2011; 20:2510-24. [PMID: 21535278 DOI: 10.1111/j.1365-294x.2011.05113.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonrandom recruitment of parasites among hosts can lead to genetic differentiation among hosts and mating dynamics that promote inbreeding. It has been hypothesized that strictly aquatic parasites with intermediate hosts will behave as panmictic populations among hosts because ample opportunity exists for random mixing of unrelated individuals during transmission to the definitive host. A previous allozyme study on the marine trematode Lecithochirium fusiforme did not support this hypothesis; in that, there was genetic differentiation among, and significant heterozygote deficiencies within, definitive hosts. We revisit this system and use microsatellites to obtain multilocus genotypes. Our goal was to determine whether cryptic subgroups and/or the presence of clones could account for the apparent deviation from 'panmixia'. We find strong evidence for cryptic subdivision (three genetic clusters) that causes the Wahlund effect and differentiation among definitive hosts. After accounting for these cryptic groups, we see panmictic genetic structure among definitive hosts that is consistent with the 'high mixing in aquatic habitats' hypothesis. We see evidence for cotransmission of clones in all three clusters, but this level of clonal structure did not have a major impact in causing deviations from Hardy-Weinberg equilibrium, and only affected genetic differentiation among hosts in one cluster. A cursory examination of the data may have led to incorrect conclusions about nonrandom transmission. However, it is obvious in this system that there is more than meets the eye in relation to the actual make-up of parasite populations. In general, the methods we employ will be useful for elucidating hidden patterns in other organisms where cryptic structure may be common (e.g. those with limited morphology or complex life histories).
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|