1
|
Sárkány P, Bagi Z, Süli Á, Kusza S. Challenges of Dermanyssus gallinae in Poultry: Biological Insights, Economic Impact and Management Strategies. INSECTS 2025; 16:89. [PMID: 39859669 PMCID: PMC11765809 DOI: 10.3390/insects16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Bird mites are parasites that feed on both wild and domesticated bird species, causing severe degradation in avian welfare. The chicken mite, Dermanyssus gallinae in particular, is a widespread ectoparasite in poultry, responsible for several challenges faced by the poultry industry, including poor animal health, which causes significant economic losses. This review, based on our current knowledge, aims to provide a comprehensive insight into the biology and distribution of these mites, as well as their impact on poultry health and production. It explores the most prevalent mites in avian species, with a focus on D. gallinae, and examines the different psychological and physiological alterations observed in infected stocks, such as decreased egg production, weight loss, and an increased susceptibility to diseases. This review will also cover existing control strategies, including chemical, biological, and environmental approaches, with attention to the growing concern around pesticide resistance. Additionally, it delves into genetic research conducted on these mites, primarily focusing on phylogenetic studies, which have provided insights into their evolutionary relationships and potential vulnerabilities. By compiling existing studies, this article underscores the urgent need for effective and sustainable countermeasures, as well as further genetic research to mitigate the substantial impact of D. gallinae on the poultry sector.
Collapse
Affiliation(s)
- Péter Sárkány
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, H-4032 Debrecen, Hungary; (P.S.); (Z.B.)
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, H-4032 Debrecen, Hungary; (P.S.); (Z.B.)
| | - Ágnes Süli
- Institute of Animal Sciences and Wildlife Management, University of Szeged, H-6800 Hódmezővásárhely, Hungary;
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, H-4032 Debrecen, Hungary; (P.S.); (Z.B.)
| |
Collapse
|
2
|
WIN SY, HORIO F, SATO J, MOTAI Y, SEO H, FUJISAWA S, SATO T, OISHI E, HTUN LL, BAWM S, OKAGAWA T, MAEKAWA N, KONNAI S, OHASHI K, MURATA S. Potential of histamine release factor for the utilization as a universal vaccine antigen against poultry red mites, tropical fowl mites, and northern fowl mites. J Vet Med Sci 2025; 87:1-12. [PMID: 39567007 PMCID: PMC11735211 DOI: 10.1292/jvms.24-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae), tropical fowl mites (TFMs, Ornithonyssus bursa), and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous mites that are distributed worldwide which pose a serious challenge to the poultry industry and negatively impact poultry production and welfare. Vaccines represent a promising approach for controlling avian mites, and the identification of antigens with broad efficacy against multiple avian mite species is advantageous for vaccine control. This study aimed to identify histamine release factor (HRF), which was previously reported as a candidate vaccine antigen against PRMs, from TFMs and NFMs and to analyze its cross-reactivity and acaricidal effects on different avian mite species. The deduced amino acid sequences of the HRFs identified in the TFMs and NFMs were highly homologous to those of the PRMs. We generated recombinant HRF (rHRF) of TFMs, NFMs, and PRMs, and immune plasma against each rHRF was produced by immunization with each antigen. The immune plasma contained antibodies specific to each antigen and showed cross-reactivity with rHRFs from different avian mites. Moreover, PRM nymphs (protonymphs) artificially fed each immune plasma showed higher mortality rates than those fed the control plasma. These results suggest that HRFs can be used as candidate antigens for a universal vaccine with broad efficacy across avian mites.
Collapse
Affiliation(s)
- Shwe Yee WIN
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Fumiya HORIO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei SATO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshinosuke MOTAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Hikari SEO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Sotaro FUJISAWA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | | | | | - Lat Lat HTUN
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Saw BAWM
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro OKAGAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoya MAEKAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoru KONNAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development (GU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Kazuhiko OHASHI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Shiro MURATA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
3
|
Holquinn JA, Sutherland HL, Sculley ER, Erasmus MA, Brito LF, Murillo AC. How mites influence cage-free egg production in the United States, mite management strategies, and the mitigating role of genomic selection. Anim Front 2024; 14:24-31. [PMID: 39411335 PMCID: PMC11471901 DOI: 10.1093/af/vfae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Affiliation(s)
| | | | - Elaina R Sculley
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Marisa A Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Amy C Murillo
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
4
|
Liu Q, Liu B, Sun T, Wang P, Sun W, Pan B. Vitellogenin and its upstream gene TOR play essential roles in the reproduction of Dermanyssus gallinae. Exp Parasitol 2024; 260:108746. [PMID: 38513972 DOI: 10.1016/j.exppara.2024.108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
In Dermanyssus gallinae, a hematophagous mite, the initiation of vitellogenesis induced by blood feeding is essential for its reproduction. However, the precise gene structures and physiological functions of Vg in D. gallinae and its upstream gene, Target of Rapamycin (TOR), have not been fully understood. This study revealed the presence of four homologous genes within D. gallinae, named Dg-Vg1, Dg-Vg1-like, Dg-Vg2, and Dg-Vg2-like, especially, Dg-Vg2-like was firstly identified in the mites. The expression levels of all these Vg genes were significantly higher in adult females than other stages. Following blood feeding, the expression levels of these genes increased significantly, followed by a subsequent decrease, aligning with egg production. Silencing Dg-Vgs by RNA interference (RNAi) led to decreased fecundity and egg hatching rates, as well as abnormal embryonic development, suggesting a vital role for Dg-Vgs in both egg formation and embryonic development. Furthermore, the knockdown of Dg-TOR significantly reduced the expression of Dg-Vgs and negatively impacted the reproductive capabilities of PRMs, indicating that TOR influences PRM reproduction by regulating the expression of Dg-Vgs. In summary, these findings demonstrated the crucial roles of Dg-Vgs and Dg-TOR in PRM reproduction, highlighting their potential as targets for pest control.
Collapse
Affiliation(s)
- Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
5
|
Rajendran K, Krishnamoorthy M, Karuppiah K, Ethiraj K, Sekar S. Chitinase from Streptomyces mutabilis as an Effective Eco-friendly Biocontrol Agent. Appl Biochem Biotechnol 2024; 196:18-31. [PMID: 37097402 DOI: 10.1007/s12010-023-04489-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Blood sucking parasites not only cause economic loss but also transmit numerous diseases. Dermanyssus gallinae, an obligatory blood feeding ectoparasite causes huge production loss to the poultry industry. Mosquitoes act as vector for transmitting several viral and parasitic diseases in humans. Acaricide resistance limits the control of these parasites. The present study was aimed to control the parasites using chitinase that have selective degradation of chitin, an important component in exoskeleton development. Chitinase was induced in Streptomyces mutabilis IMA8 with chitin extracted from Charybdis smithii. The enzyme showed more than 50% activity at 30-50 °C and the optimum activity at 45 °C. The enzyme activity of chitinase was highest at pH 7.0. The kinetic parameters Km and Vmax values of chitinase were determined by non-linear regression using Michaelis-Menten equation and its derivative Hanes-Wolf plot. The larvicidal effect of different concentrations of chitinase was evaluated against all instar larvae (I-IV) and pupae of An. stephensi and Ae. aegypti after 24 h of exposure. The percentage of mortality was directly proportional to the chitinase concentration. Bioassay for miticidal activity showed that chitinase had excellent miticidal activity (LC50 = 24.2 ppm) against D. gallinae. The present study suggested the usage of Streptomyces mutabilis for preparation of chitinase in mosquito and mite control.
Collapse
Affiliation(s)
- Kumar Rajendran
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Department of Fisheries Science, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Madhuri Krishnamoorthy
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Kannan Karuppiah
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India
| | - Kannapiran Ethiraj
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Department of Fisheries Science, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Sivaranjani Sekar
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| |
Collapse
|
6
|
da Silva GG, Zaldívar MF, Oliveira LAR, Mariano RMDS, Lair DF, de Souza RA, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Nascimento Araújo R, Ferreira LL, Giunchetti RC. Advances in Non-Chemical Tools to Control Poultry Hematophagous Mites. Vet Sci 2023; 10:589. [PMID: 37888541 PMCID: PMC10611074 DOI: 10.3390/vetsci10100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The blood-sucking mites Dermanyssus gallinae ("red mite"), Ornithonyssus sylviarum ("northern fowl mite"), and Ornithonyssus bursa ("tropical fowl mite") stand out for causing infestations in commercial poultry farms worldwide, resulting in significant economic damage for producers. In addition to changes in production systems that include new concerns for animal welfare, global climate change in recent years has become a major challenge in the spread of ectoparasites around the world. This review includes information regarding the main form of controlling poultry mites through the use of commercially available chemicals. In addition, non-chemical measures against blood-sucking mites were discussed such as extracts and oils from plants and seeds, entomopathogenic fungi, semiochemicals, powder such as diatomaceous earth and silica-based products, and vaccine candidates. The control of poultry mites using chemical methods that are currently used to control or eliminate them are proving to be less effective as mites develop resistance. In contrast, the products based on plant oils and extracts, powders of plant origin, fungi, and new antigens aimed at developing transmission-blocking vaccines against poultry mites provide some encouraging options for the rational control of these ectoparasites.
Collapse
Affiliation(s)
- Geralda Gabriele da Silva
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Lucilene Aparecida Resende Oliveira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Daniel Ferreira Lair
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Renata Antunes de Souza
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru;
| | - Denise da Silveira-Lemos
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Ricardo Nascimento Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Lorena Lopes Ferreira
- Laboratory of Ectoparasites, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| |
Collapse
|
7
|
Win SY, Murata S, Fujisawa S, Seo H, Sato J, Motai Y, Sato T, Oishi E, Taneno A, Htun LL, Bawm S, Okagawa T, Maekawa N, Konnai S, Ohashi K. Characterization of cysteine proteases from poultry red mite, tropical fowl mite, and northern fowl mite to assess the feasibility of developing a broadly efficacious vaccine against multiple mite species. PLoS One 2023; 18:e0288565. [PMID: 37440547 DOI: 10.1371/journal.pone.0288565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Infestation with poultry red mites (PRM, Dermanyssus gallinae) causes anemia, reduced egg production, and death in serious cases, resulting in significant economic losses to the poultry industry. As a novel strategy for controlling PRMs, vaccine approaches have been focused upon and several candidate vaccine antigens against PRMs have been reported. Tropical (TFM, Ornithonyssus bursa) and northern (NFM, Ornithonyssus sylviarum) fowl mites are also hematophagous and cause poultry industry problems similar to those caused by PRM. Therefore, ideal antigens for anti-PRM vaccines are molecules that cross-react with TFMs and NFMs, producing pesticidal effects similar to those against PRMs. In this study, to investigate the potential feasibility of developing vaccines with broad efficacy across mite species, we identified and characterized cysteine proteases (CPs) of TFMs and NFMs, which were previously reported to be effective vaccine antigens of PRMs. The open reading frames of CPs from TFMs and NFMs had the same sequences, which was 73.0% similar to that of PRMs. Phylogenetic analysis revealed that the CPs of TFMs and NFMs clustered in the same clade as CPs of PRMs. To assess protein functionality, we generated recombinant peptidase domains of CPs (rCP-PDs), revealing all rCP-PDs showed CP-like activities. Importantly, the plasma obtained from chickens immunized with each rCP-PD cross-reacted with rCP-PDs of different mites. Finally, all immune plasma of rCP-PDs reduced the survival rate of PRMs, even when the plasma was collected from chickens immunized with rCP-PDs derived from TFM and NFM. Therefore, CP antigen is a promising, broadly efficacious vaccine candidate against different avian mites.
Collapse
Affiliation(s)
- Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Sotaro Fujisawa
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
8
|
Hwang ET. Management of the poultry red mite Dermanyssus gallinae with physical control methods by inorganic material and future perspectives. Poult Sci 2023; 102:102772. [PMID: 37245438 DOI: 10.1016/j.psj.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
Poultry red mite (PRM), the ectoparasitic mite Dermanyssus gallinae found in laying hen farms, is a significant threat to poultry production and human health worldwide. It is a suspected disease vector and attacks hosts' other than chickens, including humans, and its economic importance has increased greatly. Different strategies to control PRM have been widely tested and investigated. In principle, several synthetic pesticides have been applied to control PRM. However, recent alternative control methods to avoid the side effects of pesticides have been introduced, although many remain in the early stage of commercialization. In particular, advances in material science have made various materials more affordable as alternatives for controlling PRM through physical interactions between PRM. This review provides a summary of PRM infestation, and then includes a discussion and comparison of different conventional approaches: 1) organic substances, 2) biological approaches, and 3) physical inorganic material treatment. The advantages of inorganic materials are discussed in detail, including the classification of materials, as well as the physical mechanism-induced effect on PRM. In this review, we also consider the perspective of using several synthetic inorganic materials to suggest novel strategies for improved monitoring and better information regarding treatment interventions.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
9
|
Win SY, Murata S, Fujisawa S, Seo H, Sato J, Motai Y, Sato T, Oishi E, Taneno A, Htun LL, Bawm S, Okagawa T, Maekawa N, Konnai S, Ohashi K. Potential of ferritin 2 as an antigen for the development of a universal vaccine for avian mites, poultry red mites, tropical fowl mites, and northern fowl mites. Front Vet Sci 2023; 10:1182930. [PMID: 37138911 PMCID: PMC10149675 DOI: 10.3389/fvets.2023.1182930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Poultry red mites (PRMs, Dermanyssus gallinae), blood-sucking ectoparasites, are a threat to the poultry industry because of reduced production caused by infestation. In addition, tropical fowl mites (TFMs, Ornithonyssus bursa) and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous, distributed in various regions, genetically and morphologically close to PRMs, and cause similar problems to the poultry industry. Vaccine approaches have been studied for PRM control, and several molecules have been identified in PRMs as candidates for effective vaccine antigens. The development of an anti-PRM vaccine as a universal vaccine with broad efficacy against avian mites could improve the productivity of poultry farms worldwide. Molecules that are highly conserved among avian mites and have critical functions in the physiology and growth of mites could be ideal antigen candidates for the development of universal vaccines. Ferritin 2 (FER2), an iron-binding protein, is critical for the reproduction and survival of PRMs and has been reported as a useful vaccine antigen for the control of PRMs and a candidate for the universal vaccine antigen in some tick species. Method and results Herein, we identified and characterized FER2 in TFMs and NFM. Compared with the sequence of PRM, the ferroxidase centers of the heavy chain subunits were conserved in FER2 of TFMs and NFMs. Phylogenetic analysis revealed that FER2 belongs to clusters of secretory ferritins of mites and other arthropods. Recombinant FER2 (rFER2) proteins from PRMs, TFMs, and NFMs exhibited iron-binding abilities. Immunization with each rFER2 induced strong antibody responses in chickens, and each immune plasma cross-reacted with rFER2 from different mites. Moreover, mortality rates of PRMs fed with immune plasma against rFER2 from TFMs or NFMs, in addition to PRMs, were higher than those of control plasma. Discussion rFER2 from each avian mite exhibited anti-PRM effects. This data suggests that it has the potential to be used as an antigen candidate for a universal vaccine against avian mites. Further studies are needed to access the usefulness of FER2 as a universal vaccine for the control of avian mites.
Collapse
Affiliation(s)
- Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sotaro Fujisawa
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Kolics B, Kolics É, Solti I, Bacsi Z, Taller J, Specziár A, Mátyás K. Lithium Chloride Shows Effectiveness against the Poultry Red Mite ( Dermanyssus gallinae). INSECTS 2022; 13:1005. [PMID: 36354829 PMCID: PMC9694377 DOI: 10.3390/insects13111005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The poultry red mite (Dermanyssus gallinae) is the main pest of poultry, causing severe problems by being a vector of several animal and human pathogens. The number of miticides is few, and their efficacy in practice implies problems of residues and resistance; therefore, the demand for a new and safe agent is constant. The present publication investigated the effectiveness of lithium chloride under in vitro conditions on poultry red mites. This chemical currently appears to be one of the most promising alternatives to study amongst potential applicants to treat varroosis, a fatal disease of honey bees. In Experiment I, the previously used experimental doses (5.52 M, 2.76 M, 1.38 M) on Varroa mites confirmed their in vitro activity on the poultry red mite. Three event times (uncontrolled movement, immobilisation and death) were recorded to base the response to treatment for each concentration. In Experiment II, the LD 50 value was calculated, i.e., the value at which 50% of the mites were killed by the treatment. This Experiment showed that the LD50 of lithium chloride = 0.265 M in the poultry red mite. It is to note that the study remained restricted to in vitro confirmation of lithium chloride's effectiveness on the parasite. Thus, further extensive studies are needed to decide whether it has any relevance in practice against D. gallinae, and also to assess potential residue problems that could affect poultry products.
Collapse
Affiliation(s)
- Balázs Kolics
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Éva Kolics
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Izabella Solti
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Zsuzsanna Bacsi
- Institute of Agricultural and Food Economics, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - János Taller
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - András Specziár
- Balaton Limnological Research Institute, H-8237 Tihany, Hungary
| | - Kinga Mátyás
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| |
Collapse
|
11
|
Release of DNA from Dermanyssus gallinae during the Biting Process. Animals (Basel) 2022; 12:ani12091084. [PMID: 35565510 PMCID: PMC9101282 DOI: 10.3390/ani12091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Like many hematophagous parasites, the poultry red mite Dermanyssus gallinae may release some material during the biting process. This investigation evidenced that small amounts of mite DNA may be found in chicken skin after D. gallinae infestation. Since the retrieved DNA is both of nuclear and mitochondrial origin, it is possible to hypothesize that, while biting, the mite releases cellular material. Abstract Dermanyssus gallinae is a hematophagous ectoparasitic mite that usually infests poultry, but is also known for occasionally attacking other animals and humans. It represents a major problem for poultry systems all over the world, with detrimental effects for both production and animal welfare. Despite the significance of D. gallinae, very little is known about the biting process to date. Therefore, this study has aimed to verify if mite DNA is injected into the host skin during the blood meal. Mite DNA has been detected by seminested PCR from infested chicken skin and quantified by real-time PCR. Furthermore, its localization within the host tissue has been checked by fluorescent in situ hybridization. Results showed that a very little amount of D. gallinae DNA can be released by mites, suggesting that the latter do not introduce whole or partially destroyed cells into the host, but rather it injects traces of nucleic acids, possibly together with merocrine secretions.
Collapse
|
12
|
Fujisawa S, Murata S, Isezaki M, Ariizumi T, Sato T, Oishi E, Taneno A, Maekawa N, Okagawa T, Ichii O, Konnai S, Ohashi K. Characterization of a Novel Cysteine Protease Inhibitor from Poultry Red Mites: Potential Vaccine for Chickens. Vaccines (Basel) 2021; 9:1472. [PMID: 34960218 PMCID: PMC8706574 DOI: 10.3390/vaccines9121472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Poultry red mite (PRM; Dermanyssus gallinae) is a hazardous, blood-sucking ectoparasite of birds that constitutes a threat to poultry farming worldwide. Acaricides, commonly used in poultry farms to prevent PRMs, are not effective because of the rapid emergence of acaricide-resistant PRMs. However, vaccination may be a promising strategy to control PRM. We identified a novel cystatin-like molecule in PRMs: Dg-Cys. Dg-Cys mRNA expression was detected in the midgut and ovaries, in all stages of life. The PRM nymphs that were artificially fed with the plasma from chickens that were immunized with Dg-Cys in vitro had a significantly reduced reproductive capacity and survival rate. Moreover, combination of Dg-Cys with other antigen candidates, like copper transporter 1 or adipocyte plasma membrane-associated protein, enhanced vaccine efficacies. vaccination and its application as an antigen for cocktail vaccines could be an effective strategy to reduce the damage caused by PRMs in poultry farming.
Collapse
Affiliation(s)
- Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
| | - Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Division of Molecular Pathology, International Institute of Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Tokyo 105-0013, Japan; (T.S.); (E.O.); (A.T.)
| | - Eiji Oishi
- Vaxxinova Japan K.K., Tokyo 105-0013, Japan; (T.S.); (E.O.); (A.T.)
| | - Akira Taneno
- Vaxxinova Japan K.K., Tokyo 105-0013, Japan; (T.S.); (E.O.); (A.T.)
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Osamu Ichii
- Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan;
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| |
Collapse
|
13
|
Ariizumi T, Murata S, Fujisawa S, Isezaki M, Sato T, Oishi E, Taneno A, Ichii O, Maekawa N, Okagawa T, Konnai S, Ohashi K. In vitro evaluation of a cysteine protease from poultry red mites, Demanyssus gallinae, as a vaccine antigen for chickens. Poult Sci 2021; 101:101638. [PMID: 34986449 PMCID: PMC8743220 DOI: 10.1016/j.psj.2021.101638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae) are hematophagous ectoparasites that negatively affect egg production, which causes serious economic losses to the poultry industry worldwide. Currently, the emergence of acaricide-resistant PRMs has impeded PRM control in poultry farms. Several alternatives for acaricide use have been described for managing PRM-caused problems. Vaccination is among the methods for controlling PRMs in poultry houses. Currently, several candidates for vaccine antigens have been identified. This study identified a cysteine protease, Deg-CPR-2, which differs from 2 other previously reported cysteine proteases in PRMs, from previously obtained data from RNA-sequencing (RNA-seq) analysis. We investigated the characteristics of Deg-CPR-2 and assessed its efficacy as a vaccine antigen in vitro. Phylogenetic analysis revealed that Deg-CPR-2 belonged to a different cluster from those of other cysteine proteases in PRMs. This cluster also included cathepsin L-like proteases, enzymes thought to be involved in hemoglobin digestion in ticks. Expression analysis revealed Deg-CPR-2 expression in midguts and all the life-stages; however, there were differences in the expression levels across the life-stages. The enzyme activity of recombinant Deg-CPR-2 was inhibited in the presence of a cysteine protease inhibitor, which suggests that Deg-CPR-2 functions as a cysteine protease in PRMs. Finally, there was an in vitro increase in the mortality of PRMs, mainly protonymphs that were artificially fed with plasma from chickens immunized with Deg-CPR-2. These findings suggest that Deg-CPR-2 may contribute to protein digestion in the midgut of PRMs and is crucially involved in physiological processes in PRMs. Additionally, immunization with Deg-CPR-2 may reduce the number of protonymphs, and Deg-CPR-2 should be considered as a candidate antigen for anti-PRM vaccine development.
Collapse
Affiliation(s)
- Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Osamu Ichii
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Fujisawa S, Murata S, Takehara M, Aoyama J, Morita A, Isezaki M, Win SY, Ariizumi T, Sato T, Oishi E, Taneno A, Maekawa N, Okagawa T, Ichii O, Konnai S, Ohashi K. In vitro characterization of adipocyte plasma membrane-associated protein from poultry red mites, Dermanyssus gallinae, as a vaccine antigen for chickens. Vaccine 2021; 39:6057-6066. [PMID: 34509323 DOI: 10.1016/j.vaccine.2021.08.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023]
Abstract
The poultry red mite (Dermanyssus gallinae; PRM) is a blood-sucking ectoparasite of chickens that is a threat to poultry farming worldwide and significantly reduces productivity in the egg-laying industry. Chemical acaricides that are widely used in poultry farms for the prevention of PRMs are frequently ineffective due to the emergence of acaricide-resistant PRMs. Therefore, alternative control methods are needed, and vaccination is a promising strategy for controlling PRMs. A novel adipocyte-plasma membrane-associated protein-like molecule (Dg-APMAP) is highly expressed in blood-fed PRMs according to a previous RNA sequencing analysis. Here, we attempted to identify the full sequence of Dg-APMAP, study its expression in different life stages of PRMs, and evaluate its potential as a vaccine antigen. Dg-APMAP mRNA was expressed in the midgut and ovaries, and in all life stages regardless of feeding states. Importantly, in vitro feeding of PRMs with plasma derived from chickens immunized with the recombinant protein of the extracellular region of Dg-APMAP significantly reduced their survival rate in nymphs and adults, which require blood meals. Our data suggest that the host immune responses induced by vaccination with Dg-APMAP could be an effective strategy to reduce the suffering caused by PRMs in the poultry industry.
Collapse
Affiliation(s)
- Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Masaki Takehara
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Julia Aoyama
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ayu Morita
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shwe Yee Win
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Bartley K, Chen W, Lloyd Mills RI, Nunn F, Price DRG, Rombauts S, Van de Peer Y, Roy L, Nisbet AJ, Burgess STG. Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle. BMC Genomics 2021; 22:248. [PMID: 33827430 PMCID: PMC8028124 DOI: 10.1186/s12864-021-07547-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The blood feeding poultry red mite (PRM), Dermanyssus gallinae, causes substantial economic damage to the egg laying industry worldwide, and is a serious welfare concern for laying hens and poultry house workers. In this study we have investigated the temporal gene expression across the 6 stages/sexes (egg, larvae, protonymph and deutonymph, adult male and adult female) of this neglected parasite in order to understand the temporal expression associated with development, parasitic lifestyle, reproduction and allergen expression. RESULTS RNA-seq transcript data for the 6 stages were mapped to the PRM genome creating a publicly available gene expression atlas (on the OrcAE platform in conjunction with the PRM genome). Network analysis and clustering of stage-enriched gene expression in PRM resulted in 17 superclusters with stage-specific or multi-stage expression profiles. The 6 stage specific superclusters were clearly demarked from each other and the adult female supercluster contained the most stage specific transcripts (2725), whilst the protonymph supercluster the fewest (165). Fifteen pairwise comparisons performed between the different stages resulted in a total of 6025 Differentially Expressed Genes (DEGs) (P > 0.99). These data were evaluated alongside a Venn/Euler analysis of the top 100 most abundant genes in each stage. An expanded set of cuticle proteins and enzymes (chitinase and metallocarboxypeptidases) were identified in larvae and underpin cuticle formation and ecdysis to the protonymph stage. Two mucin/peritrophic-A salivary proteins (DEGAL6771g00070, DEGAL6824g00220) were highly expressed in the blood-feeding stages, indicating peritrophic membrane formation during feeding. Reproduction-associated vitellogenins were the most abundant transcripts in adult females whilst, in adult males, an expanded set of serine and cysteine proteinases and an epididymal protein (DEGAL6668g00010) were highly abundant. Assessment of the expression patterns of putative homologues of 32 allergen groups from house dust mites indicated a bias in their expression towards the non-feeding larval stage of PRM. CONCLUSIONS This study is the first evaluation of temporal gene expression across all stages of PRM and has provided insight into developmental, feeding, reproduction and survival strategies employed by this mite. The publicly available PRM resource on OrcAE offers a valuable tool for researchers investigating the biology and novel interventions of this parasite.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.
| | - Wan Chen
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | | | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Lise Roy
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| |
Collapse
|
16
|
Ariizumi T, Murata S, Fujisawa S, Isezaki M, Maekawa N, Okagawa T, Sato T, Oishi E, Taneno A, Konnai S, Ohashi K. Selection of reference genes for quantitative PCR analysis in poultry red mite (Dermanyssus gallinae). J Vet Med Sci 2021; 83:558-565. [PMID: 33583914 PMCID: PMC8111338 DOI: 10.1292/jvms.20-0677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae) are harmful ectoparasites
that affect farmed chickens and cause serious economic losses in the poultry industry
worldwide. Acaricides are used for PRM control; however, some PRMs have developed
acaricide-resistant properties, which have indicated the need for different approaches for
PRM control. Therefore, it is necessary to elucidate the biological status of PRMs to
develop alternative PRM control strategies. Quantitative polymerase chain reaction (qPCR)
allows analysis of the biological status at the transcript level. However, reference genes
are preferable for accurate comparison of expression level changes given the large
variation in the quality of the PRM samples collected in each farm. This study aimed to
identify candidate reference genes with stable expression levels in the different blood
feeding states and life stages of PRMs. First, we selected candidates based on the
following criteria: sufficient expression intensity and no significant expression
difference between fed and starved states. We selected and characterized seven candidate
reference genes. Among them, we evaluated the gene expression stability between the
starved and fed states using RefFinder; moreover, we compared their expression levels in
each life-stage and identified two reference genes, Elongation factor
1-alpha (ELF1A)-like and apolipophorins-like.
Finally, we evaluated the utility of the candidates as reference genes, and the use of
ELF1A-like and apolipophorins-like successfully
normalized ATP synthase subunit g -like gene expression. Thus,
ELF1A-like and apolipophorins-like could be suitable
reference genes in PRMs.
Collapse
Affiliation(s)
- Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Akira Taneno
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
17
|
Murata S, Taniguchi A, Isezaki M, Fujisawa S, Sakai E, Taneno A, Ichii O, Ito T, Maekawa N, Okagawa T, Konnai S, Ohashi K. Characterisation of a cysteine protease from poultry red mites and its potential use as a vaccine for chickens. ACTA ACUST UNITED AC 2021; 28:9. [PMID: 33544074 PMCID: PMC7863971 DOI: 10.1051/parasite/2021005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/13/2021] [Indexed: 11/15/2022]
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae) are ectoparasites that negatively affect farmed chickens, leading to serious economic losses worldwide. Acaricides have been used to control PRMs in poultry houses. However, some PRMs have developed resistance to acaricides, and therefore different approaches are required to manage the problems caused by PRMs. Vaccination of chickens is one of the methods being considered to reduce the number of PRMs in poultry houses. In a previous study, a cysteine protease, Deg-CPR-1, was identified as a candidate vaccine against PRMs distributed in Europe. In this study, we investigated the characteristics of Deg-CPR-1. A phylogenetic analysis revealed that Deg-CPR-1 is closely related to the digestive cysteine proteases of other mite species, and it was classified into a cluster different from that of chicken cathepsins. Deg-CPR-1 of PRMs in Japan has an amino acid substitution compared with that of PRMs in Europe, but it showed efficacy as a vaccine, consistent with previous findings. Deg-CPR-1 exhibited cathepsin L-like enzyme activity. In addition, the Deg-CPR-1 mRNA was expressed in the midgut and in all stages of PRMs that feed on blood. These results imply that Deg-CPR-1 in the midgut may have important functions in physiological processes, and the inhibition of its expression may contribute to the efficacy of a Deg-CPR-1-based vaccine. Further research is required to fully understand the mechanisms of vaccine efficacy.
Collapse
Affiliation(s)
- Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan - Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Ayaka Taniguchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Eishi Sakai
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Akira Taneno
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Osamu Ichii
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Takuya Ito
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan - Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan - Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
18
|
Chen W, Bartley K, Nunn F, Bowman AS, Sternberg JM, Burgess STG, Nisbet AJ, Price DRG. RNAi gene knockdown in the poultry red mite, Dermanyssus gallinae (De Geer 1778), a tool for functional genomics. Parasit Vectors 2021; 14:57. [PMID: 33461614 PMCID: PMC7813172 DOI: 10.1186/s13071-020-04562-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background The avian haematophagous ectoparasite Dermanyssus gallinae, commonly known as the poultry red mite, causes significant economic losses to the egg-laying industry worldwide and also represents a significant welfare threat. Current acaricide-based controls are unsustainable due to the mite’s ability to rapidly develop resistance, thus developing a novel sustainable means of control for D. gallinae is a priority. RNA interference (RNAi)-mediated gene silencing is a valuable tool for studying gene function in non-model organisms, but is also emerging as a novel tool for parasite control. Methods Here we use an in silico approach to identify core RNAi pathway genes in the recently sequenced D. gallinae genome. In addition we utilise an in vitro feeding device to deliver double-stranded (ds) RNA to D. gallinae targeting the D. gallinae vATPase subunit A (Dg vATPase A) gene and monitor gene knockdown using quantitative PCR (qPCR). Results Core components of the small interfering RNA (siRNA) and microRNA (miRNA) pathways were identified in D. gallinae, which indicates that these gene silencing pathways are likely functional. Strikingly, the P-element-induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway was absent in D. gallinae. In addition, feeding Dg vATPase A dsRNA to adult female D. gallinae resulted in silencing of the targeted gene compared to control mites fed non-specific lacZ dsRNA. In D. gallinae, dsRNA-mediated gene knockdown was rapid, being detectable 24 h after oral delivery of the dsRNA, and persisted for at least 120 h. Conclusions This study shows the presence of core RNAi machinery components in the D. gallinae genome. In addition, we have developed a robust RNAi methodology for targeting genes in D. gallinae that will be of value for studying genes of unknown function and validating potential control targets in D. gallinae. ![]()
Collapse
Affiliation(s)
- Wan Chen
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.,Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Kathryn Bartley
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Francesca Nunn
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Alan S Bowman
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Jeremy M Sternberg
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Stewart T G Burgess
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| |
Collapse
|
19
|
Nunn F, Baganz J, Bartley K, Hall S, Burgess S, Nisbet AJ. An improved method for in vitro feeding of adult female Dermanyssus gallinae (poultry red mite) using Baudruche membrane (goldbeater's skin). Parasit Vectors 2020; 13:585. [PMID: 33213508 PMCID: PMC7678122 DOI: 10.1186/s13071-020-04471-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/05/2020] [Indexed: 11/14/2022] Open
Abstract
Background Dermanyssus gallinae, or poultry red mite (PRM), is an important ectoparasite in laying hen, having a significant effect on animal welfare and potentially causing economic loss. Testing novel control compounds typically involves in vitro methodologies before in vivo assessments. Historically, in vitro methods have involved PRM feeding on hen blood through a membrane. The use of hen blood requires multiple procedures (bleeds) to provide sufficient material, and the use of a larger species (e.g. goose) could serve as a refinement in the use of animals in research. Methods The in vitro feeding device used was that which currently employs a Parafilm™ M membrane (Bartley et al.: Int J Parasitol. 45:819–830, 2015). Adult female PMR were used to investigate any differences in mite feeding, egg laying and mortality when fed goose or hen blood. Effects on these parameters when PRM were fed through either the Parafilm™ M membrane or the Baudruche membrane alone or through a combination of the membrane with an overlaid polyester mesh were tested using goose blood. Results Poultry red mites fed equally well on goose or hen blood through the Parafilm™ M membrane, and there were no significant differences in mortality of PRM fed with either blood type. A significant increase (t test: t = 3.467, df = 4, P = 0.03) in the number of eggs laid per fed mite was observed when goose blood was used. A 70% increase in PRM feeding was observed when the mites were fed on goose blood through a Baudruche membrane compared to when they were fed goose blood through the Parafilm™ M membrane. The addition of an overlaid polyester mesh did not improve feeding rates. A significant increase (analysis of variance: F(3, 20) = 3.193, P = 0.04) in PRM egg laying was observed in mites fed on goose blood through the Baudruche membrane compared to those fed goose blood through the Parafilm™ M membrane. A mean of 1.22 (standard error of the mean ± 0.04) eggs per fed mite was obtained using the Baudruche feeding device compared to only 0.87 (SEM ± 0.3) eggs per fed mite using the Parafilm™ M device when neither was combined with a polyester mesh overlay. Conclusion The in vitro feeding of adult female PRM can be readily facilitated through the use of goose blood in feeding devices with the Baudruche membrane. ![]()
Collapse
Affiliation(s)
| | | | | | - Sarah Hall
- Scottish Rural Agricultural College, Edinburgh, UK
| | | | | |
Collapse
|
20
|
Decru E, Mul M, Nisbet AJ, Vargas Navarro AH, Chiron G, Walton J, Norton T, Roy L, Sleeckx N. Possibilities for IPM Strategies in European Laying Hen Farms for Improved Control of the Poultry Red Mite ( Dermanyssus gallinae): Details and State of Affairs. Front Vet Sci 2020; 7:565866. [PMID: 33282928 PMCID: PMC7705068 DOI: 10.3389/fvets.2020.565866] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/01/2020] [Indexed: 12/02/2022] Open
Abstract
The Poultry Red Mite (PRM), Dermanyssus gallinae, is a major threat to the poultry industry worldwide, causing serious problems to animal health and welfare, and huge economic losses. Controlling PRM infestations is very challenging. Conventionally, D. gallinae is treated with synthetic acaricides, but the particular lifestyle of the mite (most of the time spent off the host) makes the efficacy of acaracide sprays often unsatisfactory, as sprays reach only a small part of the population. Moreover, many acaricides have been unlicensed due to human consumer and safety regulations and mites have become resistant to them. A promising course of action is Integrated Pest Management (IPM), which is sustainable for animals, humans and the environment. It combines eight different steps, in which prevention of introduction and monitoring of the pest are key. Further, it focusses on non-chemical treatments, with chemicals only being used as a last resort. Whereas IPM is already widely applied in horticulture, its application is still in its infancy to control D. gallinae in layer houses. This review presents the currently-available possibilities for control of D. gallinae in layer houses for each of the eight IPM steps, including monitoring techniques, established and emerging non-chemical treatments, and the strategic use of chemicals. As such, it provides a needed baseline for future development of specific IPM strategies, which will allow efficient and sustainable control of D. gallinae in poultry farms.
Collapse
Affiliation(s)
- Eva Decru
- Experimental Poultry Centre, Geel, Belgium
| | - Monique Mul
- Wageningen Livestock Research, Division Animal Health and Welfare, Wageningen, Netherlands.,MoniqueMul IPM, Wervershoof, Netherlands
| | - Alasdair J Nisbet
- Vaccines and Diagnostics Department Moredun Research Institute, Midlothian, United Kingdom
| | | | | | | | - Tomas Norton
- Group of M3-BIORES, Division of Animal and Human Health Engineering (A2H), Department of BioSystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lise Roy
- CEFE, CNRS, University of Montpellier, University of Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
21
|
Bhowmick B, Lin F, Zhao J, Guan Q, Liao C, Han Q. An efficient high-welfare feeding device for assessing northern fowl mite interventions in vivo: an improved method for the identification of protective antigens/systemic acaricides/repellent effect. Vet Parasitol 2020; 288:109279. [PMID: 33129185 DOI: 10.1016/j.vetpar.2020.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
The northern fowl mite (NFM), Ornithonyssus sylviarum, is an obligate hematophagous ectoparasite of domestic and wild birds, and it is an economic pest of laying hen in North America, China, India, Australia, Myanmar, and Brazil. Such an economically important pest remains neglected in many parts of the world, including Asian countries. Therefore, concerted action is required in both basic and applied research directed at the biology and control of this destructive pest. In the present study, we have developed a novel, high-welfare in vivo feeding capsule that would permit pre-screening of new interventions, repellency and deterrence effects of plant-derived products and other semiochemical compounds before proceeding to large-scale field experiments/bioassays, while the minimum number of animals is required to obtain results. Mites were fed on the birds through either a mesh or without a mesh. The average feeding rates of mites was significantly higher when fed directly on chickens, whereas 106 μm nylon mesh was the top-performing mesh when compared with 125 μm aperture nylon mesh. For optimal feeding, the feeding capsules contain NFM and are attached to the skin of the chicken's thigh for 6 h. This is a simple, reproducible, and easy approach and can be adapted to facilitate many aspects of bioassays.
Collapse
Affiliation(s)
- Biswajit Bhowmick
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fang Lin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
22
|
Evaluation of the vaccine efficacy of three digestive protease antigens from Dermanyssus gallinae using an in vivo rearing system. Vaccine 2020; 38:7842-7849. [PMID: 33164806 DOI: 10.1016/j.vaccine.2020.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite considered as the major pest in the egg-laying industry. Vaccination is feasible strategy for controlling the haematophagous PRMs. Cathepsin D (CatD), cathepsin L (CatL) and legumain (Lgm) are three endopeptidases participating in digestion of hemoglobin in ticks. The in vitro test and the on-hen feeding device have been used to evaluate the efficacy of vaccines against D. gallinae, however they lacked some of the natural feeding cues for mites, resulting in unreliable results. In the present study, a reliable in vivo rearing system which was nearly close to the natural infestation status of mites was applied to evaluate the efficacy of vaccines against D. gallinae. After vaccinations with rDg-CatD-1, rDg-CatL-1 or rDg-Lgm, chicks developed the antigen-specific IgY immune response to each antigen. The survival rates of D. gallinae in three groups decreased significantly after they fed on the immunized birds. And the oviposition rate and fecundity were significantly reduced by 13.18% and 49.90% in the rDg-CatD-1 immunized group, 5.49% and 38.55% in the rDg-CatL-1 immunized group, respectively. Moreover, immunization with rDg-CatD-1 or rDg-CatL-1 significantly decreased the blood digestion rate of D. gallinae. However, no statistically significant effects on reproduction performance and blood digestion rate of mite were observed in group immunized with rDg-Lgm. Our results demonstrated that immunization with rDg-CatD-1 or rDg-CatL-1 could prevent and control D. gallinae by reducing the survival, reproductive capacity and blood digestion of mite. Importantly, the evaluation system based on the in vivo rearing system was reliable and practical, and it can accurately evaluate the effects of immunization on D. gallinae for pre-screening of potential novel antigens.
Collapse
|
23
|
Nunn F, Bartley K, Palarea-Albaladejo J, Nisbet AJ. The evaluation of feeding, mortality and oviposition of poultry red mite ( Dermanyssus gallinae) on aging hens using a high welfare on-hen feeding device. F1000Res 2020; 9:1266. [PMID: 33274054 PMCID: PMC7684678 DOI: 10.12688/f1000research.26398.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
A study was performed to examine any effect of hen age on the feeding ability and mortality of different life-stages of Dermanyssus gallinae [Poultry Red Mite (PRM)] when fed using a high welfare, on-hen mite feeding device. Mite feeding assays were carried out every two weeks on a cohort of five Lohman Brown hens with devices containing adult and deutonymph PRM or adult and protonymph PRM. Feeding rates and mortality of each PRM life stage and oviposition of adult female PRM were evaluated over an 18-week period. There was a significant reduction in oviposition rates of female PRM as they fed on hens of increasing age. However, no clear trend was detected between the feeding rates of all three haematophagous life stages and hen age. The same conclusion was reached regarding mite mortality post-feeding in both deutonymph and adult female PRMs, although a weak positive association was apparent between hen age and protonymph PRM mortality. This study shows that the on-hen feeding device can be used both for short term studies to assess novel anti-PRM products (new acaricides, vaccines etc.) and longer, longitudinal studies to determine longevity of the effects of such novel anti-PRM products. It also demonstrates that blood feeding by mites on older hens is less able to sustain PRM populations than feeding on younger hens. This on-hen mite feeding device directly impacts upon reduction and refinement by greatly reducing the numbers of birds required per experimental group compared to traditional PRM challenge infestation models and by eliminating the need for birds to be exposed to large numbers of mites for extended periods of time that can cause welfare concerns. This paper describes the methodology for these studies and how to assemble pouches and handle mites both before and after feeding assays.
Collapse
Affiliation(s)
- Francesca Nunn
- Vaccines, Moredun Research Institute, Edinburgh, EH26 0PZ, UK
| | - Kathryn Bartley
- Vaccines, Moredun Research Institute, Edinburgh, EH26 0PZ, UK
| | | | | |
Collapse
|
24
|
Quilicot AMM, Gottstein Ž, Prukner-Radovčić E, Horvatek Tomić D. Plant-derived products for the control of poultry red mite ( Dermanyssus gallinae De Geer, 1778) – a review. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1764461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ana Marquiza M. Quilicot
- College of Veterinary Medicine, Visayas State University, ViSCA, Baybay City, Leyte, Philippines
| | - Željko Gottstein
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Estella Prukner-Radovčić
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Danijela Horvatek Tomić
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
25
|
A novel cystatin derived from Trichinella spiralis suppresses macrophage-mediated inflammatory responses. PLoS Negl Trop Dis 2020; 14:e0008192. [PMID: 32236093 PMCID: PMC7153903 DOI: 10.1371/journal.pntd.0008192] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/13/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trichinella spiralis can modulate host immune responses to retain a suitable environment for its long-term survival. Incidentally, the parasite elicits regulatory effects through immunomodulatory molecule release, which can suppress host inflammation and may be used for the treatment of unrelated inflammatory diseases in someday. Here we identified and characterized a novel T. spiralis cystatin (TsCstN), which inhibits inflammation mediated by LPS-treated macrophages.Proteins contained in the excretory-secretory (ES) product of muscle-stage T. spiralis (ES-L1) were fractionated, and each was treated with mouse bone marrow-derived macrophages (mBMDMs) before LPS stimulation. The fractions that exhibited high immunomodulatory property by decreasing pro-inflammatory cytokines or increasing anti-inflammatory cytokines were identified by mass spectrometry. Incidentally, the conserved hypothetical protein (Tsp_04814) was selected for further characterization as it presented the most significant MS score. An annotation of Tsp_04814 using protein structural homology comparison suggested that it has high structural similarity to human cystatin E/M (TM score 0.690). The recombinant T. spiralis novel cystatin (rTsCstN) was expressed in Escherichia coli at a molecular weight of approximately 13 kDa. Mouse anti-rTsCstN polyclonal antibody (pAb) could detect native TsCstN in crude worm antigens (CWA) and ES-L1 and be predominantly localized in the stichosome and subcuticular cells. rTsCstN inhibited cysteine proteases in vitro, especially cathepsin L, at an optimal pH of 6. Besides, rTsCstN could be internalized into mBMDMs, which were mostly distributed in the cytoplasm and lysosome both before and after LPS stimulation. To evaluate the rTsCstN immunomodulatory properties on mBMDMs, rTsCstN was incubated with mBMDM before LPS stimulation; this demonstrated that rTsCstN suppressed pro-inflammatory cytokine production and MHC class II expression.T. spiralis L1-derived TsCstN was characterized as a novel cysteine protease inhibitor. The protein elicits an anti-inflammatory property by suppressing pro-inflammatory cytokines and interfering with the antigen presentation process through depletion of MHC class II expression.
Collapse
|
26
|
Lima-Barbero JF, Contreras M, Mateos-Hernández L, Mata-Lorenzo FM, Triguero-Ocaña R, Sparagano O, Finn RD, Strube C, Price DR, Nunn F, Bartley K, Höfle U, Boadella M, Nisbet AJ, de la Fuente J, Villar M. A vaccinology Approach to the Identification and Characterization of Dermanyssus Gallinae Candidate Protective Antigens for the Control of Poultry Red Mite Infestations. Vaccines (Basel) 2019; 7:vaccines7040190. [PMID: 31756972 PMCID: PMC6963798 DOI: 10.3390/vaccines7040190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite considered as the major pest in the egg-laying industry. Its pesticide-based control is only partially successful and requires the development of new control interventions such as vaccines. In this study, we follow a vaccinology approach to identify PRM candidate protective antigens. Based on proteomic data from fed and unfed nymph and adult mites, we selected a novel PRM protein, calumenin (Deg-CALU), which is tested as a vaccine candidate on an on-hen trial. Rhipicephalus microplus Subolesin (Rhm-SUB) was chosen as a positive control. Deg-CALU and Rhm-SUB reduced the mite oviposition by 35 and 44%, respectively. These results support Deg-CALU and Rhm-SUB as candidate protective antigens for the PRM control.
Collapse
Affiliation(s)
- José Francisco Lima-Barbero
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Sabiotec, S.A. Ed., Polivalente UCLM, Camino de Moledores, 13005 Ciudad Real, Spain;
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d´Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Francisco Manuel Mata-Lorenzo
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Roxana Triguero-Ocaña
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
| | - Robert D. Finn
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
- St George’s International School of Medicine, Keith B. Taylor Global Scholars Program, Northumbria University, Newcastle NE1 8ST, UK
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Daniel R.G. Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Ursula Höfle
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Mariana Boadella
- Sabiotec, S.A. Ed., Polivalente UCLM, Camino de Moledores, 13005 Ciudad Real, Spain;
| | - Alasdair J. Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007 USA
- Correspondence: (J.F.); (M.V.)
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research [CRIB], University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: (J.F.); (M.V.)
| |
Collapse
|
27
|
Lima-Barbero JF, Contreras M, Bartley K, Price DRG, Nunn F, Sanchez-Sanchez M, Prado E, Höfle U, Villar M, Nisbet AJ, de la Fuente J. Reduction in Oviposition of Poultry Red Mite ( Dermanyssus gallinae) in Hens Vaccinated with Recombinant Akirin. Vaccines (Basel) 2019; 7:vaccines7030121. [PMID: 31546944 PMCID: PMC6789658 DOI: 10.3390/vaccines7030121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite of birds with worldwide distribution that causes economic losses in the egg-production sector of the poultry industry. Traditional control methods, mainly based on acaricides, have been only partially successful, and new vaccine-based interventions are required for the control of PRM. Vaccination with insect Akirin (AKR) and its homolog in ticks, Subolesin (SUB), have shown protective efficacy for the control of ectoparasite infestations and pathogen infection/transmission. The aim of this study was the identification of the akr gene from D. gallinae (Deg-akr), the production of the recombinant Deg-AKR protein, and evaluation of its efficacy as a vaccine candidate for the control of PRM. The anti-Deg-AKR serum IgY antibodies in hen sera and egg yolk were higher in vaccinated than control animals throughout the experiment. The results demonstrated the efficacy of the vaccination with Deg-AKR for the control of PRM by reducing mite oviposition by 42% following feeding on vaccinated hens. A negative correlation between the levels of serum anti-Deg-AKR IgY and mite oviposition was obtained. These results support Deg-AKR as a candidate protective antigen for the control of PRM population growth.
Collapse
Affiliation(s)
- Jose Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
- Sabiotec, Ed. Polivalente UCLM, Camino de Moledores s/n, 13005 Ciudad Real, Spain.
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - Marta Sanchez-Sanchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Eduardo Prado
- Department of Applied Physics, Faculty of Science, University of Castilla La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain.
| | - Ursula Höfle
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
28
|
Price DRG, Küster T, Øines Ø, Oliver EM, Bartley K, Nunn F, Lima Barbero JF, Pritchard J, Karp-Tatham E, Hauge H, Blake DP, Tomley FM, Nisbet AJ. Evaluation of vaccine delivery systems for inducing long-lived antibody responses to Dermanyssus gallinae antigen in laying hens. Avian Pathol 2019; 48:S60-S74. [PMID: 31032631 DOI: 10.1080/03079457.2019.1612514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dermanyssus gallinae, the poultry red mite, is a global threat to the commercial egg-laying industry. Control of D. gallinae is difficult, with only a limited number of effective pesticides and non-chemical treatments available. Here, we characterize the candidate vaccine antigen D. gallinae cathepsin D-1 (Dg-CatD-1) and demonstrate that purified refolded recombinant Dg-Cat-D1 (rDg-CatD-1) is an active aspartyl proteinase which digests haemoglobin with a pH optimum of pH 4. Soluble protein extracts from D. gallinae also have haemoglobinase activity, with a pH optimum comparable to the recombinant protein, and both proteinase activities were inhibited by the aspartyl proteinase inhibitor Pepstatin A. Enzyme activity and the ubiquitous localization of Dg-CatD-1 protein in sections of adult female mites is consistent with Dg-CatD-1 being a lysosomal proteinase. Using Dg-CatD-1 as a model vaccine antigen, we compared vaccine delivery methods in laying hens via vaccination with: (i) purified rDg-CatD-1 with Montanide™ ISA 71 VG adjuvant; (ii) recombinant DNA vaccines for expression of rDg-CatD-1 and (iii) transgenic coccidial parasite Eimeria tenella expressing rDg-CatD-1. In two independent trials, only birds vaccinated with rDg-CatD-1 with Montanide™ ISA 71 VG produced a strong and long-lasting serum anti-rDg-Cat-D1 IgY response, which was significantly higher than that in control birds vaccinated with adjuvant only. Furthermore, we showed that egg-laying rates of D. gallinae mites fed on birds vaccinated with rDg-CatD-1 in Montanide™ ISA 71 VG was reduced significantly compared with mites fed on unvaccinated birds. RESEARCH HIGHLIGHTS Dermanyssus gallinae cathepsin D-1 (Dg-CatD-1) digests haemoglobin Vaccination of hens with rDg-CatD-1 in Montanide™ ISA 71 VG results in long-lasting IgY levels Serum anti-rDg-CatD-1 antibodies reduce egg laying in D. gallinae after a single blood meal.
Collapse
Affiliation(s)
- Daniel R G Price
- Moredun Research Institute, Pentlands Science Park , Edinburgh , UK
| | - Tatiana Küster
- Pathobiology and Population Sciences, Royal Veterinary College , North Mymms , UK
| | | | | | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park , Edinburgh , UK
| | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park , Edinburgh , UK
| | | | - James Pritchard
- Pathobiology and Population Sciences, Royal Veterinary College , North Mymms , UK
| | - Eleanor Karp-Tatham
- Pathobiology and Population Sciences, Royal Veterinary College , North Mymms , UK
| | | | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College , North Mymms , UK
| | - Fiona M Tomley
- Pathobiology and Population Sciences, Royal Veterinary College , North Mymms , UK
| | | |
Collapse
|
29
|
Nunn F, Bartley K, Palarea-Albaladejo J, Innocent GT, Turnbull F, Wright HW, Nisbet AJ. A novel, high-welfare methodology for evaluating poultry red mite interventions in vivo. Vet Parasitol 2019; 267:42-46. [PMID: 30878084 DOI: 10.1016/j.vetpar.2019.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 11/26/2022]
Abstract
Optimisation and use of a device for the on-hen in vivo feeding of all hematophagous stages of Dermanyssus gallinae is described. The sealed mesh device contains the mites and is applied to the skin of the hen's thigh where mites can feed on the bird through a mesh which has apertures large enough to allow the mites' mouth-parts to access to the bird but small enough to contain the mites. By optimising the depth and width of the mesh aperture size we have produced a device which will lead to both reduction and refinement in the use of animals in research, allowing the pre-screening of new vaccines and systemic acaricides/insecticides which have been developed for the control of these blood-feeding parasites before progressing to large field trials. For optimal use, the device should be constructed from 105 μm aperture width, 63 μm depth, polyester mesh and the mites (irrespective of life stage) should be conditioned with no access to food for 3 weeks at 4 °C for optimal feeding and post-feeding survival.
Collapse
|
30
|
Dong X, Chaisiri K, Xia D, Armstrong SD, Fang Y, Donnelly MJ, Kadowaki T, McGarry JW, Darby AC, Makepeace BL. Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism. Gigascience 2018; 7:5160133. [PMID: 30445460 PMCID: PMC6275457 DOI: 10.1093/gigascience/giy127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.,School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.,Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Kittipong Chaisiri
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,Faculty of Tropical Medicine, Mahidol University, Ratchathewi Bangkok 10400, Thailand
| | - Dong Xia
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,The Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Yongxiang Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - John W McGarry
- Institute of Veterinary Science, University of Liverpool, Liverpool L3 5RP, United Kingdom
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| |
Collapse
|
31
|
Tomley FM, Sparagano O. Spotlight on avian pathology: red mite, a serious emergent problem in layer hens. Avian Pathol 2018; 47:533-535. [PMID: 29954185 DOI: 10.1080/03079457.2018.1490493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dermanyssus gallinae, the poultry red mite, is currently the most important ectoparasite of the egg laying industry worldwide with an expanding global prevalence. As a blood-feeder, it causes anaemia and severe welfare issues to the hens and it is a major cause of economic losses. It is also a vector for Salmonella species, avian influenza and potentially for other vector-borne pathogens. Paradoxically, there is a notable lack of funding for research into poultry red mite and an urgent need for effective and safe control strategies, sustainable therapies, prophylactics and integrated pest management.
Collapse
Affiliation(s)
- F M Tomley
- a Department of Pathobiology and Population Sciences , The Royal Veterinary College, University of London , Hatfield , UK
| | - O Sparagano
- b Vice-Chancellor Office, Centre for Agroecology, Water and Resilience (CAWR), Coventry University , Coventry , UK
| |
Collapse
|
32
|
Shears RK, Bancroft AJ, Hughes GW, Grencis RK, Thornton DJ. Extracellular vesicles induce protective immunity against Trichuris muris. Parasite Immunol 2018; 40:e12536. [PMID: 29746004 PMCID: PMC6055854 DOI: 10.1111/pim.12536] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Gastrointestinal nematodes, such as Trichuris trichiura (human whipworm), are a major source of morbidity in humans and their livestock. There is a paucity of commercially available vaccines against these parasites, and vaccine development for T. trichiura has been impeded by a lack of known host protective antigens. Experimental vaccinations with T. muris (murine whipworm) soluble Excretory/Secretory (ES) material have demonstrated that it is possible to induce protective immunity in mice; however, the potential for extracellular vesicles (EVs) as a source of antigenic material has remained relatively unexplored. Here, we demonstrate that EVs isolated from T. muris ES can induce protective immunity in mice when administered as a vaccine without adjuvant and show that the protective properties of these EVs are dependent on intact vesicles. We also identified several proteins within EV preparations that are targeted by the host antibodies following vaccination and subsequent infection with T. muris. Many of these proteins, including VWD and vitellogenin N and DUF1943-domain-containing protein, vacuolar protein sorting-associated protein 52 and TSP-1 domain-containing protein, were detected in both soluble ES and EV samples and have homologues in other parasites of medical and veterinary importance, and as such are possible protective antigens.
Collapse
Affiliation(s)
- R. K. Shears
- Faculty of Biology, Medicine and HealthWellcome Trust Centre for Cell‐Matrix Research and Manchester Immunology GroupManchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - A. J. Bancroft
- Faculty of Biology, Medicine and HealthWellcome Trust Centre for Cell‐Matrix Research and Manchester Immunology GroupManchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - G. W. Hughes
- Faculty of Biology, Medicine and HealthWellcome Trust Centre for Cell‐Matrix Research and Manchester Immunology GroupManchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - R. K. Grencis
- Faculty of Biology, Medicine and HealthWellcome Trust Centre for Cell‐Matrix Research and Manchester Immunology GroupManchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - D. J. Thornton
- Faculty of Biology, Medicine and HealthWellcome Trust Centre for Cell‐Matrix Research and Manchester Immunology GroupManchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
33
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
34
|
Sigognault Flochlay A, Thomas E, Sparagano O. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasit Vectors 2017; 10:357. [PMID: 28760144 PMCID: PMC5537931 DOI: 10.1186/s13071-017-2292-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Abstract
The poultry red mite, Dermanyssus gallinae, has been described for decades as a threat to the egg production industry, posing serious animal health and welfare concerns, adversely affecting productivity, and impacting public health. Research activities dedicated to controlling this parasite have increased significantly. Their veterinary and human medical impact, more particularly their role as a disease vector, is better understood. Nevertheless, red mite infestation remains a serious concern, particularly in Europe, where the prevalence of red mites is expected to increase, as a result of recent hen husbandry legislation changes, increased acaricide resistance, climate warming, and the lack of a sustainable approach to control infestations. The main objective of the current work was to review the factors contributing to this growing threat and to discuss their recent development in Europe. We conclude that effective and sustainable treatment approach to control poultry red mite infestation is urgently required, included integrated pest management.
Collapse
Affiliation(s)
| | - Emmanuel Thomas
- MSD Animal Health Innovation GmbH, Zur Propstei 55270, Schwabenheim, Germany
| | - Olivier Sparagano
- Coventry University, Vice-Chancellor Office, Alan Berry Building, Coventry, CV1 5FB, UK
| |
Collapse
|
35
|
Bartley K, Turnbull F, Wright HW, Huntley JF, Palarea-Albaladejo J, Nath M, Nisbet AJ. Field evaluation of poultry red mite (Dermanyssus gallinae) native and recombinant prototype vaccines. Vet Parasitol 2017; 244:25-34. [PMID: 28917313 PMCID: PMC5613835 DOI: 10.1016/j.vetpar.2017.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 11/10/2022]
Abstract
Field trial testing of a native and recombinant poultry red mite vaccines. Vaccination with a soluble mite extract (SME) resulted in a 78% reduction in mite numbers. Poor antibody persistence may relate to lack of effect of a recombinant cocktail vaccine. A semi-protective naturally acquired immunity may develop.
Vaccination is a desirable emerging strategy to combat poultry red mite (PRM), Dermanyssus gallinae. We performed trials, in laying hens in a commercial-style cage facility, to test the vaccine efficacy of a native preparation of soluble mite extract (SME) and of a recombinant antigen cocktail vaccine containing bacterially-expressed versions of the immunogenic SME proteins Deg-SRP-1, Deg-VIT-1 and Deg-PUF-1. Hens (n = 384 per group) were injected with either vaccine or adjuvant only (control group) at 12 and 17 weeks of age and then challenged with PRM 10 days later. PRM counts were monitored and, at the termination of the challenge period (17 weeks post challenge), average PRM counts in cages containing birds vaccinated with SME were reduced by 78% (p < 0.001), compared with those in the adjuvant-only control group. When the trial was repeated using the recombinant antigen cocktail vaccine, no statistically significant differences in mean PRM numbers were observed in cages containing vaccinated or adjuvant-only immunised birds. The roles of antigen-specific antibody levels and duration in providing vaccine-induced and exposure-related protective immunity are discussed.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom.
| | - Frank Turnbull
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Harry W Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - John F Huntley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Javier Palarea-Albaladejo
- Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Mintu Nath
- Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| |
Collapse
|
36
|
Wright HW, Bartley K, Huntley JF, Nisbet AJ. Characterisation of tropomyosin and paramyosin as vaccine candidate molecules for the poultry red mite, Dermanyssus gallinae. Parasit Vectors 2016; 9:544. [PMID: 27733192 PMCID: PMC5059928 DOI: 10.1186/s13071-016-1831-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/04/2016] [Indexed: 01/14/2023] Open
Abstract
Background Dermanyssus gallinae is the most economically important haematophagous ectoparasite in commercial egg laying flocks worldwide. It infests the hens during the night where it causes irritation leading to restlessness, pecking and in extreme cases anaemia and increased cannibalism. Due to an increase in the occurrence of acaricide-resistant D. gallinae populations, new control strategies are required and vaccination may offer a sustainable alternative to acaricides. In this study, recombinant forms of D. gallinae tropomyosin (Der g 10) and paramyosin (Der g 11) were produced, characterised and tested as vaccine candidate molecules. Methods The D. gallinae paramyosin (Der g 11) coding sequence was characterised and recombinant versions of Der g 11 and D. gallinae tropomyosin (Der g 10) were produced. Hens were immunised with the recombinant proteins and the resulting antibodies were fed to D. gallinae and mite mortality evaluated. Sections of mites were probed with anti- Der g 11 and Der g 10 antibodies to identify the tissue distribution of these protein in D. gallinae. Results The entire coding sequence of Der g 11 was 2,622 bp encoding 874 amino acid residues. Immunohistochemical staining of mite sections revealed that Der g 10 and Der g 11 were located throughout D. gallinae tissues. In phylogenetic analyses of these proteins both clustered with orthologues from tick species rather than with orthologues from astigmatid mites. Antibodies raised in hens against recombinant forms of these proteins significantly increased D. gallinae mortality, by 19 % for Der g 10 (P < 0.001) and by 23 % for Der g 11 (P = 0.009) when fed to the mites using an in vitro feeding device. Conclusions This study has shown that Der g 10 and Der g 11 were located ubiquitously throughout D. gallinae and that antibodies raised against recombinant versions of these proteins can be used to significantly increase D. gallinae mortality in an in vitro feeding assay. When comparing archived data for all recombinant and native proteins assessed as vaccines using this in vitro feeding assay, Der g 10 and Der g 11 ranked highly and performed better than some of the pools of native proteins.
Collapse
Affiliation(s)
- Harry W Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK.
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK
| | - John F Huntley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK
| |
Collapse
|
37
|
Makert GR, Vorbrüggen S, Krautwald-Junghanns ME, Voss M, Sohn K, Buschmann T, Ulbert S. A method to identify protein antigens of Dermanyssus gallinae for the protection of birds from poultry mites. Parasitol Res 2016; 115:2705-13. [PMID: 27026505 DOI: 10.1007/s00436-016-5017-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae.
Collapse
Affiliation(s)
- Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany.,Clinic for Birds and Reptiles, Leipzig University, An den Tierkliniken 17, 04103, Leipzig, Germany
| | - Susanne Vorbrüggen
- Clinic for Birds and Reptiles, Leipzig University, An den Tierkliniken 17, 04103, Leipzig, Germany
| | | | - Matthias Voss
- Lohmann Tierzucht GmbH, Am Seedeich 9-11, 27454, Cuxhaven, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Tilo Buschmann
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany.
| |
Collapse
|