1
|
Weber JJ, Brummett LM, Coca ME, Tabunoki H, Kanost MR, Ragan EJ, Park Y, Gorman MJ. Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103811. [PMID: 35781032 PMCID: PMC9869689 DOI: 10.1016/j.ibmb.2022.103811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michelle E Coca
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Emily J Ragan
- Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, CO, 80217, USA.
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Hrdina A, Iatsenko I. The roles of metals in insect-microbe interactions and immunity. CURRENT OPINION IN INSECT SCIENCE 2022; 49:71-77. [PMID: 34952239 DOI: 10.1016/j.cois.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Metal ions play essential roles in diverse physiological processes in insects, including immunity and interactions with microbes. Some, like iron, are essential nutrients and therefore are the subject of a tug-of-war between insects and microbes. Recent findings showed that the hypoferremic response mediated by Transferrin 1 is an essential defense mechanism against pathogens in insects. Transferrin 1 and the overall iron metabolism were also implicated in mediating interactions between insects and beneficial microbes. Other metals, like copper and zinc, can interfere with insect immune effectors, and either enhance (antimicrobial peptides) or reduce (reactive oxygen species) their activity. By covering recent advances in the field, this review emphasizes the importance of metals as essential mediators of insect-microbe interactions.
Collapse
Affiliation(s)
- Alexandra Hrdina
- Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
3
|
Suppression of Transferrin Expression Enhances the Susceptibility of Plutella xylostella to Isaria cicadae. INSECTS 2020; 11:insects11050281. [PMID: 32380643 PMCID: PMC7290965 DOI: 10.3390/insects11050281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 01/31/2023]
Abstract
Transferrins (Trfs) are multifunctional proteins with key functions in iron transport. In the present study, a Trf (PxTrf) from Plutella xylostella was identified and characterized. The PxTrf consisted of a 2046-bp open reading frame, which encoded a 681 amino acid protein with a molecular weight of 73.43 kDa and had an isoelectric point of 7.18. Only a single iron domain was predicted in the N-lobe of PxTrf. Although PxTrf was expressed ubiquitously, the highest levels of expression were observed in the fourth instar larvae. PxTrf transcript level was highest in fat bodies among various tissues. The PxTrf transcript levels increased significantly after the stimulation of pathogens. A decrease in PxTrf expression via RNA interference enhanced the susceptibility of P. xylostella to the Isaria cicadae fungus and inhibited hemocyte nodulation in response to the fungal challenge. In addition, a considerable increase in the pupation rate was observed in larvae treated with double-stranded PxTrf (dsPxTrf). Overall, according to the results, PxTrf may participate in P. xylostella immunity against fungal infection and insect development.
Collapse
|
4
|
Iatsenko I, Marra A, Boquete JP, Peña J, Lemaitre B. Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster. Proc Natl Acad Sci U S A 2020; 117:7317-7325. [PMID: 32188787 PMCID: PMC7132258 DOI: 10.1073/pnas.1914830117] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron sequestration is a recognized innate immune mechanism against invading pathogens mediated by iron-binding proteins called transferrins. Despite many studies on antimicrobial activity of transferrins in vitro, their specific in vivo functions are poorly understood. Here we use Drosophila melanogaster as an in vivo model to investigate the role of transferrins in host defense. We find that systemic infections with a variety of pathogens trigger a hypoferremic response in flies, namely, iron withdrawal from the hemolymph and accumulation in the fat body. Notably, this hypoferremia to infection requires Drosophila nuclear factor κB (NF-κB) immune pathways, Toll and Imd, revealing that these pathways also mediate nutritional immunity in flies. Next, we show that the iron transporter Tsf1 is induced by infections downstream of the Toll and Imd pathways and is necessary for iron relocation from the hemolymph to the fat body. Consistent with elevated iron levels in the hemolymph, Tsf1 mutants exhibited increased susceptibility to Pseudomonas bacteria and Mucorales fungi, which could be rescued by chemical chelation of iron. Furthermore, using siderophore-deficient Pseudomonas aeruginosa, we discover that the siderophore pyoverdine is necessary for pathogenesis in wild-type flies, but it becomes dispensable in Tsf1 mutants due to excessive iron present in the hemolymph of these flies. As such, our study reveals that, similar to mammals, Drosophila uses iron limitation as an immune defense mechanism mediated by conserved iron-transporting proteins transferrins. Our in vivo work, together with accumulating in vitro studies, supports the immune role of insect transferrins against infections via an iron withholding strategy.
Collapse
Affiliation(s)
- Igor Iatsenko
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Alice Marra
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Philippe Boquete
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
5
|
Matetovici I, De Vooght L, Van Den Abbeele J. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:181-188. [PMID: 31075296 DOI: 10.1016/j.dci.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tsetse flies (Glossina sp.) are medically and veterinary important vectors of African trypanosomes, protozoan parasites that cause devastating diseases in humans and livestock in sub-Saharan Africa. These flies feed exclusively on vertebrate blood and harbor a limited diversity of obligate and facultative bacterial commensals. They have a well-developed innate immune system that plays a key role in protecting the fly against invading pathogens and in modulating the fly's ability to transmit African trypanosomes. In this review, we briefly summarize our current knowledge on the tsetse fly innate immune system and its interaction with the bacterial commensals and the trypanosome parasite.
Collapse
Affiliation(s)
- Irina Matetovici
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium.
| |
Collapse
|
6
|
Bombaça ACS, Dias FDA, Ennes-Vidal V, Garcia-Gomes ADS, Sorgine MHF, d'Avila-Levy CM, Menna-Barreto RFS. Hydrogen peroxide resistance in Strigomonas culicis: Effects on mitochondrial functionality and Aedes aegypti interaction. Free Radic Biol Med 2017; 113:255-266. [PMID: 28993269 DOI: 10.1016/j.freeradbiomed.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022]
Abstract
Reactive oxygen species (ROS) are toxic molecules involved in several biological processes such as cellular signaling, proliferation, differentiation and cell death. Adaptations to oxidative environments are crucial for the success of the colonization of insects by protozoa. Strigomonas culicis is a monoxenic trypanosomatid found in the midgut of mosquitoes and presenting a life cycle restricted to the epimastigote form. Among S. culicis peculiarities, there is an endosymbiotic bacterium in the cytoplasm, which completes essential biosynthetic routes of the host cell and may represent an intermediary evolutive step in organelle origin, thus constituting an interesting model for evolutive researches. In this work, we induced ROS resistance in wild type S. culicis epimastigotes by the incubation with increasing concentrations of hydrogen peroxide (H2O2), and compared the oxidative and energetic metabolisms among wild type, wild type-H2O2 resistant and aposymbiotic strains. Resistant protozoa were less sensitive to the oxidative challenge and more dependent on oxidative phosphorylation, which was demonstrated by higher oxygen consumption and mitochondrial membrane potential, increased activity of complexes II-III and IV, increased complex II gene expression and higher ATP production. Furthermore, the wild type-H2O2 resistant strain produced reduced ROS levels and showed lower lipid peroxidation, as well as an increase in gene expression of antioxidant enzymes and thiol-dependent peroxidase activity. On the other hand, the aposymbiotic strain showed impaired mitochondrial function, higher H2O2 production and deficient antioxidant response. The induction of H2O2 resistance also led to a remarkable increase in Aedes aegypti midgut binding in vitro and colonization in vivo, indicating that both the pro-oxidant environment in the mosquito gut and the oxidative stress susceptibility regulate S. culicis population in invertebrates.
Collapse
Affiliation(s)
| | - Felipe de Almeida Dias
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline Dos Santos Garcia-Gomes
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Microbiologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Rio de Janeiro, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
7
|
Awuoche EO, Weiss BL, Vigneron A, Mireji PO, Aksoy E, Nyambega B, Attardo GM, Wu Y, O’Neill M, Murilla G, Aksoy S. Molecular characterization of tsetse's proboscis and its response to Trypanosoma congolense infection. PLoS Negl Trop Dis 2017; 11:e0006057. [PMID: 29155830 PMCID: PMC5695773 DOI: 10.1371/journal.pntd.0006057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) transmit parasitic African trypanosomes (Trypanosoma spp.), including Trypanosoma congolense, which causes animal African trypanosomiasis (AAT). AAT detrimentally affects agricultural activities in sub-Saharan Africa and has negative impacts on the livelihood and nutrient availability for the affected communities. After tsetse ingests an infectious blood meal, T. congolense sequentially colonizes the fly’s gut and proboscis (PB) organs before being transmitted to new mammalian hosts during subsequent feedings. Despite the importance of PB in blood feeding and disease transmission, little is known about its molecular composition, function and response to trypanosome infection. To bridge this gap, we used RNA-seq analysis to determine its molecular characteristics and responses to trypanosome infection. By comparing the PB transcriptome to whole head and midgut transcriptomes, we identified 668 PB-enriched transcripts that encoded proteins associated with muscle tissue, organ development, chemosensation and chitin-cuticle structure development. Moreover, transcripts encoding putative mechanoreceptors that monitor blood flow during tsetse feeding and interact with trypanosomes were also expressed in the PB. Microscopic analysis of the PB revealed cellular structures associated with muscles and cells. Infection with T. congolense resulted in increased and decreased expression of 38 and 88 transcripts, respectively. Twelve of these differentially expressed transcripts were PB-enriched. Among the transcripts induced upon infection were those encoding putative proteins associated with cell division function(s), suggesting enhanced tissue renewal, while those suppressed were associated with metabolic processes, extracellular matrix and ATP-binding as well as immunity. These results suggest that PB is a muscular organ with chemosensory and mechanosensory capabilities. The mechanoreceptors may be point of PB-trypanosomes interactions. T. congolense infection resulted in reduced metabolic and immune capacity of the PB. The molecular knowledge on the composition and putative functions of PB forms the foundation to identify new targets to disrupt tsetse’s ability to feed and parasite transmission. Tsetse flies are economically important insects responsible for transmitting African trypanosomes, which cause debilitating and fatal diseases in humans and animals in sub-Saharan Africa. In the tsetse vector, trypanosomes undergo complex developmental processes in the midgut, culminating with the generation of mammalian infective forms in the salivary glands for Trypanosoma brucei spp. and in the proboscis (PB) for Trypanosoma congolense and Trypanosoma vivax. Molecular studies on tsetse’s PB, and its interactions with trypanosomes, are limited. We used RNA-seq analysis to obtain molecular information on the putative products associated with tsetse’s PB and characterized PB responses to infection with T. congolense. Based on the predicted putative protein profile, the PB appears to be a muscular organ with mechanoreceptors and may have the capacity to sense and respond to chemical cues. Parasite infections of the PB lead to decreased expression of genes whose products are associated with metabolic and immune functions. These data provide insights into tsetse-trypanosome interactions in the PB organ and identify potential candidate targets that can be further explored to develop biotechnological strategies to reduce transmission of trypanosomes by tsetse flies.
Collapse
Affiliation(s)
- Erick O. Awuoche
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu. Kenya
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Private Bag, Maseno, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
- Department of Agriculture, School of Agriculture and Food Science, Meru University of Science and Technology, Meru, Kenya
- * E-mail:
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Paul O. Mireji
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu. Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
- Centre for Geographic Medicine Research—Coast, Kenya Medical Research Institute, Kilifi. Kenya
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Benson Nyambega
- Department of Medical Biochemistry, School of Medicine, Maseno University, Private Bag, Maseno, Kenya
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Michelle O’Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Grace Murilla
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu. Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
8
|
Tsagmo Ngoune JM, Njiokou F, Loriod B, Kame-Ngasse G, Fernandez-Nunez N, Rioualen C, van Helden J, Geiger A. Transcriptional Profiling of Midguts Prepared from Trypanosoma/T. congolense-Positive Glossina palpalis palpalis Collected from Two Distinct Cameroonian Foci: Coordinated Signatures of the Midguts' Remodeling As T. congolense-Supportive Niches. Front Immunol 2017; 8:876. [PMID: 28804485 PMCID: PMC5532377 DOI: 10.3389/fimmu.2017.00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Our previous transcriptomic analysis of Glossina palpalis gambiensis experimentally infected or not with Trypanosoma brucei gambiense aimed to detect differentially expressed genes (DEGs) associated with infection. Specifically, we selected candidate genes governing tsetse fly vector competence that could be used in the context of an anti-vector strategy, to control human and/or animal trypanosomiasis. The present study aimed to verify whether gene expression in field tsetse flies (G. p. palpalis) is modified in response to natural infection by trypanosomes (T. congolense), as reported when insectary-raised flies (G. p. gambiensis) are experimentally infected with T. b. gambiense. This was achieved using the RNA-seq approach, which identified 524 DEGs in infected vs. non-infected tsetse flies, including 285 downregulated genes and 239 upregulated genes (identified using DESeq2). Several of these genes were highly differentially expressed, with log2 fold change values in the vicinity of either +40 or −40. Downregulated genes were primarily involved in transcription/translation processes, whereas encoded upregulated genes governed amino acid and nucleotide biosynthesis pathways. The BioCyc metabolic pathways associated with infection also revealed that downregulated genes were mainly involved in fly immunity processes. Importantly, our study demonstrates that data on the molecular cross-talk between the host and the parasite (as well as the always present fly microbiome) recorded from an experimental biological model has a counterpart in field flies, which in turn validates the use of experimental host/parasite couples.
Collapse
Affiliation(s)
- Jean M Tsagmo Ngoune
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Béatrice Loriod
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | | | - Nicolas Fernandez-Nunez
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Claire Rioualen
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Jacques van Helden
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
9
|
Patino LH, Ramírez JD. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. INFECTION GENETICS AND EVOLUTION 2017; 49:273-282. [PMID: 28179142 DOI: 10.1016/j.meegid.2017.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts.
Collapse
Affiliation(s)
- Luz Helena Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia.
| |
Collapse
|
10
|
Brummett LM, Kanost MR, Gorman MJ. The immune properties of Manduca sexta transferrin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:1-9. [PMID: 27986638 PMCID: PMC5292288 DOI: 10.1016/j.ibmb.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 μM to 10 μM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 μM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 μM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.
Collapse
Affiliation(s)
- Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
11
|
Dashti ZJS, Gamieldien J, Christoffels A. Computational characterization of Iron metabolism in the Tsetse disease vector, Glossina morsitans: IRE stem-loops. BMC Genomics 2016; 17:561. [PMID: 27503259 PMCID: PMC4977773 DOI: 10.1186/s12864-016-2932-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background Iron metabolism and regulation is an indispensable part of species survival, most importantly for blood feeding insects. Iron regulatory proteins are central regulators of iron homeostasis, whose binding to iron response element (IRE) stem-loop structures within the UTRs of genes regulate expression at the post-transcriptional level. Despite the extensive literature on the mechanism of iron regulation in human, less attention has been given to insect and more specifically the blood feeding insects, where research has mainly focused on the characterization of ferritin and transferrin. We thus, examined the mechanism of iron homeostasis through a genome-wide computational identification of IREs and other enriched motifs in the UTRs of Glossina morsitans with the view to identify new IRE-regulated genes. Results We identified 150 genes, of which two are known to contain IREs, namely the ferritin heavy chain and the MRCK-alpha. The remainder of the identified genes is considered novel including 20 hypothetical proteins, for which an iron-regulatory mechanism of action was inferred. Forty-three genes were found with IRE-signatures of regulation in two or more insects, while 46 were only found to be IRE-regulated in two species. Notably 39 % of the identified genes exclusively shared IRE-signatures in other Glossina species, which are potentially Glossina-specific adaptive measures in addressing its unique reproductive biology and blood meal-induced iron overload. In line with previous findings, we found no evidence pertaining to an IRE regulation of Transferrin, which highlight the importance of ferritin heavy chain and the other proposed transporters in the tsetse fly. In the context of iron-sequestration, key players of tsetse immune defence against trypanosomes have been introduced namely 14 stress and immune response genes, while 28 cell-envelop, transport, and binding genes were assigned a putative role in iron trafficking. Additionally, we identified and annotated enriched motifs in the UTRs of the putative IRE-regulated genes to derive at a co-regulatory network that maintains iron homeostasis in tsetse flies. Three putative microRNA-binding sites namely Gy-box, Brd-box and K-box motifs were identified among the regulatory motifs, enriched in the UTRs of the putative IRE-regulated genes. Conclusion Beyond our current view of iron metabolism in insects, with ferritin and transferrin as its key players, this study provides a comprehensive catalogue of genes with possible roles in the acquisition; transport and storage of iron hence iron homeostasis in the tsetse fly. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zahra Jalali Sefid Dashti
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Junaid Gamieldien
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa.
| |
Collapse
|
12
|
Criscione F, O'Brochta DA, Reid W. Genetic technologies for disease vectors. CURRENT OPINION IN INSECT SCIENCE 2015; 10:90-97. [PMID: 29588019 DOI: 10.1016/j.cois.2015.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/08/2023]
Abstract
The first genetic technologies for insect vectors of disease were introduced 20 years ago. As of today there are 12 classes of genetic technologies used as functional genomic tools for insect vectors of important diseases. Although the applications of genetic technologies in insect disease vectors have been conducted primarily in mosquitoes, other insect systems could benefit from current technologies. While the various technological platforms are likely to function in diverse arthropods, the delivery of these technologies to cells and tissues of interest is the major technical constraint that limits their widespread adoption. Increased community resources of various types would enhance the adoption of these technologies and potentially eliminate technical limitations.
Collapse
Affiliation(s)
- Frank Criscione
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research, Department of Entomology, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - William Reid
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| |
Collapse
|
13
|
Hamidou Soumana I, Tchicaya B, Chuchana P, Geiger A. Midgut expression of immune-related genes in Glossina palpalis gambiensis challenged with Trypanosoma brucei gambiense. Front Microbiol 2014; 5:609. [PMID: 25426112 PMCID: PMC4226161 DOI: 10.3389/fmicb.2014.00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies from the subspecies Glossina morsitans morsitans and Glossina palpalis gambiensis, respectively, transmit Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. The former causes the acute form of sleeping sickness, and the latter provokes the chronic form. Although several articles have reported G. m. morsitans gene expression following trypanosome infection, no comparable investigation has been performed for G. p. gambiensis. This report presents results on the differential expression of immune-related genes in G. p. gambiensis challenged with T. b. gambiense. The aim was to characterize transcriptomic events occurring in the tsetse gut during the parasite establishment step, which is the crucial first step in the parasite development cycle within its vector. The selected genes were chosen from those previously shown to be highly expressed in G. m. morsitans, to allow further comparison of gene expression in both Glossina species. Using quantitative PCR, genes were amplified from the dissected midguts of trypanosome-stimulated, infected, non-infected, and self-cleared flies at three sampling timepoints (3, 10, and 20 days) after a bloodmeal. At the 3-day sampling point, transferrin transcripts were significantly up-regulated in trypanosome-challenged flies versus flies fed on non-infected mice. In self-cleared flies, serpin-2 and thioredoxin peroxidase-3 transcripts were significantly up-regulated 10 days after trypanosome challenge, whereas nitric oxide synthase and chitin-binding protein transcripts were up-regulated after 20 days. Although the expression levels of the other genes were highly variable, the expression of immune-related genes in G. p. gambiensis appears to be a time-dependent process. The possible biological significance of these findings is discussed, and the results are compared with previous reports for G. m. morsitans.
Collapse
Affiliation(s)
| | | | - Paul Chuchana
- Inserm, U844, Hôpital Saint-Eloi Montpellier, France
| | | |
Collapse
|
14
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|
15
|
Gene expression pattern of insect fat body cells from in vitro challenge to cell line establishment. In Vitro Cell Dev Biol Anim 2014; 50:952-72. [DOI: 10.1007/s11626-014-9798-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022]
|
16
|
International glossina genome initiative 2004-2014: a driver for post-genomic era research on the African continent. PLoS Negl Trop Dis 2014; 8:e3024. [PMID: 25144472 PMCID: PMC4140670 DOI: 10.1371/journal.pntd.0003024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
18
|
Mwangi S, Murungi E, Jonas M, Christoffels A. Evolutionary genomics of Glossina morsitans immune-related CLIP domain serine proteases and serine protease inhibitors. INFECTION GENETICS AND EVOLUTION 2010; 11:740-5. [PMID: 21055483 DOI: 10.1016/j.meegid.2010.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/10/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023]
Abstract
Several species of haematophagous tsetse flies (genus Glossina) are vectors for trypanosomes, the parasitic protozoans that cause Human African Trypanosomiasis (HAT). Although there was a reduced incidence of HAT in the mid 1960s, decreased disease surveillance has led to a resurgence of HAT in sub-Saharan Africa. Despite being efficient vectors for HAT transmission, the prevalence of G. morsitans infection by trypanosomes in the wild is surprisingly minimal. The precise mechanisms by which G. morsitans remain refractory to trypanosome infection are largely unknown although it has been demonstrated that G. morsitans mounts a strong immune response to invading pathogens. This study identifies G. morsitans immune-related CLIP domain serine proteases and their inhibitors, serine protease inhibitors (serpin) genes. It further establishes their evolutionary relationships with counterparts in Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Manduca sexta and Culex quinquefasciatus. Multiple sequence alignments show conservation of most secondary structure elements for both CLIPs and serpins. Amino acid composition of the serpin reactive site loop (RSL) indicates that the G. morsitans serpins act through an inhibitory mechanism to the target serine protease. Similar to D. melanogaster and unlike A. gambiae, the transcriptome data suggest that G. morsitans does not contain gene expansions in their CLIP-domain serine protease and serpin families. The presence of alternatively spliced variants in the G. morsitans serpins transcriptome data mirrors that of the D. melanogaster transcriptome.
Collapse
Affiliation(s)
- Sarah Mwangi
- South African National Bioinformatics Institute, University of the Western Cape, Modderdam Road, Bellville, Cape Town, South Africa.
| | | | | | | |
Collapse
|
19
|
Akoda K, Van den Bossche P, Marcotty T, Kubi C, Coosemans M, De Deken R, Van den Abbeele J. Nutritional stress affects the tsetse fly's immune gene expression. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23:195-201. [PMID: 19712150 DOI: 10.1111/j.1365-2915.2009.00799.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tsetse-transmitted trypanosomiasis poses a serious threat to human and animal health in sub-Saharan Africa. The majority of tsetse flies (Glossina spp.) in a natural population will not develop a mature infection of either Trypanosoma congolense or Trypanosoma brucei sp. because of refractoriness, a phenomenon that is affected by different factors, including the tsetse fly's immune defence. Starvation of tsetse flies significantly increases their susceptibility to the establishment of a trypanosome infection. This paper reports the effects of nutritional stress (starvation) on (a) uninduced baseline levels of gene expression of the antimicrobial peptides attacin, defensin and cecropin in the tsetse fly, and (b) levels of expression induced in response to bacterial (Escherichia coli) or trypanosomal challenge. In newly emerged, unfed tsetse flies, starvation significantly lowers baseline levels of antimicrobial peptide gene expression, especially for attacin and cecropin. In response to trypanosome challenge, only non-starved older flies showed a significant increase in antimicrobial peptide gene expression within 5 days of ingestion of a trypanosome-containing bloodmeal, especially with T. brucei bloodstream forms. These data suggest that a decreased expression of immune genes in newly hatched flies or a lack of immune responsiveness to trypanosomes in older flies, both occurring as a result of fly starvation, may be among the factors contributing to the increased susceptibility of nutritionally stressed tsetse flies to trypanosome infection.
Collapse
Affiliation(s)
- K Akoda
- Department of Animal Health, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Walshe DP, Lehane SM, Lehane MJ, Haines LR. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. INSECT MOLECULAR BIOLOGY 2009; 18:11-19. [PMID: 19016913 DOI: 10.1111/j.1365-2583.2008.00839.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reverse genetic studies based on RNA interference (RNAi) have revolutionized analysis of gene function in most insects. However the necessity of injecting double stranded RNA (dsRNA) inevitably compromises many investigations particularly those on immunity. Additionally, injection of tsetse flies often causes significant mortality. We demonstrate, at transcript and protein level, that delivering dsRNA in the bloodmeal to Glossina morsitans morsitans is as effective as injection in knockdown of the immunoresponsive midgut-expressed gene TsetseEP. However, feeding dsRNA fails to knockdown the fat body expressed transferrin gene, 2A192, previously shown to be silenced by dsRNA injection. Mortality rates of the dsRNA fed flies were significantly reduced compared to injected flies 14 days after treatment (Fed: 10.1%+/- 1.8%; injected: 37.9% +/- 3.6% (Mean +/- SEM)). This is the first demonstration in Diptera of gene knockdown by feeding and the first example of knockdown in a blood-sucking insect by including dsRNA in the bloodmeal.
Collapse
Affiliation(s)
- D P Walshe
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA
| | | | | | | |
Collapse
|