1
|
Tuerxun K, Tang RH, Abudoumijiti A, Yusupu Z, Aikebaier A, Mijiti S, Ibrahim I, Cao YL, Yasheng A, Wu YQ. Comparative proteomics analysis of samples from hepatic cystic echinococcosis patients using data-independent acquisition approach. J Proteomics 2024; 301:105191. [PMID: 38697285 DOI: 10.1016/j.jprot.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Cystic echinococcosis is a zoonotic disease resulting from infection caused by the larval stage of Echinococcus granulosus. This study aimed to assess the specific proteins that are potential candidates for the development of a vaccine against E. granulosus. The data-independent acquisition approach was employed to identify differentially expressed proteins (DEPs) in E. granulosus samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to identify several noteworthy proteins. Results: The DEPs in E. granulosus samples were identified (245 pericystic wall vs. parasite-free yellowish granuloma (PYG, 1725 PY vs. PYG, 2274 PN vs. PYG). Further examination of these distinct proteins revealed their predominant enrichment in metabolic pathways, amyotrophic lateral sclerosis, and neurodegeneration-associated pathways. Notably, among these DEPs, SH3BGRL, MST1, TAGLN2, FABP5, UBE2V2, and RARRES2 exhibited significantly higher expression levels in the PYG group compared with the PY group (P < 0.05). The findings may contribute to the understanding of the pathological mechanisms underlying echinococcosis, providing valuable insights into the development of more effective diagnostic tools, treatment modalities, and preventive strategies. SIGNIFICANCE: CE is a major public health hazard in the western regions of China, Central Asia, South America, the Mediterranean countries, and eastern Africa. Echinococcus granulosus is responsible for zoonotic disease through infection Our analysis focuses on the proteins in various samples by data-dependent acquisition (DIA) for proteomic analysis. The importance of this research is to develop new strategies and targets to protect against E. granulosus infections in humans.
Collapse
Affiliation(s)
- Kahaer Tuerxun
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Rong-Hua Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Aabudouxikuer Abudoumijiti
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Zainuer Yusupu
- Department of Ultrasound, The First People's Hospital of Kashgar, Kashgar Prefecture 844000, China
| | - Aizemaiti Aikebaier
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Salamu Mijiti
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Irshat Ibrahim
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Yan-Long Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Abudoukeyimu Yasheng
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China
| | - Yuan-Quan Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar Prefecture 844000, China.
| |
Collapse
|
2
|
Chen Y, Hua R, Shao G, Zhu X, Hou W, Li S, Yang A, Yang G. Effects of annexin B18 from Echinococcus granulosus sensu lato on mouse macrophages. Exp Parasitol 2024; 260:108723. [PMID: 38432406 DOI: 10.1016/j.exppara.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1β,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 μg/mL while no significant impact on metabolic activity was observed at 80 μg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1β, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1β, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.
Collapse
Affiliation(s)
- Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Wei Hou
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China.
| |
Collapse
|
3
|
Sadr S, Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. CURRENT CANCER THERAPY REVIEWS 2023; 19:292-297. [DOI: 10.2174/1573394719666230427094247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 08/19/2024]
Abstract
Abstract:Breast cancer is a major cause of cancer deaths in women, with approximately 1.2 million new cases per year. Current treatment options for breast cancer include surgery, radiation, hormone therapy, and chemotherapy. However, the non-selective cytotoxicity of chemotherapeutic agents often leads to severe side effects, while drug resistance can worsen patient outcomes. Therefore, the development of more effective and less toxic anticancer drugs is a critical need. This study aimed to review the literature on Echinococcus granulosus antigens with anticancer potential against triple-negative breast cancer. Recent studies have suggested that certain parasite antigens may have potential anticancer effects. Specifically, research has shown that echinococcosis, a disease caused by the parasitic cestode Echinococcus granulosus, may have a protective effect against cancer. These findings offer new insights into the potential use of E. granulosus antigens in the development of novel cancer therapies and tumor cell vaccines. The findings of recent studies suggested that E. granulosus antigens may have the potential to be used in effective and less toxic cancer treatments. However, further research is needed to fully understand the mechanisms behind the anticancer effects of these antigens and develop new cancer therapies and vaccines
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Khosravi M, Mohammad Rahimi H, Nazari A, Baghaei K, Asadzadeh Aghdaei H, Shahrokh S, Sharifdini M, Torrecilhas AC, Mehryab F, Mirjalali H, Shekari F, Zali MR. Characterisation of extracellular vesicles isolated from hydatid cyst fluid and evaluation of immunomodulatory effects on human monocytes. J Cell Mol Med 2023; 27:2614-2625. [PMID: 37530547 PMCID: PMC10468670 DOI: 10.1111/jcmm.17894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Hydatidosis is a disease caused by the larval stage of Echinococcus granulosus, which involves several organs of intermediate hosts. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles. However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. In the current study, EVs were isolated using differential centrifugation from sheep HCF and characterized by western blot, electron microscope and size distribution analysis. The uptake of EVs by human monocyte cell line (THP-1) was evaluated. The effects of EVs on the expression levels of pro- and anti-inflammatory cytokines were investigated using quantitative real-time PCR (RT-PCR), 3 and 24 h after incubation. Moreover, the cytokine level of IL-10 was evaluated in supernatant of THP-1 cell line at 3 and 24 h. EVs were successfully isolated and showed spherical shape with size distribution at 130.6 nm. After 3 h, the expression levels of pro-inflammatory cytokine genes (IL1Β, IL15 and IL8) were upregulated, while after 24 h, the expression levels of pro-inflammatory cytokines were decreased and IL13 gene expression showed upregulation. A statistically significant increase was seen in the levels of IL-10 after 24 h. The main mechanism of the communication between EVs derived from HCF and their host remains unclear; however, time-dependent anti-inflammatory effects in our study suggest that HC may modulate the immune responses via EVs.
Collapse
Affiliation(s)
- Mojdeh Khosravi
- Department of Pharmacy and Pharmaceutical Technology and ParasitologyUniversity of ValenciaValenciaSpain
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Abdoreza Nazari
- Department of Molecular Systems Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaBrazil
| | - Fatemeh Mehryab
- Department of Molecular Systems Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Müller J, Preza M, Kaethner M, Rufener R, Braga S, Uldry AC, Heller M, Lundström-Stadelmann B. Targeted and non-targeted proteomics to characterize the parasite proteins of Echinococcus multilocularis metacestodes. Front Cell Infect Microbiol 2023; 13:1170763. [PMID: 37325510 PMCID: PMC10266102 DOI: 10.3389/fcimb.2023.1170763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
The larval stage of the cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis. To investigate the biology of these stages and to test novel compounds, metacestode cultures represent a suitable in vitro model system. These metacestodes are vesicles surrounded by an envelope formed by the vesicle tissue (VT), which is formed by the laminated and germinal layer, and filled with vesicle fluid (VF). We analyzed the proteome of VF and VT by liquid chromatography tandem mass spectrometry (LC-MS/MS) and identified a total of 2,954 parasite proteins. The most abundant protein in VT was the expressed conserved protein encoded by EmuJ_000412500, followed by the antigen B subunit AgB8/3a encoded by EmuJ_000381500 and Endophilin B1 (protein p29). In VF, the pattern was different and dominated by AgB subunits. The most abundant protein was the AgB8/3a subunit followed by three other AgB subunits. In total, the AgB subunits detected in VF represented 62.1% of the parasite proteins. In culture media (CM), 63 E. multilocularis proteins were detected, of which AgB subunits made up 93.7% of the detected parasite proteins. All AgB subunits detected in VF (encoded by EmuJ_000381100-700, corresponding to AgB8/2, AgB8/1, AgB8/4, AgB8/3a, AgB8/3b, and AgB8/3c) were also found in CM, except the subunit encoded by EmuJ_000381800 (AgB8/5) that was very rare in VF and not detected in CM. The relative abundance of the AgB subunits in VF and CM followed the same pattern. In VT, only the subunits EmuJ_000381500 (AgB8/3a) and EmuJ_000381200 (AgB8/1) were detected among the 20 most abundant proteins. To see whether this pattern was specific to VF from in vitro cultured metacestodes, we analyzed the proteome of VF from metacestodes grown in a mouse model. Here, the AgB subunits encoded by EmuJ_000381100-700 constituted the most abundant proteins, namely, 81.9% of total protein, with the same order of abundance as in vitro. Immunofluorescence on metacestodes showed that AgB is co-localized to calcareous corpuscles of E. multilocularis. Using targeted proteomics with HA-tagged EmuJ_000381200 (AgB8/1) and EmuJ_000381100 (AgB8/2), we could show that uptake of AgB subunits from CM into VF occurs within hours.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marc Kaethner
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Sophie Braga
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Cucher MA, Mariconti M, Manciulli T, Vola A, Rosenzvit MC, Brehm K, Kamenetzky L, Brunetti E. Circulating Small RNA Profiling of Patients with Alveolar and Cystic Echinococcosis. BIOLOGY 2023; 12:biology12050715. [PMID: 37237528 DOI: 10.3390/biology12050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Alveolar (AE) and cystic (CE) echinococcosis are two parasitic diseases caused by the tapeworms Echinococcus multilocularis and E. granulosus sensu lato (s. l.), respectively. Currently, AE and CE are mainly diagnosed by means of imaging techniques, serology, and clinical and epidemiological data. However, no viability markers that indicate parasite state during infection are available. Extracellular small RNAs (sRNAs) are short non-coding RNAs that can be secreted by cells through association with extracellular vesicles, proteins, or lipoproteins. Circulating sRNAs can show altered expression in pathological states; hence, they are intensively studied as biomarkers for several diseases. Here, we profiled the sRNA transcriptomes of AE and CE patients to identify novel biomarkers to aid in medical decisions when current diagnostic procedures are inconclusive. For this, endogenous and parasitic sRNAs were analyzed by sRNA sequencing in serum from disease negative, positive, and treated patients and patients harboring a non-parasitic lesion. Consequently, 20 differentially expressed sRNAs associated with AE, CE, and/or non-parasitic lesion were identified. Our results represent an in-depth characterization of the effect E. multilocularis and E. granulosus s. l. exert on the extracellular sRNA landscape in human infections and provide a set of novel candidate biomarkers for both AE and CE detection.
Collapse
Affiliation(s)
- Marcela A Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Mara Mariconti
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Tommaso Manciulli
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Ambra Vola
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mara C Rosenzvit
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Klaus Brehm
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Enrico Brunetti
- Immunology and Infectious Diseases, San Matteo Hospital Foundation, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Dousti M, Sadjjadi SM, Solgi R, Vafafar A, Sharifi Y, Radfar A, Hatam GR. Comparison of Isoenzyme Pattern of Echinococcus granulosus sensu stricto (G1-G3) and E. canadensis (G6/G7) Protoscoleces. IRANIAN BIOMEDICAL JOURNAL 2023; 27:136-45. [PMID: 37073115 PMCID: PMC10314765 DOI: 10.52547/ibj.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Background Different genotypes of Echinococcus granulosus sensu lato (s.l.) infect humans and ungulate animals, causing cystic echinococcosis. Simultaneous isoenzyme, as well as molecular characterizations of this parasite, has not yet been investigated in Iran. The present study aimed to evaluate the isoenzyme pattern of the E. granulosus sensu stricto (s.s.) and E. canadensis genotypes in Iran. Methods A total of 32 (8 humans and 24 animals) cystic echinococcosis cysts were isolated from Shiraz, Tehran, Ilam, and Birjand from May 2018 to December 2020. The DNAs were extracted and their genotypes were determined by molecular methods. Enzymes were extracted from the cysts and subjected to polyacrylamide gel electrophoresis. The activities of glucose-6-phosphate sehydrogenase (G6PD), malate dehydrogenase (MDH), malic enzyme (ME), nucleoside hydrolyse 1 (NH1), and isocitrate dehydrogenase (ICD) were examined in the cyst samples using isoenzyme method and compared it with the genotyping findings. Results DNA sequence analysis of the samples showed that the specimens contained 75% E. granulosus s.s. (G1) and 25% E. canadensis (G6) genotypes. The isoenzyme pattern of ICD in both genotypes produced a six-band pattern with different relative factors. The G6PD also produced two bands with different relative migrations in both genotypes. The MDH and NH1 systems revealed a two-band pattern, while only one band was generated in the ME enzyme in the E. granulosus s.s. genotype. In the E. canadensis, the MDH and NH1 enzymes showed one band, and the ME enzyme represented a two-band pattern. Conclusion Our findings suggest that E. granulosus s.s. and E. canadensis genotypes have entirely different isoenzyme patterns for NH1, G6PD, MDH, and ME.
Collapse
Affiliation(s)
- Majid Dousti
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahmat Solgi
- Department of Medical Microbiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Vafafar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Dousti M, Sadjjadi SM, Solgi R, Vafafar A, Sharifi Y, Radfar A, Hatam GR. Comparison of Isoenzyme Pattern of Echinococcus granulosus sensu stricto (G1-G3) and E. canadensis (G6/G7) Protoscoleces. IRANIAN BIOMEDICAL JOURNAL 2023; 27:136-45. [PMID: 37073115 PMCID: PMC10314765 DOI: 10.61186/ibj.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/13/2023] [Indexed: 12/17/2023]
Abstract
Background Different genotypes of Echinococcus granulosus sensu lato (s.l.) infect humans and ungulate animals, causing cystic echinococcosis. Simultaneous isoenzyme, as well as molecular characterizations of this parasite, has not yet been investigated in Iran. The present study aimed to evaluate the isoenzyme pattern of the E. granulosus sensu stricto (s.s.) and E. canadensis genotypes in Iran. Methods A total of 32 (8 humans and 24 animals) cystic echinococcosis cysts were isolated from Shiraz, Tehran, Ilam, and Birjand from May 2018 to December 2020. The DNAs were extracted and their genotypes were determined by molecular methods. Enzymes were extracted from the cysts and subjected to polyacrylamide gel electrophoresis. The activities of glucose-6-phosphate sehydrogenase (G6PD), malate dehydrogenase (MDH), malic enzyme (ME), nucleoside hydrolyse 1 (NH1), and isocitrate dehydrogenase (ICD) were examined in the cyst samples using isoenzyme method and compared it with the genotyping findings. Results DNA sequence analysis of the samples showed that the specimens contained 75% E. granulosus s.s. (G1) and 25% E. canadensis (G6) genotypes. The isoenzyme pattern of ICD in both genotypes produced a six-band pattern with different relative factors. The G6PD also produced two bands with different relative migrations in both genotypes. The MDH and NH1 systems revealed a two-band pattern, while only one band was generated in the ME enzyme in the E. granulosus s.s. genotype. In the E. canadensis, the MDH and NH1 enzymes showed one band, and the ME enzyme represented a two-band pattern. Conclusion Our findings suggest that E. granulosus s.s. and E. canadensis genotypes have entirely different isoenzyme patterns for NH1, G6PD, MDH, and ME.
Collapse
Affiliation(s)
- Majid Dousti
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahmat Solgi
- Department of Medical Microbiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Vafafar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Hautala K, Pursiainen J, Näreaho A, Nyman T, Varmanen P, Sukura A, Nielsen MK, Savijoki K. Label-free quantitative proteomics and immunoblotting identifies immunoreactive and other excretory-secretory (E/S) proteins of Anoplocephala perfoliata. Front Immunol 2022; 13:1045468. [PMID: 36466892 PMCID: PMC9709427 DOI: 10.3389/fimmu.2022.1045468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 06/11/2024] Open
Abstract
Anoplocephala perfoliata is a common tapeworm in horses causing colic and even mortalities. Current diagnostic tests to detect A. perfoliata infections have their limitations and an improved method is needed. Immunoreactive excretory/secretory proteins (E/S proteome) of this parasite can provide promising candidates for diagnostic tests. We compared E/S proteins produced by small (length < 20 mm, width < 5 mm) and large (length 20 to 40 mm, width 5 to 10 mm) A. perfoliata worms in vitro by label-free quantitative proteomics using a database composed of related Hymenolepis diminuta, Echinococcus multilocularis/granulosus and Taenia aseatica proteins for protein identifications. Altogether, 509 E/S proteins were identified after incubating the worms in vitro for three and eight hours. The greatest E/S proteome changes suggested both worm size- and time-dependent changes in cytoskeleton remodeling, apoptosis, and production of antigens/immunogens. The E/S proteins collected at the three-hour time point represented the natural conditions better than those collected at the eight-hour time point, and thereby contained the most relevant diagnostic targets. Immunoblotting using antibodies from horses tested positive/negative for A. perfoliata indicated strongest antigenicity/immunogenicity with 13-, 30- and 100-kDa proteins, involving a thioredoxin, heat-shock chaperone 90 (Hsp90), dynein light chain component (DYNLL), tubulin-specific chaperone A (TBCA) and signaling pathway modulators (14-3-3 and Sj-Ts4). This is among the first studies identifying new diagnostic targets and A. perfoliata antigens eliciting a IgG-response in horses.
Collapse
Affiliation(s)
- Katja Hautala
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jami Pursiainen
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Näreaho
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Nyman
- Institute of Clinical Medicine, Department of Immunology, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Pekka Varmanen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Antti Sukura
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Martin K. Nielsen
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Kirsi Savijoki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Dos Santos GB, da Silva ED, Kitano ES, Battistella ME, Monteiro KM, de Lima JC, Ferreira HB, Serrano SMDT, Zaha A. Proteomic profiling of hydatid fluid from pulmonary cystic echinococcosis. Parasit Vectors 2022; 15:99. [PMID: 35313982 PMCID: PMC8935821 DOI: 10.1186/s13071-022-05232-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. METHODS Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. RESULTS The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity. CONCLUSIONS The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases.
Collapse
Affiliation(s)
- Guilherme Brzoskowski Dos Santos
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Edileuza Danieli da Silva
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Shigueo Kitano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Maria Eduarda Battistella
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeferson Camargo de Lima
- Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Solange Maria de Toledo Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Shi C, Zhou X, Yang W, Wu J, Bai M, Zhang Y, Zhao W, Yang H, Nagai A, Yin M, Gao X, Ding S, Zhao J. Proteomic Analysis of Plasma-Derived Extracellular Vesicles From Mice With Echinococcus granulosus at Different Infection Stages and Their Immunomodulatory Functions. Front Cell Infect Microbiol 2022; 12:805010. [PMID: 35360110 PMCID: PMC8960237 DOI: 10.3389/fcimb.2022.805010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 01/15/2023] Open
Abstract
The globally distributed cystic echinococcosis (CE) is caused by the larval stage of Echinococcus granulosus (E. granulosus), a cosmopolitan and zoonotic disease with potentially life-threatening complications in humans. The emerging roles for extracellular vesicles (EVs) in parasitic infection include transferring proteins and modifying host cell gene expression to modulate host immune responses. Few studies focused on the host-derived EVs and its protein profiles. We focused on the EVs from mouse infected with E. granulosus at different stages. ExoQuick kit was used for isolating EVs from mouse plasma and ExoEasy Maxi kit was used for isolating protoscolex culture supernatant (PCS) and hydatid cyst fluid (HCF). Firstly, EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and immunoblot. Secondly, the proteins of plasma EVs were identified using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The resulting LC–MS/MS data were processed using Maxquant search engine (v 1.5.2.8). Tandem mass spectra were researched against the mice and E. granulosus proteins database in the NCBI. The differentially expressed proteins are performed by proteomic label-free quantitative analysis and bioinformatics. Thirdly, in vitro experiment, the results of co-culture of plasma EVs and spleen mononuclear cells showed that 7W-EVs can increase the relative abundance of regulatory T (Treg) cells and IL-10. We further verified that EVs can be internalized by CD4+ and CD8+ T cells, B cells, and myeloid-derived suppressor cells (MDSC). These results implied host-derived EVs are multidirectional immune modulators. The findings can contribute to a better understanding of the role of host-derived EVs which are the optimal vehicle to transfer important cargo into host immune system. In addition, we have found several important proteins associated with E. granulosus and identified in infected mouse plasma at different stages. Furthermore, our study further highlighted the proteomics and immunological function of EVs from mouse infected with E. granulosus protoscoleces at different infection stages. We have laid a solid foundation for the role of EVs in cystic echinococcosis in the future research and supplemented a unique dataset for this E. granulosus.
Collapse
Affiliation(s)
- Chunli Shi
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Xiaojing Zhou
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Wenjuan Yang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jianwen Wu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Min Bai
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Ying Zhang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Institute of Medical Science, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Hui Yang
- Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Institute of Medical Science, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Atsushi Nagai
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Mei Yin
- Department of Respiratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoping Gao
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- *Correspondence: Jiaqing Zhao, ; Shuqin Ding,
| | - Jiaqing Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Institute of Medical Science, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
- *Correspondence: Jiaqing Zhao, ; Shuqin Ding,
| |
Collapse
|
12
|
Biosa G, Bonelli P, Pisanu S, Ghisaura S, Santucciu C, Peruzzu A, Garippa G, Uzzau S, Masala G, Pagnozzi D. Proteomic characterization of Echinococcus granulosus sensu stricto, Taenia hydatigena and Taenia multiceps metacestode cyst fluids. Acta Trop 2022; 226:106253. [PMID: 34822852 DOI: 10.1016/j.actatropica.2021.106253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022]
Abstract
Cystic echinococcosis (CE) diagnosis by means of serological assays is hampered by the presence of parasites closely related to Echinococcus granulosus sensu lato (s.l.), responsible of the zoonotic disease and with which share cross-reacting antigens. Thus, improvements on the characterization of Echinococcus specific antigens expressed in the larval stage are required, in order to provide useful information for the development of immunological assays for the serodiagnosis of CE in sheep. Here, the proteome of the hydatid cyst fluids (HFs) of Echinococcus granulosus (hydatid fluid, EgHF) and other ovine parasites cyst fluids (CFs), Taenia hydatigena (ThCF) and Taenia multiceps (TmCF) were analyzed by a shotgun proteomic approach. Parasite and host protein profiles in the three types of cyst fluids were characterized and compared. Among the identified proteins, differential parasitic markers with serodiagnostic potential, due to their well-known immunoreactivity in human, included Ag5, AgB proteins, 8-kDa glycoproteins, hydatid disease diagnostic antigen P29 and major egg antigen P40. In particular, seven proteoforms of AgB and 8-kDa glycoprotein resulted to be the most promising diagnostic biomarkers, as they might predict CE in ovine and discriminate between different types of parasites.
Collapse
|
13
|
García-Méndez N, Manterola C, Totomoch-Serra A, Riffo-Campos AL, Brito-Carreón CA. PROTEOMIC PROFILE OF ECHINOCOCCUS GRANULOSUS: A SYSTEMATIC REVIEW. J Parasitol 2022; 108:64-69. [PMID: 35119469 DOI: 10.1645/20-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cystic echinococcosis is a zoonotic disease caused by the larval stage of Echinococcus granulosus. This affliction is an endemic worldwide condition that represents a neglected parasitic disease with important socioeconomic repercussions. Proteomic characterization of larval and adult stages of E. granulosus, as well as the association between expression profiles and host interactions, is relevant for a better understanding of parasite biology, and eventually for drug design and vaccine development. This study aimed to develop a synthesis of the evidence available related to proteomics of E. granulosus. A systematic review was carried out to collect data concerning the proteomics of E. granulosus, without language or host restriction, published between 1980 and 2019. A systematic search was carried out in the Trip Database, BIREME-BVS, SciELO, Web of Science, PubMed, EMBASE, SCOPUS, EBSCO host, and LILACS, using MeSH terms, free words, and Boolean connectors, and adapting strategies to each source of information. Additionally, a manual cross-reference search was performed. Variables studied were the year of publication, geographic origin of the study, number of samples, hosts, parasitic organs, proteomic techniques, and parasite proteins verified. Nine-hundred and thirty-six related articles were identified: 17 fulfilled selection criteria, including slightly more than 188 samples. Most articles were published between 2014 and 2019 (64.7%) and were from Brazil and China (35.3% each). In reference to confirmed hosts in the primary articles, cattle (41.2%) and humans (23.5%) were the most frequently reported. Concerning proteomic techniques applied in the primary articles, LC-MS/MS was the most used (41.1%), and 890 proteins were reported by the primary articles. As the results of our search suggest, the information related to E. granulosus proteomics is scarce, heterogeneous, and scattered throughout several articles that include a diversity of tissues, samples, intermediate hosts, and proteomic techniques. Consequently, the level of evidence generated by our search is type 4.
Collapse
Affiliation(s)
- Nayely García-Méndez
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Carlos Manterola
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, 4811230, Temuco, Chile
| | - Armando Totomoch-Serra
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile.,Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, 36824, México City, México
| | - Angela L Riffo-Campos
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile
| | - César A Brito-Carreón
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, 36824, México City, México
| |
Collapse
|
14
|
Liu C, Bi X, Fan H, Ma L, Ge RL. Microcyst fluid promotes the migration and invasion of fibroblasts in the adventitial layer of alveolar echinococcosis. Acta Trop 2021; 223:106084. [PMID: 34389327 DOI: 10.1016/j.actatropica.2021.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis (E. multilocularis), characterized by lesions composed of an aggregate of microcysts embedded in a granulomatous host's reaction. The periphery of parasite granulomas often additionally displays fibrotic reactions of varying intensity, in which E. multilocularis microenvironment fibroblasts (EMFs) laid down collagen. However, the regulation of EMFs by the infiltration of E. multilocularis microcyst fluid (MF) into granulomas remains poorly defined. This study aimed to investigate the effect of MF on migration and invasion of primary isolated EMFs cells. A mouse model of secondary infection with AE was established, and the model construction was evaluated by HE staining. EMFs were cultured in primary by tissue block adherency method. The isolated cells were identified by qPCR, immunofluorescence and Western blot. Then CCK-8 assay, cell migration/invasion assay and flow cytometry were performed to detect the effects of MF on the proliferation, migration, invasion and cell cycle of EMFs, respectively. The expressions of MMP2 and MMP9 at mRNA and protein levels in EMFs were detected by RT-qPCR and Western blot. The effect of PI3K-Akt signal transduction pathway on regulating the expression of MMPs expression was assessed by Western blot. As indicated from the results, EMFs were successfully isolated from the E. multilocularis microenvironment and identified as myofibroblasts. MF significantly facilitated the proliferation and cell cycle progression of EMFs. In addition, MF significantly improved the migration and invasion of EMFs. MF was further confirmed to up-regulate mRNA and protein expressions of MMP2 and MMP9 in EMFs, which was related to the activation of the PI3K-Akt signaling pathway. The present study demonstrates that MF can promote the migration and invasion of EMFs cells significantly, which might be via activating PI3K-Akt signaling pathway.
Collapse
|
15
|
Cui Y, Wang X, Xu J, Liu X, Wang X, Pang J, Song Y, Yu M, Song W, Luo X, Liu M, Sun S. PROTEOMIC ANALYSIS OF TAENIA SOLIUM CYST FLUID BY SHOTGUN LC-MS/MS. J Parasitol 2021; 107:799-809. [PMID: 34648630 DOI: 10.1645/20-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Taenia solium cysts were collected from pig skeletal muscle and analyzed via a shotgun proteomic approach to identify known proteins in the cyst fluid and to explore host-parasite interactions. Cyst fluid was aseptically collected and analyzed with shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene alignment and annotation were performed using Blast2GO software followed by gene ontology analysis of the annotated proteins. The pathways were further analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a protein-protein interaction (PPI) network map was generated using STRING software. A total of 158 known proteins were identified, most of which were low-molecular-mass proteins. These proteins were mainly involved in cellular and metabolic processes, and their molecular functions were predominantly related to catalytic activity and binding functions. The pathway enrichment analysis revealed that the known proteins were mainly enriched in the PI3K-Akt and glycolysis/gluconeogenesis signaling pathways. The nodes in the PPI network mainly consisted of enzymes involved in sugar metabolism. The cyst fluid proteins screened in this study may play important roles in the interaction between the cysticerci and the host. The shotgun LC-MS/MS, gene ontology, KEGG, and PPI network map data will be used to identify and analyze the cyst fluid proteome of cysticerci, which will provide a basis for further exploration of the invasion and activities of T. solium.
Collapse
Affiliation(s)
- Yaxuan Cui
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Tongliao 028042, China
| | - Xinrui Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Tongliao 028042, China
| | - Jing Xu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Tongliao 028042, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Jianda Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Yining Song
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Tongliao 028042, China
| | - Mingchuan Yu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Tongliao 028042, China
| | - Weiyi Song
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Tongliao 028042, China
| | - Xuenong Luo
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China
| | - Shumin Sun
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Tongliao 028042, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
16
|
Ilić N, Kosanović M, Gruden-Movsesijan A, Glamočlija S, Sofronić-Milosavljević L, Čolić M, Tomić S. Harnessing immunomodulatory mechanisms of Trichinella spiralis to design novel nanomedical approaches for restoring self-tolerance in autoimmunity. Immunol Lett 2021; 238:57-67. [PMID: 34363897 DOI: 10.1016/j.imlet.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The rapid increase in the prevalence of autoimmune diseases in recent decades, especially in developed countries, coincided with improved living conditions and healthcare. Part of this increase could be ascribed to the lack of exposure to infectious agents like helminths that co-evolved with us and display potent immune regulatory actions. In this review we discussed many investigations, including our own, showing that Trichinella spiralis via its excretory-secretory products attenuate Th1/Th17 immunopathological response in autoimmunity and potentiate the protective Th2 and or regulatory T cell response, acting as an effective induction of tolerogenic dendritic cells (DCs), and probably mimicking the autoantigen in some diseases. A recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that inducing a complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. Indeed, different artificial nanomedical approaches discussed here suggested that co-delivery of multiple signals via nanoparticles is the most promising strategy for the treatment of autoimmune diseases. Although a long way is ahead of us before we could completely replicate natural nano-delivery systems which are both safe and potent in restoring self-tolerance, a clear path is being opened from a careful examination of parasite-host interactions.
Collapse
Affiliation(s)
- Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Maja Kosanović
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Sofija Glamočlija
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Ljiljana Sofronić-Milosavljević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia; Medical Faculty Foča, University of East Sarajevo, Bosnia and Hercegovina; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia.
| |
Collapse
|
17
|
Yang J, Wu J, Fu Y, Yan L, Li Y, Guo X, Zhang Y, Wang X, Shen Y, Cho WC, Zheng Y. Identification of Different Extracellular Vesicles in the Hydatid Fluid of Echinococcus granulosus and Immunomodulatory Effects of 110 K EVs on Sheep PBMCs. Front Immunol 2021; 12:602717. [PMID: 33708201 PMCID: PMC7940240 DOI: 10.3389/fimmu.2021.602717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Echinococcosis, mainly caused by Echinococcus granulosus, is one of the 17 neglected tropical diseases. Extracellular vesicles (EVs) play an essential role in the host-parasite interplay. However, the EVs in the hydatid fluid (HF) of E. granulosus are not fully characterized. Herein, three different types of HF EVs, designated as 2 K, 10 K, and 110 K EVs based on the centrifugal force used, were morphologically identified. A total of 97, 80, and 581 proteins were identified in 2 K, 10 K, and 110 K EVs, respectively, 39 of which were commonly shared. Moreover, 11, 8, and 25 miRNAs were detected, respectively, and all of the 7 selected miRNAs were validated by qPCR to be significantly lower abundant than that in protoscoleces. It was further deemed that 110 K EVs were internalized by sheep peripheral blood mononuclear cells (PBMCs) in a time-dependent manner and thus induced interleukin (IL)-10, tumor necrosis factor-α (TNF-α), and IRF5 were significantly upregulated and IL-1β, IL-17, and CD14 were significantly downregulated (p < 0.05). These data demonstrate the physical discrepancy of three HF EVs and an immunomodulatory effect of 110 K EVs on sheep PMBCs, suggesting a role in immune responses during E. granulosus infection.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lujun Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yating Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqiang Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
18
|
Gomez-Fuentes S, Hernández-de la Fuente S, Morales-Ruiz V, López-Recinos D, Guevara-Salinas A, Parada-Colin MC, Espitia C, Ochoa-Leyva A, Sánchez F, Villalobos N, Arce-Sillas A, Hernández M, Mora SI, Fragoso G, Sciutto E, Adalid-Peralta L. A novel, sequencing-free strategy for the functional characterization of Taenia solium proteomic fingerprint. PLoS Negl Trop Dis 2021; 15:e0009104. [PMID: 33600419 PMCID: PMC7924735 DOI: 10.1371/journal.pntd.0009104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/02/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
The flatworm Taenia solium causes human and pig cysticercosis. When cysticerci are established in the human central nervous system, they cause neurocysticercosis, a potentially fatal disease. Neurocysticercosis is a persisting public health problem in rural regions of Mexico and other developing countries of Latin America, Asia, and Africa, where the infection is endemic. The great variability observed in the phenotypic and genotypic traits of cysticerci result in a great heterogeneity in the patterns of molecules secreted by them within their host. This work is aimed to identify and characterize cysticercal secretion proteins of T. solium cysticerci obtained from 5 naturally infected pigs from Guerrero, Mexico, using 2D-PAGE proteomic analysis. The isoelectric point (IP) and molecular weight (MW) of the spots were identified using the software ImageMaster 2D Platinum v.7.0. Since most secreted proteins are impossible to identify by mass spectrometry (MS) due to their low concentration in the sample, a novel strategy to predict their sequence was applied. In total, 108 conserved and 186 differential proteins were identified in five cysticercus cultures. Interestingly, we predicted the sequence of 14 proteins that were common in four out of five cysticercus cultures, which could be used to design vaccines or diagnostic methods for neurocysticercosis. A functional characterization of all sequences was performed using the algorithms SecretomeP, SignalP, and BlastKOALA. We found a possible link between signal transduction pathways in parasite cells and human cancer due to deregulation in signal transduction pathways. Bioinformatics analysis also demonstrated that the parasite release proteins by an exosome-like mechanism, which could be of biological interest.
Collapse
Affiliation(s)
- Sandra Gomez-Fuentes
- Unidad Periférica de Neuroinflamación para el estudio de patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Sarah Hernández-de la Fuente
- Unidad Periférica de Neuroinflamación para el estudio de patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Valeria Morales-Ruiz
- Unidad Periférica de Neuroinflamación para el estudio de patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Dina López-Recinos
- Unidad Periférica de Neuroinflamación para el estudio de patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Adrián Guevara-Salinas
- Unidad Periférica de Neuroinflamación para el estudio de patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, México
| | - María Cristina Parada-Colin
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Adrián Ochoa-Leyva
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Chamilpa, Cuernavaca, Morelos
| | - Filiberto Sánchez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Chamilpa, Cuernavaca, Morelos
| | - Nelly Villalobos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Universidad Nacional Autónoma de México, México, México
| | - Asiel Arce-Sillas
- Unidad Periférica de Neuroinflamación para el estudio de patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Marisela Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Silvia Ivonne Mora
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Laura Adalid-Peralta
- Unidad Periférica de Neuroinflamación para el estudio de patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, México
- Instituto Nacional de Neurología y Neurocirugía, La Fama, México, México
| |
Collapse
|
19
|
Ancarola ME, Lichtenstein G, Herbig J, Holroyd N, Mariconti M, Brunetti E, Berriman M, Albrecht K, Marcilla A, Rosenzvit MC, Kamenetzky L, Brehm K, Cucher M. Extracellular non-coding RNA signatures of the metacestode stage of Echinococcus multilocularis. PLoS Negl Trop Dis 2020; 14:e0008890. [PMID: 33253209 PMCID: PMC7728270 DOI: 10.1371/journal.pntd.0008890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/10/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular RNAs (ex-RNAs) are secreted by cells through different means that may involve association with proteins, lipoproteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent new and exciting communication intermediaries with promising potential as novel biomarkers. In the last years, it was shown that helminth parasites secrete ex-RNAs, however, most work mainly focused on RNA secretion mediated by EV. Ex-RNA study is of special interest in those helminth infections that still lack biomarkers for early and/or follow-up diagnosis, such as echinococcosis, a neglected zoonotic disease caused by cestodes of the genus Echinococcus. In this work, we have characterised the ex-RNA profile secreted by in vitro grown metacestodes of Echinococcus multilocularis, the casuative agent of alveolar echinococcosis. We have used high throughput RNA-sequencing together with RT-qPCR to characterise the ex-RNA profile secreted towards the extra- and intra-parasite milieus in EV-enriched and EV-depleted fractions. We show that a polarized secretion of small RNAs takes place, with microRNAs mainly secreted to the extra-parasite milieu and rRNA- and tRNA-derived sequences mostly secreted to the intra-parasite milieu. In addition, we show by nanoparticle tracking analyses that viable metacestodes secrete EV mainly into the metacestode inner vesicular fluid (MVF); however, the number of nanoparticles in culture medium and MVF increases > 10-fold when metacestodes show signs of tegument impairment. Interestingly, we confirm the presence of host miRNAs in the intra-parasite milieu, implying their internalization and transport through the tegument towards the MVF. Finally, our assessment of the detection of Echinococcus miRNAs in patient samples by RT-qPCR yielded negative results suggesting the tested miRNAs may not be good biomarkers for this disease. A comprehensive study of the secretion mechanisms throughout the life cycle of these parasites will help to understand parasite interaction with the host and also, improve current diagnostic tools. Extracellular RNAs (ex-RNAs) are secreted by cells through association with proteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent novel communication intermediaries with promising potential as biomarkers. In order to better understand the role ex-RNAs may play in the context of the zoonotic disease echinococcosis, we have characterised the RNA profile secreted by the larval stage (metacestode) of Echinococcus multilocularis. By analysing the products secreted towards the extra- and intra-parasite milieus, we demonstrate that the metacestode displays a polarized secretion of different classes of small non-coding RNAs (sRNAs). In addition, we show that EV secretion occurs mainly towards the inner fluid of the metacestodes. Interestingly, we confirm the presence of host sRNAs in the intra-parasite milieu, implying their internalization and transport through the tegument. Finally, the detection of Echinococcus miRNAs in patient samples yielded negative results suggesting the tested miRNAs may not be good biomarkers for this disease. In summary, our results provide a detailed description of the ex-RNA landscape of the E. multilocularis metacestode together with information on the distribution of the detected RNA classes in different extracellular compartments. This information is of importance to better understand host-parasite interaction and also, to improve current diagnostic tools.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Gabriel Lichtenstein
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Johannes Herbig
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mara Mariconti
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, Pavia, Italy
| | - Enrico Brunetti
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Krystyna Albrecht
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Antonio Marcilla
- Departament de Farmàcia i Tecnologia Farmacéutica i Parasitologia, Universitat de València, València, Spain.,Joint Unit on Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe Valencia, València, Spain
| | - Mara Cecilia Rosenzvit
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Laura Kamenetzky
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Klaus Brehm
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marcela Cucher
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Camargo de Lima J, Floriani MA, Debarba JA, Paludo GP, Monteiro KM, Moura H, Barr JR, Zaha A, Ferreira HB. Dynamics of protein synthesis in the initial steps of strobilation in the model cestode parasite Mesocestoides corti (syn. vogae). J Proteomics 2020; 228:103939. [PMID: 32798775 PMCID: PMC10491476 DOI: 10.1016/j.jprot.2020.103939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
Mesocestoides corti (syn. vogae) is a useful model for developmental studies of platyhelminth parasites of the Cestoda class, such as Taenia spp. or Echinococcus spp. It has been used in studies to characterize cestode strobilation, i.e. the development of larvae into adult worms. So far, little is known about the initial molecular events involved in cestode strobilation and, therefore, we carried out a study to characterize newly synthesized (NS) proteins upon strobilation induction. An approach based on bioorthogonal noncanonical amino acid tagging and mass spectrometry was used to label, isolate, identify, and quantify NS proteins in the initial steps of M. corti strobilation. Overall, 121 NS proteins were detected exclusively after induction of strobilation, including proteins related to development pathways, such as insulin and notch signaling. Metabolic changes that take place in the transition from the larval stage to adult worm were noted in special NS protein subsets related to developmental processes, such as focal adhesion, cell leading edge, and maintenance of location. The data shed light on mechanisms underlying early steps of cestode strobilation and enabled identification of possible developmental markers. We also consider the use of developmental responsive proteins as potential drug targets for developing novel anthelmintics. BIOLOGICAL SIGNIFICANCE: Larval cestodiases are life-threatening parasitic diseases that affect both man and domestic animals worldwide. Cestode parasites present complex life cycles, in which they undergo major morphological and physiological changes in the transition from one life-stage to the next. One of these transitions occurs during cestode strobilation, when the mostly undifferentiated and non-segmented larval or pre-adult form develops into a fully segmented and sexually differentiated (strobilated) adult worm. Although the proteomes of bona fide larvae and strobialted adults have been previously characterized for a few cestode species, little is still known about the dynamic of protein synthesis during the early steps of cestode strobilation. Now, the assessment of newly synthesized (NS) proteins within the first 48 h of strobilation the model cestode M. corti allowed to shed light on molecular mechanisms that are triggered by strobilation induction. The functional analyses of this repertoire of over a hundred NS proteins pointed out to changes in metabolism and activation of classical developmental signaling pathways in early strobilation. Many of the identified NS proteins may become valuable cestode developmental markers and their involvement in vital processes make them also good candidate targets for novel anthelmintic drugs.
Collapse
Affiliation(s)
- Jeferson Camargo de Lima
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Maiara Anschau Floriani
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - João Antônio Debarba
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Gabriela Prado Paludo
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Karina Mariante Monteiro
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Wang LQ, Liu TL, Liang PH, Zhang SH, Li TS, Li YP, Liu GX, Mao L, Luo XN. Characterization of exosome-like vesicles derived from Taenia pisiformis cysticercus and their immunoregulatory role on macrophages. Parasit Vectors 2020; 13:318. [PMID: 32560736 PMCID: PMC7304098 DOI: 10.1186/s13071-020-04186-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Taenia pisiformis is one of the most common intestinal parasites in canines, and leads to serious economic losses in the rabbit breeding industry. Exosome-like vesicles from parasites play crucial roles in host-parasite interactions by transferring cargo from parasites to host cells and by modulating host immunological response through inducing production of host-derived cytokines. Nevertheless, the mechanism by which exosome-like vesicles from T. pisiformis cysticercus regulate the macrophage immune response remains unknown. Methods Using ultracentrifugation, we isolated exosome-like vesicles from excretory/secretory products (ESP) of T. pisiformis cysticercus. The morphology and size of purified vesicles were confirmed by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The components of proteins and miRNAs within these vesicles were identified by proteomic analysis and high-throughput small RNA sequencing. The biological function of targets of exosomal miRNAs was predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Moreover, the expression of Th1- and Th2-type immune response associated cytokines in RAW264.7 macrophages were evaluated by qPCR and ELISA. We found that exosome-like vesicles were typical cup-shaped vesicles with diameters from 30 to 150 nm. A total of 87 proteins were identified by proteomic analysis, including proteins prominently associated with exosome-like vesicles biogenesis and vesicle trafficking. 41 known miRNAs and 18 novel miRNAs were identified in the exosome-like vesicles. Eleven selected miRNAs, including 7 known miRNAs (miR-71-5p, miR-10a-5p, miR-let-7-5p, miR-745-3p, miR-219-5p, miR-124-3p and miR-4989-3p) and 4 novel miRNAs (novel-mir-3, novel-mir-7, novel-mir-8 and novel-mir-11) were validated to exist in metacestiodes and exosome-like vesicles of T. pisiformis cysticercus by qPCR. The functions of most targets of exosomal miRNAs were mainly associated with signal transduction and the immune system. Additionally, T. pisiformis cysticercus-derived vesicles induced the production of IL-4, IL-6, IL-10, IL-13 and Arg-1, but downregulated the expression of IL-12, IFN-γ and iNOS in RAW264.7 macrophages. Conclusions We demonstrated that proteins and miRNAs enclosed within exosome-like vesicles from T. pisiformis cysticercus have immunomodulatory functions. Furthermore, exosome-like vesicles were shown to induce the macrophage Th2-type immune response in vitro. Our study suggests that exosome-like vesicles play an important role in the interaction between cysticerci and their hosts.![]()
Collapse
Affiliation(s)
- Li-Qun Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Ting-Li Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Pan-Hong Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Shao-Hua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Tao-Shan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yan-Ping Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Guang-Xue Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Li Mao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Xue-Nong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
22
|
Fan J, Wu H, Li K, Liu X, Tan Q, Cao W, Liang B, Ye B. Transcriptomic Features of Echinococcus granulosus Protoscolex during the Encystation Process. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:287-299. [PMID: 32615742 PMCID: PMC7338903 DOI: 10.3347/kjp.2020.58.3.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic infection caused by Echinococcus granulosus larvae. It seriously affects the development of animal husbandry and endangers human health. Due to a poor understanding of the cystic fluid formation pathway, there is currently a lack of innovative methods for the prevention and treatment of CE. In this study, the protoscoleces (PSCs) in the encystation process were analyzed by high-throughput RNA sequencing. A total of 32,401 transcripts and 14,903 cDNAs revealed numbers of new genes and transcripts, stage-specific genes, and differently expressed genes. Genes encoding proteins involved in signaling pathways, such as putative G-protein coupled receptor, tyrosine kinases, and serine/threonine protein kinase, were predominantly up-regulated during the encystation process. Antioxidant enzymes included cytochrome c oxidase, thioredoxin glutathione, and glutathione peroxidase were a high expression level. Intriguingly, KEGG enrichment suggested that differentially up-regulated genes involved in the vasopressin-regulated water reabsorption metabolic pathway may play important roles in the transport of proteins, carbohydrates, and other substances. These results provide valuable information on the mechanism of cystic fluid production during the encystation process, and provide a basis for further studies on the molecular mechanisms of growth and development of PSCs.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Hongye Wu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xunuo Liu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qingqing Tan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Wenqiao Cao
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Bo Liang
- Chongqing No.18 Middle School, Chongqing 400016, China
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
- Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Zhou X, Wang W, Cui F, Shi C, Ma Y, Yu Y, Zhao W, Zhao J. Extracellular vesicles derived from Echinococcus granulosus hydatid cyst fluid from patients: isolation, characterization and evaluation of immunomodulatory functions on T cells. Int J Parasitol 2019; 49:1029-1037. [DOI: 10.1016/j.ijpara.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
|
24
|
Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors 2019; 12:467. [PMID: 31597577 PMCID: PMC6784334 DOI: 10.1186/s13071-019-3725-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pathogenic protozoans use extracellular vesicles (EVs) for intercellular communication and host manipulation. Acanthamoeba castellanii is a free-living protozoan that may cause severe keratitis and fatal granulomatous encephalitis. Although several secreted molecules have been shown to play crucial roles in the pathogenesis of Acanthamoeba, the functions and components of parasite-derived EVs are far from understood. Methods Purified EVs from A. castellanii were confirmed by electron microscopy and nanoparticle tracking analysis. The functional roles of parasite-derived EVs in the cytotoxicity to and immune response of host cells were examined. The protein composition in EVs from A. castellanii was identified and quantified by LC-MS/MS analysis. Results EVs from A. castellanii fused with rat glioma C6 cells. The parasite-derived EVs induced an immune response from human THP-1 cells and a cytotoxic effect in C6 cells. Quantitative proteomic analysis identified a total of 130 proteins in EVs. Among the identified proteins, hydrolases (50.2%) and oxidoreductases (31.7%) were the largest protein families in EVs. Furthermore, aminopeptidase activities were confirmed in EVs from A. castellanii. Conclusions The proteomic profiling and functional characterization of EVs from A. castellanii provide an in-depth understanding of the molecules packaged into EVs and their potential mechanisms mediating the pathogenesis of this parasite.
Collapse
|
25
|
Liang P, Mao L, Zhang S, Guo X, Liu G, Wang L, Hou J, Zheng Y, Luo X. Identification and molecular characterization of exosome-like vesicles derived from the Taenia asiatica adult worm. Acta Trop 2019; 198:105036. [PMID: 31125559 DOI: 10.1016/j.actatropica.2019.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Taenia asiatica is an important food-borne parasite that poses a threat to food-safety and animal husbandry hygine, yet little is known about its specific infection and immune escape mechanisms. Exosome-like vesicles have recently emerged as a regulator in the interactions between parasites and hosts, providing a new direction for research on infection of T. asiatica. In this experiment, exosome-like vesicles were collected from the excretory/secretory products of cultured T. asiatica and isolated by differential centrifugation. The purified vesicles, ranging from 30 to 150 nm in size, were identified as exosome-like vesicles by transmission electron microscope and Nanoparticle tracking analysis. Proteomics analysis identified 455 proteins in the exosome-like vesicles. Of these proteins, enzymes involved in metabolic processes were identified, including glyceraldehyde 3 phosphate dehydrogenase, fructose-1, 6-bisphosphate aldolase, cytosolic malate dehydrogenase, and enolase. The two most abundant proteins from proteomic analysis, 14-3-3 and enolase, were shown to be present in the exosome-like vesicles by immunogold labeling. High-throughput RNA sequencing yielded twenty known miRNAs present in exosome-like vesicle sRNA libraries. Nine of the miRNAs, including six known miRNAs (tas-miR-71, tas-miR-1, tas-miR-7, tas-miR-9, tas-miR-10, and tas-let-7) and three newly discovered miRNAs (tas-m0022-3p, tas-m0816-3p, tas-m0082-5p), were confirmed by RT-qPCR as present in T. asiatica adult worm extracts and secreted exosome-like vesicles in T. asiatica. Additionally, we demonstrated that exosome-like vesicles experimentally labeled with PKH67 were internalized by LoVo cells in vitro. These findings provide new insights into the interaction between tapeworms and hosts mediated by exosome-like vesicles.
Collapse
Affiliation(s)
- Panhong Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Li Mao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Guangxue Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lijie Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Junling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Miles S, Portela M, Cyrklaff M, Ancarola ME, Frischknecht F, Durán R, Dematteis S, Mourglia-Ettlin G. Combining proteomics and bioinformatics to explore novel tegumental antigens as vaccine candidates against Echinococcus granulosus infection. J Cell Biochem 2019; 120:15320-15336. [PMID: 31038784 DOI: 10.1002/jcb.28799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Abstract
Echinococcus granulosus is the parasite responsible for cystic echinococcosis (CE), an important worldwide-distributed zoonosis. New effective vaccines against CE could potentially have great economic and health benefits. Here, we describe an innovative vaccine design scheme starting from an antigenic fraction enriched in tegumental antigens from the protoscolex stage (termed PSEx) already known to induce protection against CE. We first used mass spectrometry to characterize the protein composition of PSEx followed by Gene Ontology analysis to study the potential Biological Processes, Molecular Functions, and Cellular Localizations of the identified proteins. Following, antigenicity predictions and determination of conservancy degree against other organisms were determined. Thus, nine novel proteins were identified as potential vaccine candidates. Furthermore, linear B cell epitopes free of posttranslational modifications were predicted in the whole PSEx proteome through colocalization of in silico predicted epitopes within peptide fragments identified by matrix-assisted laser desorption/ionization-TOF/TOF. Resulting peptides were termed "clean linear B cell epitopes," and through BLASTp scanning against all nonhelminth proteins, those with 100% identity against any other protein were discarded. Then, the secondary structure was predicted for peptides and their corresponding proteins. Peptides with highly similar secondary structure respect to their parental protein were selected, and those potentially toxic and/or allergenic were discarded. Finally, the selected clean linear B cell epitopes were mapped within their corresponding 3D-modeled protein to analyze their possible antibody accessibilities, resulting in 14 putative peptide vaccine candidates. We propose nine novel proteins and 14 peptides to be further tested as vaccine candidates against CE.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Montevideo, Uruguay
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Montevideo, Uruguay
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
27
|
Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W, McManus DP. Echinococcosis: Advances in the 21st Century. Clin Microbiol Rev 2019; 32:e00075-18. [PMID: 30760475 PMCID: PMC6431127 DOI: 10.1128/cmr.00075-18] [Citation(s) in RCA: 531] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Echinococcosis is a zoonosis caused by cestodes of the genus Echinococcus (family Taeniidae). This serious and near-cosmopolitan disease continues to be a significant public health issue, with western China being the area of highest endemicity for both the cystic (CE) and alveolar (AE) forms of echinococcosis. Considerable advances have been made in the 21st century on the genetics, genomics, and molecular epidemiology of the causative parasites, on diagnostic tools, and on treatment techniques and control strategies, including the development and deployment of vaccines. In terms of surgery, new procedures have superseded traditional techniques, and total cystectomy in CE, ex vivo resection with autotransplantation in AE, and percutaneous and perendoscopic procedures in both diseases have improved treatment efficacy and the quality of life of patients. In this review, we summarize recent progress on the biology, epidemiology, diagnosis, management, control, and prevention of CE and AE. Currently there is no alternative drug to albendazole to treat echinococcosis, and new compounds are required urgently. Recently acquired genomic and proteomic information can provide a platform for improving diagnosis and for finding new drug and vaccine targets, with direct impact in the future on the control of echinococcosis, which continues to be a global challenge.
Collapse
Affiliation(s)
- Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia and WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, Urumqi, China
| | - Lucine Vuitton
- WHO Collaborating Centre for Prevention and Treatment of Human Echinococcosis and French National Centre for Echinococcosis, University Bourgogne Franche-Comte and University Hospital, Besançon, France
| | - Tuerhongjiang Tuxun
- Department of Liver and Laparoscopic Surgery, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia and WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, Urumqi, China
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- WHO Collaborating Centre for Prevention and Treatment of Human Echinococcosis and French National Centre for Echinococcosis, University Bourgogne Franche-Comte and University Hospital, Besançon, France
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia and WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, Urumqi, China
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Wu Z, Wang L, Li J, Wang L, Wu Z, Sun X. Extracellular Vesicle-Mediated Communication Within Host-Parasite Interactions. Front Immunol 2019; 9:3066. [PMID: 30697211 PMCID: PMC6340962 DOI: 10.3389/fimmu.2018.03066] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-surrounded structures released by different kinds of cells (normal, diseased, and transformed cells) in vivo and in vitro that contain large amounts of important substances (such as lipids, proteins, metabolites, DNA, RNA, and non-coding RNA (ncRNA), including miRNA, lncRNA, tRNA, rRNA, snoRNA, and scaRNA) in an evolutionarily conserved manner. EVs, including exosomes, play a role in the transmission of information, and substances between cells that is increasingly being recognized as important. In some infectious diseases such as parasitic diseases, EVs have emerged as a ubiquitous mechanism for mediating communication during host-parasite interactions. EVs can enable multiple modes to transfer virulence factors and effector molecules from parasites to hosts, thereby regulating host gene expression, and immune responses and, consequently, mediating the pathogenic process, which has made us rethink our understanding of the host-parasite interface. Thus, here, we review the present findings regarding EVs (especially exosomes) and recognize the role of EVs in host-parasite interactions. We hope that a better understanding of the mechanisms of parasite-derived EVs may provide new insights for further diagnostic biomarker, vaccine, and therapeutic development.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingling Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jiaying Li
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
29
|
Nicolao MC, Rodriguez Rodrigues C, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: Isolation, characterization and uptake by dendritic cells. PLoS Negl Trop Dis 2019; 13:e0007032. [PMID: 30615613 PMCID: PMC6344059 DOI: 10.1371/journal.pntd.0007032] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/23/2019] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
The secretion of extracellular vesicles (EVs) in helminth parasites is a constitutive mechanism that promotes survival by improving their colonization and adaptation in the host tissue. In the present study, we analyzed the production of EVs from supernatants of cultures of Echinococcus granulosus protoscoleces and metacestodes and their interaction with dendritic cells, which have the ability to efficiently uptake and process microbial antigens, activating T lymphocytes. To experimentally increase the release of EVs, we used loperamide, a calcium channel blocker that increases the cytosolic calcium level in protoscoleces and EV secretion. An exosome-like enriched EV fraction isolated from the parasite culture medium was characterized by dynamic light scattering, transmission electron microscopy, proteomic analysis and immunoblot. This allowed identifying many proteins including: small EV markers such as TSG101, SDCBP, ALIX, tetraspanins and 14-3-3 proteins; proteins involved in vesicle-related transport; orthologs of mammalian proteins involved in the immune response, such as basigin, Bp29 and maspardin; and parasite antigens such as antigen 5, P29 and endophilin-1, which are of special interest due to their role in the parasite-host relationship. Finally, studies on the EVs-host cell interaction demonstrated that E. granulosus exosome-like vesicles were internalized by murine dendritic cells, inducing their maturation with increase of CD86 and with a slight down-regulation in the expression of MHCII molecules. These data suggest that E. granulosus EVs could interfere with the antigen presentation pathway of murine dendritic cells inducing immunoregulation in the host. Further studies are needed to better understand the role of these vesicles in parasite survival and as diagnostic markers and new vaccines. Human cystic echinococcosis, caused by chronic infection with the larval stage of Echinococcus granulosus, affects over 1 million people worldwide. This helminth parasite secretes numerous excretory/secretory products that are in contact with host tissues where it establishes hydatid cysts. In this study, we comprehensively characterized extracellular vesicles (EVs) from E. granulosus protoscoleces and metacestodes, and demonstrated for the first time that the exosome-like vesicles from helminths can interact with host dendritic cells and carry several immunoregulatory proteins. This study provides valuable data on cestode-host immune communication. Nevertheless, further research on EVs is needed to fully understand their role in the parasite-host interface and obtain new data concerning their function as therapeutic markers and diagnostic tools.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel 2, Mar del Plata, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel 2, Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
30
|
Tritten L, Geary TG. Helminth extracellular vesicles in host–parasite interactions. Curr Opin Microbiol 2018; 46:73-79. [DOI: 10.1016/j.mib.2018.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023]
|
31
|
Mourglia-Ettlin G, Miles S, Velasco-De-Andrés M, Armiger-Borràs N, Cucher M, Dematteis S, Lozano F. The ectodomains of the lymphocyte scavenger receptors CD5 and CD6 interact with tegumental antigens from Echinococcus granulosus sensu lato and protect mice against secondary cystic echinococcosis. PLoS Negl Trop Dis 2018; 12:e0006891. [PMID: 30500820 PMCID: PMC6267981 DOI: 10.1371/journal.pntd.0006891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Scavenger Receptors (SRs) from the host’s innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. Methodology/Principal findings We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. Conclusions/Significance Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis. Scavenger Receptors (SRs) are constituents of host’s innate immune system able to sense and remove altered-self and/or pathogen components. Data on their interaction with helminth parasites is scarce. In this work, we describe that CD5 and CD6 -two lymphoid SRs previously reported to interact with conserved structures from bacteria, fungi and viruses- recognize tegumental components in the cestode parasite Echinococcus granulosus sensu lato (s.l.). Moreover, both receptors differentially modulate the cytokine release by host cells exposed to E. granulosus s.l. tegumental components. Importantly, the infusion of soluble forms of CD5 or CD6 improve infection outcomes in a murine model of secondary cystic echinococcosis. In summary, our results expand the pathogen binding properties of CD5 and CD6 and suggest their therapeutic potential against helminth infections.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- Echinococcosis/genetics
- Echinococcosis/metabolism
- Echinococcosis/parasitology
- Echinococcus granulosus/genetics
- Echinococcus granulosus/metabolism
- Female
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Binding
- Proteomics
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/parasitology
Collapse
Affiliation(s)
- Gustavo Mourglia-Ettlin
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
- * E-mail: (GM-E); (FL)
| | - Sebastián Miles
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - María Velasco-De-Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (GM-E); (FL)
| |
Collapse
|
32
|
Maschio VJ, Virginio VG, Ferreira HB, Rott MB. Comparative proteomic analysis of soluble and surface-enriched proteins from Acanthamoeba castellanii trophozoites. Mol Biochem Parasitol 2018; 225:47-53. [DOI: 10.1016/j.molbiopara.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022]
|
33
|
Eichenberger RM, Sotillo J, Loukas A. Immunobiology of parasitic worm extracellular vesicles. Immunol Cell Biol 2018; 96:704-713. [PMID: 29808496 DOI: 10.1111/imcb.12171] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
Helminth parasites (worms) have evolved a vast array of strategies to manipulate their vertebrate hosts. Extracellular vesicles (EVs) are secreted by all helminth species investigated thus far, and their salient roles in parasite-host interactions are being revealed. Parasite EVs directly interact with various cell types from their hosts, including immune cells, and roles for their molecular cargo in both regulation and promotion of inflammation in the host have been reported. Despite the growing body of literature on helminth EVs, limited availability of genetic manipulation tools for helminth research has precluded detailed investigation of specific molecular interactions between parasite EVs and host target cells. Here, we review the current state of the field and discuss innovative strategies targeting helminth EVs for the discovery and development of new therapeutic strategies, placing particular emphasis on both anti-helminth vaccines and EV small RNAs for treating noninfectious inflammatory diseases.
Collapse
Affiliation(s)
- Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- ParaGen Bio Laboratories, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- ParaGen Bio Laboratories, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
34
|
Harischandra H, Yuan W, Loghry HJ, Zamanian M, Kimber MJ. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Negl Trop Dis 2018; 12:e0006438. [PMID: 29659599 PMCID: PMC5919703 DOI: 10.1371/journal.pntd.0006438] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.
Collapse
Affiliation(s)
- Hiruni Harischandra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Wang Yuan
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Hannah J. Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael J. Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
35
|
Zheng Y. Proteomic analysis of Taenia hydatigena cyst fluid reveals unique internal microenvironment. Acta Trop 2017; 176:224-227. [PMID: 28837787 DOI: 10.1016/j.actatropica.2017.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
Taenia hydatigena is a parasitic flatworm that is widely distributed around the world. Using MS/MS, the proteome of T. hydatigena cyst fluid (CF) was profiled and a total of 520 proteins were identified, 430 of which were of sheep origin. T. hydatigena shared 37 parasite-origin and 109 host-origin CF proteins with Echinococcus granulosus. Compared with E. granulosus, T. hydatigena had much more CF proteins associated with amino acid synthesis and complement cascades. In addition, glutamate metabolism and anti-oxidative reactions were identified as relatively more important events. These results suggest that T. hydatigena metacestodes have internal microenvironment with special immune and oxidative conditions.
Collapse
|
36
|
Navarrete-Perea J, Isasa M, Paulo JA, Corral-Corral R, Flores-Bautista J, Hernández-Téllez B, Bobes RJ, Fragoso G, Sciutto E, Soberón X, Gygi SP, Laclette JP. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs. PLoS Negl Trop Dis 2017; 11:e0005962. [PMID: 28945737 PMCID: PMC5634658 DOI: 10.1371/journal.pntd.0005962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/10/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst’s proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the ‘optimal’ tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants. Human and porcine cysticercosis caused by Taenia solium is a parasite disease still endemic in developing countries. The cysts can be located in different host tissues, including different organs of the central nervous system and the skeletal muscles. The molecular mechanisms associated with the tissue localization of the cysts are not well understood. Here, we described the proteome changes of the cysts obtained from different host tissues from infected pigs using quantitative multiplex proteomics. We explored the diversity of host proteins identified in the cyst’s protein extracts and we also explored the immune-localization of several host-related proteins within the cysts, and propose their possible function. We identified several proteins and antigens enriched for a given tissue localization. Several synthetic peptides designed from these tissue-enriched antigens were tested trough ELISA. Using a combination of peptide mixtures and machine learning technologies we were able to distinguish non cysticercotic and cysticercotic pig’s sera. The tissue-enriched proteins/antigens could be useful for the development of improved immuno-diagnostic tests capable of discriminate the tissue-localization of the cysts.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marta Isasa
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joao A Paulo
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ricardo Corral-Corral
- Dept. of Biochemistry and Structural Biology, Institute of Cell Physiology, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jeanette Flores-Bautista
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Hernández-Téllez
- Dept. of Tissue and Cell Biology, School of Medicine, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Raúl J Bobes
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edda Sciutto
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Ciudad de México, México.,Dept. of Biocatalysis and Cellular Engineering, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Steven P Gygi
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan P Laclette
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
37
|
Ahn CS, Kim JG, Han X, Kang I, Kong Y. Comparison of Echinococcus multilocularis and Echinococcus granulosus hydatid fluid proteome provides molecular strategies for specialized host-parasite interactions. Oncotarget 2017; 8:97009-97024. [PMID: 29228589 PMCID: PMC5722541 DOI: 10.18632/oncotarget.20761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Alveolar and cystic echinococcoses, caused by the metacestodes of Echinococcus multilocularis and E. granulosus, are prevalent in several regions and invoke deleterious zoonotic helminthiases. Hydatid fluid (HF), which contains proteinaceous and non-proteinaceous secretions of the parasite- and host-derived components, critically affects the host-parasite interplay and disease progression. We conducted HF proteome profiling of fully mature E. multilocularis vesicle (nine months postinfection) and E. granulosus cyst (stage 2). We identified 120 and 153 proteins, respectively, in each fluid. Fifty-six and 84 proteins represented distinct species; 44 and 66 were parasites, and 12 and 18 were host-derived proteins. The five major parasite protein populations, which included antigen B isoforms, metabolic enzymes, proteases and inhibitors, extracellular matrix molecules (ECMs), and developmental proteins, were abundantly distributed in both fluids and also exclusively in one sample or the other. Carbohydrate-metabolizing enzymes were enriched in E. granulosus HF. In the E. multilocularis HF, proteins that constitute ECMs, which might facilitate adhesion and cytogenesis, were highly expressed. Those molecules had physical and functional relationships along with their biochemical properties through protein-protein interaction networks. Twelve host-derived proteins were largely segregated to serum components. The major proteins commonly and uniquely detected in these HFs and their symbiotic interactome relationships might reflect their biological roles in similar but distinct modes of maturation, invasion, and the longevity of the parasites in the hosts.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Xiumin Han
- Qinghai Province Institute for Endemic Diseases Prevention and Control, Xining, China.,Clinical Research Institute for Hydatid Disease, Qinghai Provincial People's Hospital, Xining, China
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
38
|
Valot B, Rognon B, Prenel A, Baraquin A, Knapp J, Anelli M, Richou C, Bresson-Hadni S, Grenouillet F, Wang J, Vuitton DA, Gottstein B, Millon L. Screening of antigenic vesicular fluid proteins of Echinococcus multilocularis as potential viability biomarkers to monitor drug response in alveolar echinococcosis patients. Proteomics Clin Appl 2017; 11. [PMID: 28697272 DOI: 10.1002/prca.201700010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE The only drugs available to treat alveolar echinococcosis (AE) are mostly parasitostatic and in many cases prescribed for life. Decision criteria for discontinuation rely on the absence of parasitic viability. The aim of the present study is to search for candidate proteins that may exhibit good potential as biomarkers for viability. EXPERIMENTAL DESIGN Sixteen serum samples (five healthy controls, 11 patients with AE), are used. AE-patients are classified into three groups "Cured" (n = 2), "ABZ-responders" (n = 4) and "ABZ-nonresponders" (n = 5). Immunoreactive proteins from vesicular fluid (VF) are identified and quantified by LC-MS/MS analysis after immunoprecipitation (IP) using all 16 serum samples. RESULTS Shotgun analysis of VF lead to the identification of 107 E. multilocularis proteins. Comparative proteomics reveal nine proteins more abundant in IP eluates from ABZ-nonresponder patients (cathepsin b, prosaposin a preprotein, actin modulator protein, fucosidase alpha L1 tissue, gluthatione-S-tranferase, beta galactosidase, elongation factor 2, H17g protein tegumental antigen, and NiemannPick C2 protein). CONCLUSIONS AND CLINICAL RELEVANCE Detection of antibodies against these proteins by ELISA could be helpful to monitor the course of alveolar echinococcosis under albendazole (ABZ) treatment.
Collapse
Affiliation(s)
- Benoît Valot
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
| | - Bénédicte Rognon
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France.,Parasitology-Mycology Department, University Hospital of Besançon, Besançon, France
| | - Anais Prenel
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
| | - Alice Baraquin
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
| | - Jenny Knapp
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France.,Parasitology-Mycology Department, University Hospital of Besançon, Besançon, France
| | - Mathilde Anelli
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
| | - Carine Richou
- WHO Collaborating Centre for Prevention and Treatment of Echinococcosis, and French National Reference Centre for Alveolar Echinococcosis, University Hospital of Besançon, Besançon, France.,Hepatology Department, University Hospital of Besançon, Besançon, France
| | - Solange Bresson-Hadni
- Parasitology-Mycology Department, University Hospital of Besançon, Besançon, France.,WHO Collaborating Centre for Prevention and Treatment of Echinococcosis, and French National Reference Centre for Alveolar Echinococcosis, University Hospital of Besançon, Besançon, France
| | - Frederic Grenouillet
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France.,Parasitology-Mycology Department, University Hospital of Besançon, Besançon, France
| | - Junhua Wang
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| | - Dominique Angèle Vuitton
- WHO Collaborating Centre for Prevention and Treatment of Echinococcosis, and French National Reference Centre for Alveolar Echinococcosis, University Hospital of Besançon, Besançon, France
| | - Bruno Gottstein
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| | - Laurence Millon
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France.,Parasitology-Mycology Department, University Hospital of Besançon, Besançon, France
| |
Collapse
|
39
|
Monteiro KM, Lorenzatto KR, de Lima JC, Dos Santos GB, Förster S, Paludo GP, Carvalho PC, Brehm K, Ferreira HB. Comparative proteomics of hydatid fluids from two Echinococcus multilocularis isolates. J Proteomics 2017; 162:40-51. [PMID: 28442449 DOI: 10.1016/j.jprot.2017.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
The hydatid fluid (HF) that fills Echinococcus multilocularis metacestode vesicles is a complex mixture of proteins from both parasite and host origin. Here, a LC-MS/MS approach was used to compare the HF composition of E. multilocularis H95 and G8065 isolates (EmH95 and EmG8065, respectively), which present differences in terms of growth and fertility. Overall, 446 unique proteins were identified, 392 of which (88%) were from parasite origin and 54 from culture medium. At least 256 of parasite proteins were sample exclusive, and 82 of the 136 shared proteins presented differential abundance between E. multilocularis isolates. The parasite's protein repertoires in EmH95 and EmG8065 HF samples presented qualitative and quantitative differences involving antigens, signaling proteins, proteolytic enzymes, protease inhibitors and chaperones, highlighting intraspecific singularities that could be correlated to biological features of each isolate. The repertoire of medium proteins found in the HF was also differential between isolates, and the relevance of the HF exogenous protein content for the parasite's biology is discussed. The repertoires of identified proteins also provided potential molecular markers for important biological features, such as parasite growth rate and fertility, as well potential protein targets for the development of novel diagnostic and treatment strategies for alveolar echinococcosis. BIOLOGICAL SIGNIFICANCE E. multilocularis metacestode infection of mammal hosts involve complex interactions mediated by excretory/secretory (ES) products. The hydatid fluid (HF) that fills the E. multilocularis metacestode vesicles contains complex repertoires of parasite ES products and host proteins that mediate important molecular interactions determinant for parasite survival and development, and, consequently, to the infection outcome. HF has been also extensively reported as the main source of proteins for the immunodiagnosis of echinococcosis. The performed proteomic analysis provided a comprehensive profiling of the HF protein composition of two E. multilocularis isolates. This allowed us to identify proteins of both parasite and exogenous (medium) origin, many of which present significant differential abundances between parasite isolates and may correlate to their differential biological features, including fertility and growth rate.
Collapse
Affiliation(s)
- Karina M Monteiro
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Karina R Lorenzatto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Jeferson C de Lima
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme B Dos Santos
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Sabine Förster
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Gabriela P Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo C Carvalho
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Proteomic investigation of human cystic echinococcosis in the liver. Mol Biochem Parasitol 2017; 211:9-14. [DOI: 10.1016/j.molbiopara.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
|