1
|
Lawton JG, Zhou AE, Stucke EM, Takala-Harrison S, Silva JC, Travassos MA. Diamonds in the rif: Alignment-free comparative genomics analysis reveals strain-transcendent Plasmodium falciparum antigens amidst extensive genetic diversity. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105725. [PMID: 39920908 DOI: 10.1016/j.meegid.2025.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
The repetitive interspersed family (rif) and subtelomeric variable open reading frames (stevor) are highly diverse multi-gene families in the malaria parasite Plasmodium falciparum. Embedded on the surface of infected erythrocytes, RIFIN and STEVOR proteins are involved in cytoadherence and immune evasion, but the extent of family-wide sequence diversity across strains has yet to be comprehensively investigated in light of improved resolution of the subtelomeric genome sequences. Using a k-mer frequency approach, we analyzed long-read genomic sequence data from 18 geographically diverse P. falciparum genome assemblies, including lab strains and clinical isolates. We hypothesized that k-mer sequence comparison can identify existing RIFIN and STEVOR subgroups, identify novel subgroups, and generate more robust and reliable estimates of family-wide sequence diversity. Full-length RIFIN and STEVOR proteins shared on average 49.5% and 61.1% amino acid k-mer similarity, respectively, which fell to 25.1% and 20% in the hypervariable regions alone. Despite this diversity, we identified 11 RIFINs and five STEVORs that were conserved across strains above expected thresholds. A subset of these strain-transcendent genes was similar and syntenic to genes in related Plasmodium species, suggesting an ancient origin. Additionally, in silico structural predictions from AlphaFold showed that three-dimensional structures of RIFIN receptor-binding regions were more conserved than their sequences suggested. Evolutionarily constrained RIFINs and STEVORs may have critical functions in parasite survival or pathogenesis. This study provides a framework for investigating diversity in highly variable multi-gene families and highlights the potential of strain-transcendent RIFIN and STEVOR proteins as vaccine candidates.
Collapse
Affiliation(s)
- Jonathan G Lawton
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street Room 480, Baltimore, MD 21201, USA
| | - Albert E Zhou
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street Room 480, Baltimore, MD 21201, USA
| | - Emily M Stucke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street Room 480, Baltimore, MD 21201, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street Room 480, Baltimore, MD 21201, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 West Baltimore Street 3rd Floor, Baltimore, MD 21201, USA; Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), 100 Rua da Junqueira, Lisbon 1349-008, Portugal
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street Room 480, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Abstract
Quantitative real-time PCR (qPCR) is a simple and sensitive method for determining the amount of a specific target DNA sequence present in a sample. Compared to RNA-seq, reverse transcription qPCR (RT-qPCR) is fast, requires only low input material and is easy to analyze. Therefore, qPCR is widely used to analyze gene expression in P. falciparum, including analyses of the multicopy gene families encoding variant surface antigens (VSAs), whose expression is clonally variant and prone to changes over time. In the recent years, several P. falciparum genomes of culture-adapted strains have been sequenced, providing the knowledge to design variable gene family-specific qPCR primers for each P. falciparum genetic background. Here, we describe the required materials, methods and key factors to perform RT-qPCR experiments to determine VSA transcript abundances in the P. falciparum clones 3D7/NF54, IT4, HB3, and 7G8.
Collapse
Affiliation(s)
- Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Biology Department, University of Hamburg, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany.
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
van der Puije W, Wang CW, Sudharson S, Hempel C, Olsen RW, Dalgaard N, Ofori MF, Hviid L, Kurtzhals JAL, Staalsoe T. In vitro selection for adhesion of Plasmodium falciparum-infected erythrocytes to ABO antigens does not affect PfEMP1 and RIFIN expression. Sci Rep 2020; 10:12871. [PMID: 32732983 PMCID: PMC7393120 DOI: 10.1038/s41598-020-69666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum causes the most severe form of malaria in humans. The adhesion of the infected erythrocytes (IEs) to endothelial receptors (sequestration) and to uninfected erythrocytes (rosetting) are considered major elements in the pathogenesis of the disease. Both sequestration and rosetting appear to involve particular members of several IE variant surface antigens (VSAs) as ligands, interacting with multiple vascular host receptors, including the ABO blood group antigens. In this study, we subjected genetically distinct P. falciparum parasites to in vitro selection for increased IE adhesion to ABO antigens in the absence of potentially confounding receptors. The selection resulted in IEs that adhered stronger to pure ABO antigens, to erythrocytes, and to various human cell lines than their unselected counterparts. However, selection did not result in marked qualitative changes in transcript levels of the genes encoding the best-described VSA families, PfEMP1 and RIFIN. Rather, overall transcription of both gene families tended to decline following selection. Furthermore, selection-induced increases in the adhesion to ABO occurred in the absence of marked changes in immune IgG recognition of IE surface antigens, generally assumed to target mainly VSAs. Our study sheds new light on our understanding of the processes and molecules involved in IE sequestration and rosetting.
Collapse
Affiliation(s)
- William van der Puije
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.,Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Srinidhi Sudharson
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark
| | - Casper Hempel
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark
| | - Rebecca W Olsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Dalgaard
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.,Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen A L Kurtzhals
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark.,Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Staalsoe
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark. .,Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Rapid activation of distinct members of multigene families in Plasmodium spp. Commun Biol 2020; 3:351. [PMID: 32620892 PMCID: PMC7334209 DOI: 10.1038/s42003-020-1081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2020] [Indexed: 01/23/2023] Open
Abstract
The genomes of Plasmodium spp. encode a number of different multigene families that are thought to play a critical role for survival. However, with the exception of the P. falciparum var genes, very little is known about the biological roles of any of the other multigene families. Using the recently developed Selection Linked Integration method, we have been able to activate the expression of a single member of a multigene family of our choice in Plasmodium spp. from its endogenous promoter. We demonstrate the usefulness of this approach by activating the expression of a unique var, rifin and stevor in P. falciparum as well as yir in P. yoelii. Characterization of the selected parasites reveals differences between the different families in terms of mutual exclusive control, co-regulation, and host adaptation. Our results further support the application of the approach for the study of multigene families in Plasmodium and other organisms. Omelianczyk, Loh et al. activate the expression of a single member of a multigene family in Plasmodium spp. from its endogenous promoter, identifying differences between the different families. This study supports the application of the Selection Linked Integration method for studying multigene families in Plasmodium.
Collapse
|
5
|
Araujo RBD, Silva TM, Kaiser CS, Leite GF, Alonso D, Ribolla PEM, Wunderlich G. Independent regulation of Plasmodium falciparum rif gene promoters. Sci Rep 2018; 8:9332. [PMID: 29921926 PMCID: PMC6008437 DOI: 10.1038/s41598-018-27646-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/07/2018] [Indexed: 11/09/2022] Open
Abstract
All Plasmodium species express variant antigens which may mediate immune escape in the vertebrate host. In Plasmodium falciparum, the rif gene family encodes variant antigens which are partly exposed on the infected red blood cell surface and may function as virulence factors. Not all rif genes are expressed at the same time and it is unclear what controls rif gene expression. In this work, we addressed global rif transcription using plasmid vectors with two drug resistance markers, one controlled by a rif 5′ upstream region and the second by a constitutively active promoter. After spontaneous integration into the genome of one construct, we observed that the resistance marker controlled by the rif 5′ upstream region was expressed dependent on the applied drug pressure. Then, the global transcription of rif genes in these transfectants was compared in the presence or absence of drugs. The relative transcript quantities of all rif loci did not change profoundly between strains grown with or without drug. We conclude that either there is no crosstalk between rif loci or that the elusive system of allelic exclusion of rif gene transcription is not controlled by their 5′ upstream region alone.
Collapse
Affiliation(s)
- Rosana Beatriz Duque Araujo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo - SP, 05508000, Brazil
| | - Tatiane Macedo Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo - SP, 05508000, Brazil
| | - Charlotte Sophie Kaiser
- Institute of Animal Physiology, Schloßplatz 8, Westfälische Wilhelms Universität, Münster, Germany
| | - Gabriela Fernandes Leite
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo - SP, 05508000, Brazil
| | - Diego Alonso
- Department of Parasitology, IBB/IBTEC, State University of São Paulo, Botucatu, São Paulo, Brazil
| | | | - Gerhard Wunderlich
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo - SP, 05508000, Brazil.
| |
Collapse
|
6
|
Towards an anti-disease malaria vaccine. Emerg Top Life Sci 2017; 1:539-545. [PMID: 33525843 PMCID: PMC7289038 DOI: 10.1042/etls20170091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/24/2022]
Abstract
Human infective parasites, such as those that cause malaria, are highly adapted to evade clearance by the immune system. In situations where they must maintain prolonged interactions with molecules of their host, they often use parasite surface protein families. These families are highly diverse to prevent immune recognition, and yet, to promote parasite survival, their members must retain the ability to interact with specific human receptors. One of the best understood of the parasite surface protein families is the PfEMP1 proteins of Plasmodium falciparum. These molecules cause infected erythrocytes to adhere to human receptors found on blood vessel and tissue surfaces. This protects the parasite within from clearance by the spleen and also causes symptoms of severe malaria. The PfEMP1 are exposed to the immune system during infection and are therefore excellent vaccine candidates for use in an approach to prevent severe disease. A key question, however, is whether their extensive diversity precludes them from forming components of the malaria vaccines of the future?
Collapse
|
7
|
Knockdown of the Plasmodium falciparum SURFIN4.1 antigen leads to an increase of its cognate transcript. PLoS One 2017; 12:e0183129. [PMID: 28800640 PMCID: PMC5553854 DOI: 10.1371/journal.pone.0183129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022] Open
Abstract
The genome of the malaria parasite Plasmodium falciparum contains the surf gene family which encodes large transmembrane proteins of unknown function. While some surf alleles appear to be expressed in sexual stages, others occur in asexual blood stage forms and may be associated to virulence-associated processes and undergo transcriptional switching. We accessed the transcription of surf genes along multiple invasions by real time PCR. Based on the observation of persistent expression of gene surf4.1, we created a parasite line which expresses a conditionally destabilized SURFIN4.1 protein. Upon destabilization of the protein, no interference of parasite growth or morphological changes were detected. However, we observed a strong increase in the transcript quantities of surf4.1 and sometimes of other surf genes in knocked-down parasites. While this effect was reversible when SURFIN4.1 was stabilized again after a few days of destabilization, longer destabilization periods resulted in a transcriptional switch away from surf4.1. When we tested if a longer transcript half-life was responsible for increased transcript detection in SURFIN4.1 knocked-down parasites, no alteration was found compared to control parasite lines. This suggests a specific feedback of the expressed SURFIN protein to its transcript pointing to a novel type of regulation, inedited in Plasmodium.
Collapse
|
8
|
Ch'ng JH, Sirel M, Zandian A, Del Pilar Quintana M, Chun Leung Chan S, Moll K, Tellgren-Roth A, Nilsson I, Nilsson P, Qundos U, Wahlgren M. Epitopes of anti-RIFIN antibodies and characterization of rif-expressing Plasmodium falciparum parasites by RNA sequencing. Sci Rep 2017; 7:43190. [PMID: 28233866 PMCID: PMC5324397 DOI: 10.1038/srep43190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Variable surface antigens of Plasmodium falciparum have been a major research focus since they facilitate parasite sequestration and give rise to deadly malaria complications. Coupled with its potential use as a vaccine candidate, the recent suggestion that the repetitive interspersed families of polypeptides (RIFINs) mediate blood group A rosetting and influence blood group distribution has raised the research profile of these adhesins. Nevertheless, detailed investigations into the functions of this highly diverse multigene family remain hampered by the limited number of validated reagents. In this study, we assess the specificities of three promising polyclonal anti-RIFIN antibodies that were IgG-purified from sera of immunized animals. Their epitope regions were mapped using a 175,000-peptide microarray holding overlapping peptides of the P. falciparum variable surface antigens. Through immunoblotting and immunofluorescence imaging, we show that different antibodies give varying results in different applications/assays. Finally, we authenticate the antibody-based detection of RIFINs in two previously uncharacterized non-rosetting parasite lines by identifying the dominant rif transcripts using RNA sequencing.
Collapse
Affiliation(s)
- Jun-Hong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Madle Sirel
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Maria Del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun Leung Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Asa Tellgren-Roth
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - IngMarie Nilsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Mkumbaye SI, Minja DTR, Jespersen JS, Alifrangis M, Kavishe RA, Mwakalinga SB, Lusingu JP, Theander TG, Lavstsen T, Wang CW. Cellulose filtration of blood from malaria patients for improving ex vivo growth of Plasmodium falciparum parasites. Malar J 2017; 16:69. [PMID: 28183301 PMCID: PMC5301330 DOI: 10.1186/s12936-017-1714-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Establishing in vitro Plasmodium falciparum culture lines from patient parasite isolates can offer deeper understanding of geographic variations of drug sensitivity and mechanisms of malaria pathogenesis and immunity. Cellulose column filtration of blood is an inexpensive, rapid and effective method for the removal of host factors, such as leucocytes and platelets, significantly improving the purification of parasite DNA in a blood sample. METHODS In this study, the effect of cellulose column filtration of venous blood on the initial in vitro growth of P. falciparum parasite isolates from Tanzanian children admitted to hospital was tested. The parasites were allowed to expand in culture without subcultivation until 5 days after admission or the appearance of dead parasites and parasitaemia was determined daily. To investigate whether the filtration had an effect on clonality, P. falciparum merozoite surface protein 2 genotyping was performed using nested PCR on extracted genomic DNA, and the var gene transcript levels were investigated, using quantitative PCR on extracted RNA, at admission and 4 days of culture. RESULTS The cellulose-filtered parasites grew to higher parasitaemia faster than non-filtered parasites seemingly due to a higher development ratio of ring stage parasites progressing into the late stages. Cellulose filtration had no apparent effect on clonality or var gene expression; however, evident differences were observed after only 4 days of culture in both the number of clones and transcript levels of var genes compared to the time of admission. CONCLUSIONS Cellulose column filtration of parasitized blood is a cheap, applicable method for improving cultivation of P. falciparum field isolates for ex vivo based assays; however, when assessing phenotype and genotype of cultured parasites, in general, assumed to represent the in vivo infection, caution is advised.
Collapse
Affiliation(s)
- Sixbert I Mkumbaye
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Daniel T R Minja
- Korogwe Research Station, Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Jakob S Jespersen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, CSS Building 22-23, Øster Farimagsgade 5, PO Box 2099, 1014, Copenhagen K, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Michael Alifrangis
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, CSS Building 22-23, Øster Farimagsgade 5, PO Box 2099, 1014, Copenhagen K, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Reginald A Kavishe
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Steven B Mwakalinga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - John P Lusingu
- Korogwe Research Station, Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Thor G Theander
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, CSS Building 22-23, Øster Farimagsgade 5, PO Box 2099, 1014, Copenhagen K, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, CSS Building 22-23, Øster Farimagsgade 5, PO Box 2099, 1014, Copenhagen K, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Christian W Wang
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, CSS Building 22-23, Øster Farimagsgade 5, PO Box 2099, 1014, Copenhagen K, Denmark. .,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
10
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
11
|
Abstract
Plasmodium falciparum is the protozoan parasite that causes most malaria-associated morbidity and mortality in humans with over 500,000 deaths annually. The disease symptoms are associated with repeated cycles of invasion and asexual multiplication inside red blood cells of the parasite. Partial, non-sterile immunity to P. falciparum malaria develops only after repeated infections and continuous exposure. The successful evasion of the human immune system relies on the large repertoire of antigenically diverse parasite proteins displayed on the red blood cell surface and on the merozoite membrane where they are exposed to the human immune system. Expression switching of these polymorphic proteins between asexual parasite generations provides an efficient mechanism to adapt to the changing environment in the host and to maintain chronic infection. This chapter discusses antigenic diversity and variation in the malaria parasite and our current understanding of the molecular mechanisms that direct the expression of these proteins.
Collapse
Affiliation(s)
- Michaela Petter
- Department of Medicine Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia.
| | - Michael F Duffy
- Department of Medicine Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
12
|
Almelli T, Nuel G, Bischoff E, Aubouy A, Elati M, Wang CW, Dillies MA, Coppée JY, Ayissi GN, Basco LK, Rogier C, Ndam NT, Deloron P, Tahar R. Differences in gene transcriptomic pattern of Plasmodium falciparum in children with cerebral malaria and asymptomatic carriers. PLoS One 2014; 9:e114401. [PMID: 25479608 PMCID: PMC4257676 DOI: 10.1371/journal.pone.0114401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022] Open
Abstract
The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum.
Collapse
Affiliation(s)
- Talleh Almelli
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Grégory Nuel
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Emmanuel Bischoff
- Institut Pasteur, Unit of Molecular Immunology of Parasites, Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3012, Paris, France
| | - Agnès Aubouy
- Institut de Recherche pour le Développement (IRD), UMR 152 Pharmacochimie et pharmacologie pour le développement - (PHARMA-DEV), Université Paul Sabatier, Toulouse, France
| | - Mohamed Elati
- Institute of Systems and Synthetic Biology, CNRS, University of Evry, Genopole, Evry, France
| | - Christian William Wang
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Marie-Agnès Dillies
- Plate-forme Transcriptome et Epigénome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Plate-forme Transcriptome et Epigénome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Leonardo Kishi Basco
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Laboratoire de Recherche sur le Paludisme, B. P. 288, Yaoundé, Cameroon
- Institut de Recherche pour le Développement (IRD), UMR 198 Unité de Recherche des Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine La Timone, Aix-Marseille Université, Marseille, France
| | - Christophe Rogier
- Institut Pasteur de Madagascar, B.P. 1274, Ambatofotsikely, Antananarivo, Madagascar
| | - Nicaise Tuikue Ndam
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Rachida Tahar
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Laboratoire de Recherche sur le Paludisme, B. P. 288, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
13
|
Mwakalinga SB, Wang CW, Bengtsson DC, Turner L, Dinko B, Lusingu JP, Arnot DE, Sutherland CJ, Theander TG, Lavstsen T. Expression of a type B RIFIN in Plasmodium falciparum merozoites and gametes. Malar J 2012; 11:429. [PMID: 23259643 PMCID: PMC3544569 DOI: 10.1186/1475-2875-11-429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability of Plasmodium falciparum to undergo antigenic variation, by switching expression among protein variants encoded by multigene families, such as var, rif and stevor, is key to the survival of this parasite in the human host. The RIFIN protein family can be divided into A and B types based on the presence or absence of a 25 amino acid motif in the semi-conserved domain. A particular type B RIFIN, PF13_0006, has previously been shown to be strongly transcribed in the asexual and sexual stages of P. falciparum in vitro. METHODS Antibodies to recombinant PF13_0006 RIFIN were used in immunofluorescence and confocal imaging of 3D7 parasites throughout the asexual reproduction and sexual development to examine the expression of PF13_0006. Furthermore, reactivity to recombinant PF13_0006 was measured in plasma samples collected from individuals from both East and West African endemic areas. RESULTS The PF13_0006 RIFIN variant appeared expressed by both released merozoites and gametes after emergence. 7.4% and 12.1% of individuals from East and West African endemic areas, respectively, carry plasma antibodies that recognize recombinant PF13_0006, where the antibody responses were more common among older children. CONCLUSIONS The stage specificity of PF13_0006 suggests that the diversity of RIFIN variants has evolved to provide multiple specialized functions in different stages of the parasite life cycle. These data also suggest that RIFIN variants antigenically similar to PF13_0006 occur in African parasite populations.
Collapse
Affiliation(s)
- Steven B Mwakalinga
- Centre for Medical Parasitology, Department of International Health, Immunology, and Microbiology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bachmann A, Petter M, Tilly AK, Biller L, Uliczka KA, Duffy MF, Tannich E, Bruchhaus I. Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony. PLoS One 2012; 7:e49540. [PMID: 23166704 PMCID: PMC3499489 DOI: 10.1371/journal.pone.0049540] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during clinical progression and are suggestive of diverse functional roles of the respective proteins.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci U S A 2012; 109:E1772-81. [PMID: 22619330 DOI: 10.1073/pnas.1120461109] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected and unselected parasites was analyzed using a variant surface antigen-supplemented microarray chip. After selection, the most highly and consistently up-regulated genes were a subset of group A-like var genes (HB3var3, 3D7_PFD0020c, ITvar7, and ITvar19) that showed 11- to >100-fold increased transcription levels. These var genes encode P. falciparum erythrocyte membrane protein (PfEMP)1 variants with distinct N-terminal domain types (domain cassette 8 or domain cassette 13). Antibodies to HB3var3 and PFD0020c recognized the surface of live IEs and blocked binding to HBEC-5i, thereby confirming the adhesive function of these variants. The clinical in vivo relevance of the HBEC-selected parasites was supported by significantly higher surface recognition of HBEC-selected parasites compared with unselected parasites by antibodies from young African children suffering cerebral malaria (Mann-Whitney test, P = 0.029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria.
Collapse
|
16
|
Wang CW, Lavstsen T, Bengtsson DC, Magistrado PA, Berger SS, Marquard AM, Alifrangis M, Lusingu JP, Theander TG, Turner L. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3) plasmodium falciparum erythrocyte membrane protein 1. Malar J 2012; 11:129. [PMID: 22533832 PMCID: PMC3407477 DOI: 10.1186/1475-2875-11-129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes, var1, var2csa and var3 are found conserved in most parasite genomes. The most severe forms of malaria disease are caused by parasites expressing a subset of antigenically conserved PfEMP1 variants. Thus the ubiquitous and conserved VAR3 PfEMP1 is of particular interest to the research field. Evidence of VAR3 expression on the infected erythrocyte surface has never been presented, and var3 genes have been proposed to be transcribed and expressed differently from the rest of the var gene family members. METHODS In this study, parasites expressing VAR3 PfEMP1 were generated using anti-VAR3 antibodies and the var transcript and PfEMP1 expression profiles of the generated parasites were investigated. The IgG reactivity by plasma from children living in malaria-endemic Tanzania was tested to parasites and recombinant VAR3 protein. Parasites from hospitalized children were isolated and the transcript level of var3 was investigated. RESULTS Var3 is transcribed and its protein product expressed on the surface of infected erythrocytes. The VAR3-expressing parasites were better recognized by children´s IgG than a parasite line expressing a Group B var gene. Two in 130 children showed increased recognition of parasites expressing VAR3 and to the recombinant VAR3 protein after a malaria episode and the isolated parasites showed high levels of var3 transcripts. CONCLUSIONS Collectively, the presented data suggest that var3 is transcribed and its protein product expressed on the surface of infected erythrocytes in the same manner as seen for other var genes both in vitro and in vivo. Only very few children exhibit seroconversion to VAR3 following a malaria episode requiring hospitalization, supporting the previous conclusion drawn from var3 transcript analysis of parasites collected from children hospitalized with malaria, that VAR3 is not associated with severe anaemia or cerebral malaria syndromes in children.
Collapse
Affiliation(s)
- Christian W Wang
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Dominique C Bengtsson
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Pamela A Magistrado
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Sanne S Berger
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Andrea M Marquard
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - John P Lusingu
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Thor G Theander
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| |
Collapse
|
17
|
Witmer K, Schmid CD, Brancucci NMB, Luah YH, Preiser PR, Bozdech Z, Voss TS. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling. Mol Microbiol 2012; 84:243-59. [PMID: 22435676 PMCID: PMC3491689 DOI: 10.1111/j.1365-2958.2012.08019.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites.
Collapse
Affiliation(s)
- Kathrin Witmer
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Cabral FJ, Fotoran WL, Wunderlich G. Dynamic activation and repression of the plasmodium falciparum rif gene family and their relation to chromatin modification. PLoS One 2012; 7:e29881. [PMID: 22235345 PMCID: PMC3250495 DOI: 10.1371/journal.pone.0029881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/07/2011] [Indexed: 11/18/2022] Open
Abstract
The regulation of variant gene expression in Plasmodium falciparum is still only partially understood. Regulation of var genes, the most studied gene family involved in antigenic variation, is orchestrated by a dynamic pattern of inherited chromatin states. Although recent evidence pointed to epigenetic regulation of transcribed and repressed rif loci, little is known about specific on/off associated histone modifications of individual rif genes. To investigate the chromatin marks for transcribed and repressed rif loci, we cultivated parasites and evaluated the transcriptional status of chosen rif targets by qRT-PCR and performed ChIP assays using H3K9ac and H3K9me3 antibodies. We then monitored changes in the epigenetic patterns in parasites after several reinvasions and also evaluated the “poised” mark in trophozoites and schizonts of the same erythrocytic cycle by ChIP using H3K4me2 specific antibodies. Our results show that H3K9 is acetylated in transcribed rif loci and trimethylated or even unmodified in repressed rif loci. These transcriptional and epigenetic states are inherited after several reinvasions. The poised modification H3K4me2 showed a tendency to be more present in loci in trophozoites that upon progression to schizonts strongly transcribe the respective locus. However, this effect was not consistently observed for all monitored loci. While our data show important similarities to var transcription-associated chromatin modifications, the observed swiftly occurring modifications at rif loci and the absence of H3K9 modification point to a different dynamic of recruitment of chromatin modifying enzymes.
Collapse
Affiliation(s)
- Fernanda J. Cabral
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Wesley L. Fotoran
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Sanyal S, Templeton TJ, Moreira CK. Analysis of variant gene family expression by quantitative PCR. Methods Mol Biol 2012; 923:179-88. [PMID: 22990778 DOI: 10.1007/978-1-62703-026-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Real-time polymerase chain reaction (PCR), or quantitative PCR (qPCR), is a rapid, sensitive, and specific method used for a broad variety of applications including quantitative gene expression analysis, DNA copy number measurement, characterization of gene and chromosomal deletions, and genotyping. Real-time reverse transcription (RT)-PCR has largely supplanted Northern blot and RNase protection assays, as two examples, as a means of quantifying transcript levels. The method utilizes small amounts of RNA and allows efficient screening of a large number of samples. Here, we describe the materials and methods required to perform real-time RT-PCR, including RNA purification, cDNA synthesis, and real-time PCR analysis of cDNA samples.
Collapse
Affiliation(s)
- Sohini Sanyal
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | | | |
Collapse
|
20
|
Turner L, Wang CW, Lavstsen T, Mwakalinga SB, Sauerwein RW, Hermsen CC, Theander TG. Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naïve volunteers. PLoS One 2011; 6:e29025. [PMID: 22174947 PMCID: PMC3236238 DOI: 10.1371/journal.pone.0029025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022] Open
Abstract
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.
Collapse
Affiliation(s)
- Louise Turner
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- * E-mail:
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Steven B. Mwakalinga
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Cornelus C. Hermsen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
21
|
Claessens A, Ghumra A, Gupta AP, Mok S, Bozdech Z, Rowe JA. Design of a variant surface antigen-supplemented microarray chip for whole transcriptome analysis of multiple Plasmodium falciparum cytoadherent strains, and identification of strain-transcendent rif and stevor genes. Malar J 2011; 10:180. [PMID: 21718533 PMCID: PMC3155837 DOI: 10.1186/1475-2875-10-180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/30/2011] [Indexed: 12/02/2022] Open
Abstract
Background The cytoadherence of Plasmodium falciparum is thought to be mediated by variant surface antigens (VSA), encoded by var, rif, stevor and pfmc-2tm genes. The last three families have rarely been studied in the context of cytoadherence. As most VSA genes are unique, the variability among sequences has impeded the functional study of VSA across different P. falciparum strains. However, many P. falciparum genomes have recently been sequenced, allowing the development of specific microarray probes for each VSA gene. Methods All VSA sequences from the HB3, Dd2 and IT/FCR3 genomes were extracted using HMMer software. Oligonucleotide probes were designed with OligoRankPick and added to the 3D7-based microarray chip. As a proof of concept, IT/R29 parasites were selected for and against rosette formation and the transcriptomes of isogenic rosetting and non-rosetting parasites were compared by microarray. Results From each parasite strain 50-56 var genes, 125-132 rif genes, 26-33 stevor genes and 3-8 pfmc-2tm genes were identified. Bioinformatic analysis of the new VSA sequences showed that 13 rif genes and five stevor genes were well-conserved across at least three strains (83-100% amino acid identity). The ability of the VSA-supplemented microarray chip to detect cytoadherence-related genes was assessed using P. falciparum clone IT/R29, in which rosetting is known to be mediated by PfEMP1 encoded by ITvar9. Whole transcriptome analysis showed that the most highly up-regulated gene in rosetting parasites was ITvar9 (19 to 429-fold up-regulated over six time points). Only one rif gene (IT4rifA_042) was up-regulated by more than four fold (five fold at 12 hours post-invasion), and no stevor or pfmc-2tm genes were up-regulated by more than two fold. 377 non-VSA genes were differentially expressed by three fold or more in rosetting parasites, although none was as markedly or consistently up-regulated as ITvar9. Conclusions Probes for the VSA of newly sequenced P. falciparum strains can be added to the 3D7-based microarray chip, allowing the analysis of the entire transcriptome of multiple strains. For the rosetting clone IT/R29, the striking transcriptional upregulation of ITvar9 was confirmed, and the data did not support the involvement of other VSA families in rosette formation.
Collapse
Affiliation(s)
- Antoine Claessens
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Rd, Edinburgh, EH9 3JT, UK
| | | | | | | | | | | |
Collapse
|
22
|
Joannin N, Kallberg Y, Wahlgren M, Persson B. RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum. BMC Genomics 2011; 12:119. [PMID: 21332983 PMCID: PMC3050820 DOI: 10.1186/1471-2164-12-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/18/2011] [Indexed: 01/30/2023] Open
Abstract
Background Many parasites use multicopy protein families to avoid their host's immune system through a strategy called antigenic variation. RIFIN and STEVOR proteins are variable surface antigens uniquely found in the malaria parasites Plasmodium falciparum and P. reichenowi. Although these two protein families are different, they have more similarity to each other than to any other proteins described to date. As a result, they have been grouped together in one Pfam domain. However, a recent study has described the sub-division of the RIFIN protein family into several functionally distinct groups. These sub-groups require phylogenetic analysis to sort out, which is not practical for large-scale projects, such as the sequencing of patient isolates and meta-genomic analysis. Results We have manually curated the rif and stevor gene repertoires of two Plasmodium falciparum genomes, isolates DD2 and HB3. We have identified 25% of mis-annotated and ~30 missing rif and stevor genes. Using these data sets, as well as sequences from the well curated reference genome (isolate 3D7) and field isolate data from Uniprot, we have developed a tool named RSpred. The tool, based on a set of hidden Markov models and an evaluation program, automatically identifies STEVOR and RIFIN sequences as well as the sub-groups: A-RIFIN, B-RIFIN, B1-RIFIN and B2-RIFIN. In addition to these groups, we distinguish a small subset of STEVOR proteins that we named STEVOR-like, as they either differ remarkably from typical STEVOR proteins or are too fragmented to reach a high enough score. When compared to Pfam and TIGRFAMs, RSpred proves to be a more robust and more sensitive method. We have applied RSpred to the proteomes of several P. falciparum strains, P. reichenowi, P. vivax, P. knowlesi and the rodent malaria species. All groups were found in the P. falciparum strains, and also in the P. reichenowi parasite, whereas none were predicted in the other species. Conclusions We have generated a tool for the sorting of RIFIN and STEVOR proteins, large antigenic variant protein groups, into homogeneous sub-families. Assigning functions to such protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. RSpred removes the need for complicated and time consuming phylogenetic analysis methods. It will benefit both research groups sequencing whole genomes as well as others working with field isolates. RSpred is freely accessible via http://www.ifm.liu.se/bioinfo/.
Collapse
Affiliation(s)
- Nicolas Joannin
- Department of Microbiology, Cell and Tumor biology (MTC), Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
23
|
Tembo D, Montgomery J. Var gene expression and human Plasmodium pathogenesis. Future Microbiol 2010; 5:801-15. [PMID: 20441551 DOI: 10.2217/fmb.10.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum is responsible for most of the morbidity and mortality associated with malaria and is unique in its ability to sequester in organ postcapillary venules. Specific host-parasite interactions mediate this phenomenon and the P. falciparum erythrocyte membrane protein 1 is the predominant ligand responsible for adhering to host endothelial receptors. This review focuses on the current knowledge regarding this protein family, evidence for its role in various pathogenic mechanisms and on insights that have been gained in this area from field studies.
Collapse
Affiliation(s)
- Dumizulu Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre 3, Malawi
| | | |
Collapse
|
24
|
Wang CW, Mwakalinga SB, Sutherland CJ, Schwank S, Sharp S, Hermsen CC, Sauerwein RW, Theander TG, Lavstsen T. Identification of a major rif transcript common to gametocytes and sporozoites of Plasmodium falciparum. Malar J 2010; 9:147. [PMID: 20509952 PMCID: PMC2890677 DOI: 10.1186/1475-2875-9-147] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium falciparum parasite is transmitted in its sexual gametocyte stage from man to mosquito and as asexual sporozoites from mosquito to man. Developing gametocytes sequester preferentially in the bone marrow, but mature stage gametocytes are released to the bloodstream. Sexual stage parasite surface proteins are of interest as candidate target antigens for transmission blocking vaccines. Methods In this study, the transcript profiles of rif and var genes, known to encode surface antigens in asexual blood stage parasites, were investigated at different stages of 3D7/NF54 gametocytogenesis and in sporozoites. Results Gametocytes exhibited a rif transcript profile unlinked to the rif and var transcript profile of the asexual progenitors. At stage V, mature gametocytes produced high levels of a single rif gene, PF13_0006, which also dominated the rif transcript profile of sporozoites. All var genes appeared to be silenced in sporozoites. Conclusions The most prominent variant surface antigen transcribed in both gametocytes and sporozoites of 3D7/NF54 is a single variant of the RIFIN protein family. This discovery may lead to the identification of the parasites binding ligands responsible for the adhesion during sexual stages and potentially to novel vaccine candidates.
Collapse
Affiliation(s)
- Christian W Wang
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Joergensen LM, Salanti A, Dobrilovic T, Barfod L, Hassenkam T, Theander TG, Hviid L, Arnot DE. The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs. Malar J 2010; 9:100. [PMID: 20403153 PMCID: PMC2868858 DOI: 10.1186/1475-2875-9-100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/19/2010] [Indexed: 11/25/2022] Open
Abstract
Background Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by Plasmodium falciparum parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target. Methods A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob. Results Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of P. falciparum-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules. Conclusions High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.
Collapse
Affiliation(s)
- Lars M Joergensen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), CSS Øster Farimagsgade 5, Building 22 & 23, Postbox 2099, 1014 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bultrini E, Brick K, Mukherjee S, Zhang Y, Silvestrini F, Alano P, Pizzi E. Revisiting the Plasmodium falciparum RIFIN family: from comparative genomics to 3D-model prediction. BMC Genomics 2009; 10:445. [PMID: 19769795 PMCID: PMC2756283 DOI: 10.1186/1471-2164-10-445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/21/2009] [Indexed: 11/24/2022] Open
Abstract
Background Subtelomeric RIFIN genes constitute the most abundant multigene family in Plasmodium falciparum. RIFIN products are targets for the human immune response and contribute to the antigenic variability of the parasite. They are transmembrane proteins grouped into two sub-families (RIF_A and RIF_B). Although recent data show that RIF_A and RIF_B have different sub-cellular localisations and possibly different functions, the same structural organisation has been proposed for members of the two sub-families. Despite recent advances, our knowledge of the regulation of RIFIN gene expression is still poor and the biological role of the protein products remain obscure. Results Comparative studies on RIFINs in three clones of P. falciparum (3D7, HB3 and Dd2) by Multidimensional scaling (MDS) showed that gene sequences evolve differently in the 5'upstream, coding, and 3'downstream regions, and suggested a possible role of highly conserved 3' downstream sequences. Despite the expected polymorphism, we found that the overall structure of RIFIN repertoires is conserved among clones suggesting a balance between genetic drift and homogenisation mechanisms which guarantees emergence of novel variants but preserves the functionality of genes. Protein sequences from a bona fide set of 3D7 RIFINs were submitted to predictors of secondary structure elements. In contrast with the previously proposed structural organisation, no signal peptide and only one transmembrane helix were predicted for the majority of RIF_As. Finally, we developed a strategy to obtain a reliable 3D-model for RIF_As. We generated 265 possible structures from 53 non-redundant sequences, from which clustering and quality assessments selected two models as the most representative for putative RIFIN protein structures. Conclusion First, comparative analyses of RIFIN repertoires in different clones of P. falciparum provide insights on evolutionary mechanisms shaping the multigene family. Secondly, we found that members of the two sub-families RIF_As and RIF_Bs have different structural organization in accordance with recent experimental results. Finally, representative models for RIF_As have an "Armadillo-like" fold which is known to promote protein-protein interactions in diverse contexts.
Collapse
Affiliation(s)
- Emanuele Bultrini
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM, Alako BTF, Ehlgen F, Ralph SA, Cowman AF, Bozdech Z, Stunnenberg HG, Voss TS. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog 2009; 5:e1000569. [PMID: 19730695 PMCID: PMC2731224 DOI: 10.1371/journal.ppat.1000569] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 08/07/2009] [Indexed: 02/01/2023] Open
Abstract
Epigenetic processes are the main conductors of phenotypic variation in eukaryotes. The malaria parasite Plasmodium falciparum employs antigenic variation of the major surface antigen PfEMP1, encoded by 60 var genes, to evade acquired immune responses. Antigenic variation of PfEMP1 occurs through in situ switches in mono-allelic var gene transcription, which is PfSIR2-dependent and associated with the presence of repressive H3K9me3 marks at silenced loci. Here, we show that P. falciparum heterochromatin protein 1 (PfHP1) binds specifically to H3K9me3 but not to other repressive histone methyl marks. Based on nuclear fractionation and detailed immuno-localization assays, PfHP1 constitutes a major component of heterochromatin in perinuclear chromosome end clusters. High-resolution genome-wide chromatin immuno-precipitation demonstrates the striking association of PfHP1 with virulence gene arrays in subtelomeric and chromosome-internal islands and a high correlation with previously mapped H3K9me3 marks. These include not only var genes, but also the majority of P. falciparum lineage-specific gene families coding for exported proteins involved in host-parasite interactions. In addition, we identified a number of PfHP1-bound genes that were not enriched in H3K9me3, many of which code for proteins expressed during invasion or at different life cycle stages. Interestingly, PfHP1 is absent from centromeric regions, implying important differences in centromere biology between P. falciparum and its human host. Over-expression of PfHP1 results in an enhancement of variegated expression and highlights the presence of well-defined heterochromatic boundaries. In summary, we identify PfHP1 as a major effector of virulence gene silencing and phenotypic variation. Our results are instrumental for our understanding of this widely used survival strategy in unicellular pathogens.
Collapse
Affiliation(s)
- Christian Flueck
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basle, Switzerland
| | - Richard Bartfai
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jennifer Volz
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basle, Switzerland
| | - Adriana M. Salcedo-Amaya
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Blaise T. F. Alako
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Florian Ehlgen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Alan F. Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basle, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Cabral FJ, Wunderlich G. Transcriptional memory and switching in the Plasmodium falciparumrif gene family. Mol Biochem Parasitol 2009; 168:186-90. [PMID: 19682502 DOI: 10.1016/j.molbiopara.2009.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 11/18/2022]
Abstract
The human malaria parasite Plasmodium falciparum expresses erythrocyte-surface directed variant antigens which are important virulence factors. Many are transcribed from multigene families and presumably their mode of expression is strictly controlled to guarantee immune evasion in the human host. In order to elucidate the dynamics of rif transcription and to investigate if rif switching is comparable to var switching we monitored rif variant gene expression in parasites with different cytoadhesive properties as well as after a number of reinvasions. We found identical transcripts in parasite lines with different adhesive phenotypes suggesting that rif genes do not have a critical role in determining the cytoadhesion specificity of infected erythrocytes. We show for the first time that rif genes may show a conserved mode of transcription, maintaining the previously dominant rif transcript in subsequent reinvasions, but also observed rapid switching at rates up to 45% per generation, much higher than for the var gene family.
Collapse
Affiliation(s)
- Fernanda Janku Cabral
- Department of Parasitology, Institute for Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, Room 7, University of São Paulo, São Paulo, ZIP 05508-900, Brazil
| | | |
Collapse
|