1
|
de Couvreur LA, Cobo MJ, Kennedy PJ, Ellis JT. Bibliometric analysis of parasite vaccine research from 1990 to 2019. Vaccine 2023; 41:6468-6477. [PMID: 37777454 DOI: 10.1016/j.vaccine.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Bibliometric and bibliographic analyses are popular tools for investigating publication metrics and thematic transitions in an expanding codex of biomedical literature. Bibliometric techniques have been employed in parasitology and vaccinology, with only a few malaria-specific literature analyses being reported specifically on parasite vaccines. The pursuit of parasite prophylactics is an important, global endeavour both medically and economically. As such, a comprehensive understanding of the research topics would be a valuable tool in assessing the current status and future directions of parasite vaccine development. Consequently, this study investigated parasite vaccinology from 1990 to 2019 by analysing literature exported from the Web of Science and Dimensions databases using two, commonly used, bibliometric programs: SciMAT and VOSviewer. The results of this study show the common, emerging, and transient themes within the discipline, and where the future lies as vaccine development moves further into the age of omics and informatics.
Collapse
Affiliation(s)
- L A de Couvreur
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, Australia.
| | - M J Cobo
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - P J Kennedy
- School of Software, Faculty of Engineering and Information Technology and the Australian Artificial Intelligence Institute, University of Technology Sydney, PO Box 123, Broadway, NSW, Australia
| | - J T Ellis
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, Australia
| |
Collapse
|
2
|
Ishwarlall TZ, Okpeku M, Adeniyi AA, Adeleke MA. The search for a Buruli Ulcer vaccine and the effectiveness of the Bacillus Calmette-Guérin vaccine. Acta Trop 2022; 228:106323. [PMID: 35065013 DOI: 10.1016/j.actatropica.2022.106323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
Buruli Ulcer is a neglected tropical disease that is caused by Mycobacterium ulcerans. It is not fatal; however, it manifests a range of devastating symptoms on the hosts' bodies. Various drugs and treatments are available for the disease; however, they are often costly and have adverse effects. There is still much uncertainty regarding the mode of transmission, vectors, and reservoir. At present, there are no official vector control methods, prevention methods, or a vaccine licensed to prevent infection. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has some effectiveness against M. ulcerans. However, it is unable to induce long-lasting protection. Various types of vaccines have been developed based specifically against M. ulcerans; however, to date, none has entered clinical trials or has been released for public use. Additional awareness and funding are needed for research in this field and the development of more treatments, diagnostic tools, and vaccines.
Collapse
|
3
|
Garzon T, Ortega-Tirado D, Lopez-Romero G, Alday E, Robles-Zepeda RE, Garibay-Escobar A, Velazquez C. "Immunoinformatic Identification of T-Cell and B-Cell Epitopes From Giardia lamblia Immunogenic Proteins as Candidates to Develop Peptide-Based Vaccines Against Giardiasis". Front Cell Infect Microbiol 2021; 11:769446. [PMID: 34778111 PMCID: PMC8579046 DOI: 10.3389/fcimb.2021.769446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the Giardia lamblia parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host-Giardia interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of Giardia immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of Giardia experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of G. lamblia. We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-Ak and I-Ad) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of Giardia. To our knowledge, this is the first in silico study that analyze immunogenic proteins of G. lamblia by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the Giardia immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.
Collapse
Affiliation(s)
- Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
4
|
Tuo W, Feng X, Cao L, Vinyard B, Dubey JP, Fetterer R, Jenkins M. Vaccination with Neospora caninum-cyclophilin and -profilin confers partial protection against experimental neosporosis-induced abortion in sheep. Vaccine 2021; 39:4534-4544. [PMID: 34176703 DOI: 10.1016/j.vaccine.2021.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to evaluate the protective efficacy of a vaccine consisting of recombinant Neospora caninum-cyclophilin (NcCyP) and -profilin (NcPro) in sheep. At 42 d and 21 d prior to mating, adult Dorset ewes were immunized with the rNcCyP-rNcPro vaccine (Group 1) or co-purifying non-recombinant (NR) control vaccine (Group 2). At 90 days post-mating, all immunized ewes and were challenged by intravenous injection with 106Nesopora caninum Illinois tachyzoites (NcTZ). Significant protection (P < 0.05) was observed in Group 1 with 9 out of 13 ewes giving birth to live-born lambs (69.2%), whereas all Group 2 ewes aborted (6/6). Neospora caninum was detected by PCR in both fetal and placental tissues from all Group 2 aborting ewes and in the placental tissues of Group 1 aborting ewes. In contrast, tissues and placentas of Group 1 live-born lambs were Neospora DNA-negative. Immunoreactive Neospora antigens were demonstrated in placentas associated with abortions, but not in tissues of aborted fetuses or those of the live-born lambs and their associated placentas. Anti-NcCyP and anti-NcPro titers were high in sera from Group 1 ewes and were further boosted by challenge infection, resulting in long-lasting (≥14.5 mos.) elevated titers. Lambs born to Group 1 ewes also had high NcCyP and NcPro titers in pre-colostrum sera. Immunofluorescence staining (IFA) of NcTZ with Group 1 post-immunization sera revealed both surface and internal TZ staining, a pattern consistent with that observed with rabbit sera to rNcCyP or rNcPro. Infection of NR-vaccinated ewes produced high but transient anti-NcCyP and anti-NcPro Ab titers. The results indicate that the NcCyP-NcPro vaccine elicited strong anti-N. caninum responses and conferred significant protection against abortion and transplacental transmission of N. caninum TZ in sheep.
Collapse
Affiliation(s)
- Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Xiaosheng Feng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Academy of Animal Sciences and Technology, Changchun, China
| | | | - J P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Raymond Fetterer
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Mark Jenkins
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States.
| |
Collapse
|
5
|
Ezanno P, Picault S, Beaunée G, Bailly X, Muñoz F, Duboz R, Monod H, Guégan JF. Research perspectives on animal health in the era of artificial intelligence. Vet Res 2021; 52:40. [PMID: 33676570 PMCID: PMC7936489 DOI: 10.1186/s13567-021-00902-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009-2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.
Collapse
Affiliation(s)
| | | | | | | | - Facundo Muñoz
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Raphaël Duboz
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- Sorbonne Université, IRD, UMMISCO, Bondy, France
| | - Hervé Monod
- Université Paris-Saclay, INRAE, Jouy-en-Josas, MaIAGE France
| | - Jean-François Guégan
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- MIVEGEC, IRD, CNRS, Univ Montpellier, Montpellier, France
- Comité National Français Sur Les Changements Globaux, Paris, France
| |
Collapse
|
6
|
Robleda-Castillo R, Ros-Lucas A, Martinez-Peinado N, Alonso-Padilla J. An Overview of Current Uses and Future Opportunities for Computer-Assisted Design of Vaccines for Neglected Tropical Diseases. Adv Appl Bioinform Chem 2021; 14:25-47. [PMID: 33623396 PMCID: PMC7894434 DOI: 10.2147/aabc.s258759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022] Open
Abstract
Neglected tropical diseases are infectious diseases that impose high morbidity and mortality rates over 1.5 billion people worldwide. Originally restricted to tropical and subtropical regions, changing climate conditions have increased their potential to emerge elsewhere. Control of their impact suffers from shortages like poor epidemiological surveillance or irregular drug distribution, and some NTDs still lack of appropriate diagnostics and/or efficient therapeutics. For these, availability of vaccines to prevent new infections, or the worsening of those already established, would mean a major breakthrough. However, only dengue and rabies count with approved vaccines at present. Herein, we review the state-of-the-art of vaccination strategies for NTDs, setting the focus on third generation vaccines and the concept of reverse vaccinology. Its capability to address pathogens´ biological complexity, likely contributing to save developmental costs is discussed. The use of computational tools is a fundamental aid to analyze increasingly large datasets aimed at designing vaccine candidates with the highest, possibly, opportunities to succeed. Ultimately, we identify and analyze those studies that took an in silico approach to find vaccine candidates, and experimentally assessed their immunogenicity and/or protection capabilities.
Collapse
Affiliation(s)
- Raquel Robleda-Castillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| |
Collapse
|
7
|
Kumar S, Gupta S, Mohmad A, Fular A, Parthasarathi BC, Chaubey AK. Molecular tools-advances, opportunities and prospects for the control of parasites of veterinary importance. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2021; 41:33-42. [PMID: 32837530 PMCID: PMC7387080 DOI: 10.1007/s42690-020-00213-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The recent advancement in genome sequencing facilities, proteomics, transcriptomics, and metabolomics of eukaryotes have opened door for employment of molecular diagnostic techniques for early detection of parasites and determining target molecules for formulating control strategies. It further leads to the introduction of several purified vaccines in the field of veterinary parasitology. Earlier, the conventional diagnostic methods was entirely based upon morphological taxonomy for diagnosis of parasites but nowadays improved molecular techniques help in phylogenetic study and open an another area of molecular taxonomy of parasites with high precision. Control measures based upon targeting endosymbionts in parasites like Dirofilaria immitis is also under exploration in veterinary parasitology. Metagenomics have added an inside story of parasites bionomics which have created havoc in human and animals population since centuries. Omics era is playing a key role in opening the new approaches on parasite biology. Various newer generations of safer vaccines like edible vaccines and subunit vaccines and diagnostic techniques based upon purified immunologically active epitopes have become commercially available against the parasites (helminths, protozoa and arthropod borne diseases). Nowadays, a transgenic and gene knock out studies using RNA interference and CRISPR are also helping in understanding the functions of genes and screening of target genes, which are not available before the advent of molecular tools. Molecular techniques had paramount impact on increasing the sensitivity of diagnostic tools, epidemiological studies and more importantly in controlling these diseases. This review is about the advancements in veterinary parasitology and their impact on the control of these pathogens.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Aquil Mohmad
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashutosh Fular
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - B. C. Parthasarathi
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashok Kumar Chaubey
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| |
Collapse
|
8
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
9
|
Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, Martini M, Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate-Inactivate-Inject") Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health 2018; 6:62. [PMID: 29556492 PMCID: PMC5845111 DOI: 10.3389/fpubh.2018.00062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Vaccines are public health interventions aimed at preventing infections-related mortality, morbidity, and disability. While vaccines have been successfully designed for those infectious diseases preventable by preexisting neutralizing specific antibodies, for other communicable diseases, additional immunological mechanisms should be elicited to achieve a full protection. “New vaccines” are particularly urgent in the nowadays society, in which economic growth, globalization, and immigration are leading to the emergence/reemergence of old and new infectious agents at the animal–human interface. Conventional vaccinology (the so-called “vaccinology 1.0”) was officially born in 1796 thanks to the contribution of Edward Jenner. Entering the twenty-first century, vaccinology has shifted from a classical discipline in which serendipity and the Pasteurian principle of the three Is (isolate, inactivate, and inject) played a major role to a science, characterized by a rational design and plan (“vaccinology 3.0”). This shift has been possible thanks to Big Data, characterized by different dimensions, such as high volume, velocity, and variety of data. Big Data sources include new cutting-edge, high-throughput technologies, electronic registries, social media, and social networks, among others. The current mini-review aims at exploring the potential roles as well as pitfalls and challenges of Big Data in shaping the future vaccinology, moving toward a tailored and personalized vaccine design and administration.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy
| | - Vincenza Gianfredi
- Department of Experimental Medicine, Unit of Public Health, School of Specialization in Hygiene and Preventive Medicine, University of Perugia, Perugia, Italy
| | - Milena Villarini
- Unit of Public Health, Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Ahmed Nasr
- Department of Medicine and Surgery, Pathology University Milan Bicocca, San Gerardo Hospital, Monza, Italy
| | - Amr Hussein
- Medical Faculty, University of Parma, Parma, Italy
| | - Mariano Martini
- Section of History of Medicine and Ethics, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Masoud Behzadifar
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hemphill A, Leitão A, Ortega-Mora LM, Cooke BM. ApiCOWplexa 2017 - 4th International Meeting on Apicomplexan Parasites in Farm Animals. Int J Parasitol 2017; 47:697-699. [PMID: 28942797 DOI: 10.1016/j.ijpara.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| | - Alexandre Leitão
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Brian M Cooke
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|