1
|
Mahgoub AMA, Gameil MA, Abdelgawad M, Wanas H, Hamed AM. In vitro molecular assessment of Cryptosporidium parvum parasitic load on human ileocecal adenocarcinoma cell culture after targeting by tavaborole (AN2690). J Parasit Dis 2025; 49:84-92. [PMID: 39975618 PMCID: PMC11833033 DOI: 10.1007/s12639-024-01729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/18/2024] [Indexed: 02/21/2025] Open
Abstract
Cryptosporidiosis remains a main source of life-threatening diarrhea in young children and immunocompromised patients. The current approved treatment; Nitazoxanide decreases the duration of diarrhea in immunocompetent adults but is not effective in immunocompromised patients. Benzoxaboroles are synthesized boron-heterocyclic compounds that have recently reported promising anti-protozoal action against several protozoa including Plasmodium, Leishmania and Toxoplasma species, by inhibiting essential microbial enzymes. Tavaborole has been a medically approved benzoxaborole that showed a promising anti-protozoal activity by inhibiting leucyl-tRNA synthetase enzyme. The present work was a trial to find the potential efficacy of Tavaborole (AN2690) as a promising drug against Cryptosporidium parvum. The drug was compared to Nitazoxanide in an in vitro human ileocecal adenocarcinoma (HCT-8) culture model. Drug efficacy was evaluated by quantitative real time polymerase chain reaction (PCR). The molecular assessment revealed a statistically remarkable decrease in parasitic load under the effect of Tavaborole when compared to Nitazoxanide.
Collapse
Affiliation(s)
| | | | | | - Hanaa Wanas
- Faculty of Medicine, Cairo University, Cairo, Egypt
- Faculty of Medicine, Faculty of Pharmacy Taibah University, Madinah, Saudi Arabia
| | | |
Collapse
|
2
|
Zhang X, Sun S, Zhao W, Wang L, Liang G, Wang Y, Cai B, Zhang L, Li X, Zhang S. A single-pass type I membrane protein, mannose-specific L-type lectin, potentially involved in the adhesion and invasion of Cryptosporidium parvum. Parasite 2024; 31:51. [PMID: 39212528 PMCID: PMC11363900 DOI: 10.1051/parasite/2024051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptosporidium is a globally distributed zoonotic protozoan parasite that can cause severe diarrhea in humans and animals. L-type lectins are carbohydrate-binding proteins involved in multiple pathways in animals and plants, including protein transportation, secretion, innate immunity, and the unfolded protein response signaling pathway. However, the biological function of the L-type lectins remains unknown in Cryptosporidium parvum. Here, we preliminarily characterized an L-type lectin in C. parvum (CpLTL) that contains a lectin-leg-like domain. Immunofluorescence assay confirmed that CpLTL is located on the wall of oocysts, the surface of the mid-anterior region of the sporozoite and the cytoplasm of merozoites. The involvement of CpLTL in parasite invasion is partly supported by experiments showing that an anti-CpLTL antibody could partially block the invasion of C. parvum sporozoites into host cells. Moreover, the recombinant CpLTL showed binding ability with mannose and the surface of host cells, and competitively inhibited the invasion of C. parvum. Two host cell proteins were identified by proteomics which should be prioritized for future validation of CpLTL-binding. Our data indicated that CpLTL is potentially involved in the adhesion and invasion of C. parvum.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Songying Sun
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Wenchao Zhao
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Yuexin Wang
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Baiyi Cai
- Department of Medicine, University of Alabama at Birmingham Birmingham AL 35249 USA
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University Zhengzhou 450046 Henan PR China
- International Joint Research Laboratory for Zoonotic Diseases of Henan Zhengzhou 450046 Henan PR China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs Zhengzhou 450046 Henan PR China
| |
Collapse
|
3
|
Schwarz D, Lourido S. The multifaceted roles of Myb domain-containing proteins in apicomplexan parasites. Curr Opin Microbiol 2023; 76:102395. [PMID: 37866202 PMCID: PMC10872578 DOI: 10.1016/j.mib.2023.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Apicomplexan parasites are a large and diverse clade of protists responsible for significant diseases of humans and animals. Central to the ability of these parasites to colonize their host and evade immune responses is an expanded repertoire of gene-expression programs that requires the coordinated action of complex transcriptional networks. DNA-binding proteins and chromatin regulators are essential orchestrators of apicomplexan gene expression that often act in concert. Although apicomplexan genomes encode various families of putative DNA-binding proteins, most remain functionally and mechanistically unexplored. This review highlights the versatile role of myeloblastosis (Myb) domain-containing proteins in apicomplexan parasites as transcription factors and chromatin regulators. We explore the diversity of Myb domain structure and use phylogenetic analysis to identify common features across the phylum. This provides a framework to discuss functional heterogeneity and regulation of Myb domain-containing proteins particularly emphasizing their role in parasite differentiation.
Collapse
Affiliation(s)
- Dominic Schwarz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Zhang X, Wang L, Feng R, Liang G, Hou W, Zhang Y, Li X, Zhang L, Zhang S. Functional characterization of CpADF, an actin depolymerizing factor protein in Cryptosporidium parvum. Parasitol Res 2023; 122:2621-2630. [PMID: 37676305 DOI: 10.1007/s00436-023-07960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Ruiying Feng
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Wenyan Hou
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Yingying Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
5
|
Dąbrowska J, Sroka J, Cencek T. Investigating Cryptosporidium spp. Using Genomic, Proteomic and Transcriptomic Techniques: Current Progress and Future Directions. Int J Mol Sci 2023; 24:12867. [PMID: 37629046 PMCID: PMC10454211 DOI: 10.3390/ijms241612867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cryptosporidiosis is a widespread disease caused by the parasitic protozoan Cryptosporidium spp., which infects various vertebrate species, including humans. Once unknown as a gastroenteritis-causing agent, Cryptosporidium spp. is now recognized as a pathogen causing life-threatening disease, especially in immunocompromised individuals such as AIDS patients. Advances in diagnostic methods and increased awareness have led to a significant shift in the perception of Cryptosporidium spp. as a pathogen. Currently, genomic and proteomic studies play a main role in understanding the molecular biology of this complex-life-cycle parasite. Genomics has enabled the identification of numerous genes involved in the parasite's development and interaction with hosts. Proteomics has allowed for the identification of protein interactions, their function, structure, and cellular activity. The combination of these two approaches has significantly contributed to the development of new diagnostic tools, vaccines, and drugs for cryptosporidiosis. This review presents an overview of the significant achievements in Cryptosporidium research by utilizing genomics, proteomics, and transcriptomics approaches.
Collapse
Affiliation(s)
- Joanna Dąbrowska
- Department of Parasitology and Invasive Disease, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland (T.C.)
| | | | | |
Collapse
|
6
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
7
|
Ogbuigwe P, Roberts JM, Knox MA, Heiser A, Pita A, Haack NA, Garcia-Ramirez J, Velathanthiri N, Biggs P, French NP, Hayman DTS. A novel, stain-free, natural auto-fluorescent signal, Sig M, identified from cytometric and transcriptomic analysis of infectivity of Cryptosporidium hominis and Cryptosporidium parvum. Front Cell Infect Microbiol 2023; 13:1178576. [PMID: 37284498 PMCID: PMC10239843 DOI: 10.3389/fcimb.2023.1178576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Cryptosporidiosis is a worldwide diarrheal disease caused by the protozoan Cryptosporidium. The primary symptom is diarrhea, but patients may exhibit different symptoms based on the species of the Cryptosporidium parasite they are infected with. Furthermore, some genotypes within species are more transmissible and apparently virulent than others. The mechanisms underpinning these differences are not understood, and an effective in vitro system for Cryptosporidium culture would help advance our understanding of these differences. Using COLO-680N cells, we employed flow cytometry and microscopy along with the C. parvum-specific antibody Sporo-Glo™ to characterize infected cells 48 h following an infection with C. parvum or C. hominis. The Cryptosporidium parvum-infected cells showed higher levels of signal using Sporo-Glo™ than C. hominis-infected cells, which was likely because Sporo-Glo™ was generated against C. parvum. We found a subset of cells from infected cultures that expressed a novel, dose-dependent auto-fluorescent signal that was detectable across a range of wavelengths. The population of cells that expressed this signal increased proportionately to the multiplicity of infection. The spectral cytometry results confirmed that the signature of this subset of host cells closely matched that of oocysts present in the infectious ecosystem, pointing to a parasitic origin. Present in both C. parvum and C. hominis cultures, we named this Sig M, and due to its distinct profile in cells from both infections, it could be a better marker for assessing Cryptosporidium infection in COLO-680N cells than Sporo-Glo™. We also noted Sig M's impact on Sporo-Glo™ detection as Sporo-Glo™ uses fluoroscein-isothiocynate, which is detected where Sig M also fluoresces. Lastly, we used NanoString nCounter® analysis to investigate the transcriptomic landscape for the two Cryptosporidium species, assessing the gene expression of 144 host and parasite genes. Despite the host gene expression being at high levels, the levels of putative intracellular Cryptosporidium gene expression were low, with no significant difference from controls, which could be, in part, explained by the abundance of uninfected cells present as determined by both Sporo-Glo™ and Sig M analyses. This study shows for the first time that a natural auto-fluorescent signal, Sig M, linked to Cryptosporidium infection can be detected in infected host cells without any fluorescent labeling strategies and that the COLO-680N cell line and spectral cytometry could be useful tools to advance the understanding of Cryptosporidium infectivity.
Collapse
Affiliation(s)
- Paul Ogbuigwe
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | | | - Matthew A. Knox
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Axel Heiser
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
| | - Anthony Pita
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Neville A. Haack
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
| | - Juan Carlos Garcia-Ramirez
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Niluka Velathanthiri
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Nigel P. French
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - David T. S. Hayman
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Sawant M, Benamrouz-Vanneste S, Meloni D, Gantois N, Even G, Guyot K, Creusy C, Duval E, Wintjens R, Weitzman JB, Chabe M, Viscogliosi E, Certad G. Putative SET-domain methyltransferases in Cryptosporidium parvum and histone methylation during infection. Virulence 2022; 13:1632-1650. [PMID: 36097362 PMCID: PMC9487757 DOI: 10.1080/21505594.2022.2123363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cryptosporidium parvum is a leading cause of diarrhoeal illness worldwide being a significant threat to young children and immunocompromised patients, but the pathogenesis caused by this parasite remains poorly understood. C. parvum was recently linked with oncogenesis. Notably, the mechanisms of gene expression regulation are unexplored in Cryptosporidium and little is known about how the parasite impact host genome regulation. Here, we investigated potential histone lysine methylation, a dynamic epigenetic modification, during the life cycle of the parasite. We identified SET-domain containing proteins, putative lysine methyltransferases (KMTs), in the C. parvum genome and classified them phylogenetically into distinct subfamilies (namely CpSET1, CpSET2, CpSET8, CpKMTox and CpAKMT). Our structural analysis further characterized CpSET1, CpSET2 and CpSET8 as histone lysine methyltransferases (HKMTs). The expression of the CpSET genes varies considerably during the parasite life cycle and specific methyl-lysine antibodies showed dynamic changes in parasite histone methylation during development (CpSET1:H3K4; CpSET2:H3K36; CpSET8:H4K20). We investigated the impact of C. parvum infection on the host histone lysine methylation. Remarkably, parasite infection led to a considerable decrease in host H3K36me3 and H3K27me3 levels, highlighting the potential of the parasite to exploit the host epigenetic regulation to its advantage. This is the first study to describe epigenetic mechanisms occurring throughout the parasite life cycle and during the host–parasite interaction. A better understanding of histone methylation in both parasite and host genomes may highlight novel infection control strategies.
Collapse
Affiliation(s)
- Manasi Sawant
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Sadia Benamrouz-Vanneste
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Unité de Recherche Smart and Sustainable Cities, Faculté de Gestion, Economie et Sciences, Institut Catholique de Lille, France
| | - Dionigia Meloni
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Nausicaa Gantois
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Gaël Even
- Gènes Diffusion, F-59501 Douai, France.,PEGASE-Biosicences Plateforme d'Expertises Génomiques Appliquées aux Sciences Expérimentales, Institut Pasteur de Lille, F-59000 Lille, France
| | - Karine Guyot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille (GHICL), F-59000 Lille, France
| | - Erika Duval
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille (GHICL), F-59000 Lille, France
| | - René Wintjens
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Jonathan B Weitzman
- UMR7216 Epigenetics and Cell, Université Paris Cité, Fate, CNRS, F-75013 Paris, France
| | - Magali Chabe
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Eric Viscogliosi
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Gabriela Certad
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Délégation à la Recherche Clinique et à l'Innovation, Groupement des Hôpitaux de l'Institut Catholique de Lille, F-59462 Lomme, France
| |
Collapse
|
9
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
10
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Shu F, Li Y, Chu W, Chen X, Zhang Z, Guo Y, Feng Y, Xiao L, Li N. Characterization of Calcium-Dependent Protein Kinase 2A, a Potential Drug Target Against Cryptosporidiosis. Front Microbiol 2022; 13:883674. [PMID: 35558125 PMCID: PMC9090282 DOI: 10.3389/fmicb.2022.883674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are important in calcium influx, triggering several biological processes in Cryptosporidium spp. As they are not present in mammals, CDPKs are considered promising drug targets. Recent studies have characterized CpCDPK1, CpCDPK3, CpCDPK4, CpCDPK5, CpCDPK6, and CpCDPK9, but the role of CpCPK2A remains unclear. In this work, we expressed recombinant CpCDPK2A encoded by the cgd2_1060 gene in Escherichia coli and characterized the biologic functions of CpCDPK2A using qRT-PCR, immunofluorescence microscopy, immuno-electron microscopy, and in vitro neutralization. The results revealed that CpCDPK2A protein was highly expressed in the apical region of sporozoites and merozoites and in macrogamonts. Monoclonal or polyclonal antibodies against CpCDPK2A failed to block the invasion of host cells. Among the 44 candidate inhibitors from molecular docking of CpCDPK2A, one inhibitor was identified as having a potential effect on both Cryptosporidium parvum growth and CpCDPK2A enzyme activities. These data suggest that CpCDPK2A may play some roles during the development of C. parvum and might be a potential drug target against cryptosporidiosis.
Collapse
Affiliation(s)
- Fanfan Shu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenlun Chu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuehua Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
12
|
The transcriptome from asexual to sexual in vitro development of Cystoisospora suis (Apicomplexa: Coccidia). Sci Rep 2022; 12:5972. [PMID: 35396557 PMCID: PMC8993856 DOI: 10.1038/s41598-022-09714-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The apicomplexan parasite Cystoisospora suis is an enteropathogen of suckling piglets with woldwide distribution. As with all coccidian parasites, its lifecycle is characterized by asexual multiplication followed by sexual development with two morphologically distinct cell types that presumably fuse to form a zygote from which the oocyst arises. However, knowledge of the sexual development of C. suis is still limited. To complement previous in vitro studies, we analysed transcriptional profiles at three different time points of development (corresponding to asexual, immature and mature sexual stages) in vitro via RNASeq. Overall, transcription of genes encoding proteins with important roles in gametes biology, oocyst wall biosynthesis, DNA replication and axonema formation as well as proteins with important roles in merozoite biology was identified. A homologue of an oocyst wall tyrosine rich protein of Toxoplasma gondii was expressed in macrogametes and oocysts of C. suis. We evaluated inhibition of sexual development in a host-free culture for C. suis by antiserum specific to this protein to evaluate whether it could be exploited as a candidate for control strategies against C. suis. Based on these data, targets can be defined for future strategies to interrupt parasite transmission during sexual development.
Collapse
|
13
|
Tichkule S, Cacciò SM, Robinson G, Chalmers RM, Mueller I, Emery-Corbin SJ, Eibach D, Tyler KM, van Oosterhout C, Jex AR. Global population genomics of two subspecies of Cryptosporidium hominis during 500 years of evolution. Mol Biol Evol 2022; 39:6550530. [PMID: 35302613 PMCID: PMC9004413 DOI: 10.1093/molbev/msac056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidiosis is a major global health problem and a primary cause of diarrhea, particularly in young children in low- and middle-income countries (LMICs). The zoonotic Cryptosporidium parvum and anthroponotic Cryptosporidium hominis cause most human infections. Here, we present a comprehensive whole-genome study of C. hominis, comprising 114 isolates from 16 countries within five continents. We detect two lineages with distinct biology and demography, which diverged circa 500 years ago. We consider these lineages two subspecies and propose the names C. hominis hominis and C. hominis aquapotentis (gp60 subtype IbA10G2). In our study, C. h. hominis is almost exclusively represented by isolates from LMICs in Africa and Asia and appears to have undergone recent population contraction. In contrast, C. h. aquapotentis was found in high-income countries, mainly in Europe, North America, and Oceania, and appears to be expanding. Notably, C. h. aquapotentis is associated with high rates of direct human-to-human transmission, which may explain its success in countries with well-developed environmental sanitation infrastructure. Intriguingly, we detected genomic regions of introgression following secondary contact between the subspecies. This resulted in high diversity and divergence in genomic islands of putative virulence genes, including muc5 (CHUDEA2_430) and a hypothetical protein (CHUDEA6_5270). This diversity is maintained by balancing selection, suggesting a co-evolutionary arms race with the host. Finally, we find that recent gene flow from C. h. aquapotentis to C. h. hominis, likely associated with increased human migration, maybe driving the evolution of more virulent C. hominis variants.
Collapse
Affiliation(s)
- Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Simone M Cacciò
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea, UK
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Samantha J Emery-Corbin
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Kevin M Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.,Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Aaron R Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Dual transcriptomics to determine interferon-gamma independent host response to intestinal Cryptosporidium parvum infection. Infect Immun 2021; 90:e0063821. [PMID: 34928716 PMCID: PMC8852703 DOI: 10.1128/iai.00638-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Animals with a chronic infection of the parasite Toxoplasma gondii are protected against lethal secondary infection with other pathogens. Our group previously determined that soluble T. gondii antigens (STAg) can mimic this protection and be used as a treatment against several lethal pathogens. Because treatments are limited for the parasite Cryptosporidium parvum, we tested STAg as a C. parvum therapeutic. We determined that STAg treatment reduced C. parvum Iowa II oocyst shedding in gamma interferon knockout (IFN-γ-KO) mice. Murine intestinal sections were then sequenced to define the IFN-γ-independent transcriptomic response to C. parvum infection. Gene Ontology and transcript abundance comparisons showed host immune response and metabolism changes. Transcripts for type I interferon-responsive genes were more abundant in C. parvum-infected mice treated with STAg. Comparisons between phosphate-buffered saline (PBS) and STAg treatments showed no significant differences in C. parvum gene expression. C. parvum transcript abundance was highest in the ileum and mucin-like glycoproteins and the GDP-fucose transporter were among the most abundant. These results will assist the field in determining both host- and parasite-directed future therapeutic targets.
Collapse
|
16
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|
17
|
Temesgen TT, Tysnes KR, Robertson LJ. Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts. Microorganisms 2021; 9:microorganisms9071463. [PMID: 34361899 PMCID: PMC8305202 DOI: 10.3390/microorganisms9071463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
Cryptosporidium oocysts are known for being very robust, and their prolonged survival in the environment has resulted in outbreaks of cryptosporidiosis associated with the consumption of contaminated water or food. Although inactivation methods used for drinking water treatment, such as UV irradiation, can inactivate Cryptosporidium oocysts, they are not necessarily suitable for use with other environmental matrices, such as food. In order to identify alternative ways to inactivate Cryptosporidium oocysts, improved methods for viability assessment are needed. Here we describe a proof of concept for a novel approach for determining how effective inactivation treatments are at killing pathogens, such as the parasite Cryptosporidium. RNA sequencing was used to identify potential up-regulated target genes induced by oxidative stress, and a reverse transcription quantitative PCR (RT-qPCR) protocol was developed to assess their up-regulation following exposure to different induction treatments. Accordingly, RT-qPCR protocols targeting thioredoxin and Cryptosporidium oocyst wall protein 7 (COWP7) genes were evaluated on mixtures of viable and inactivated oocysts, and on oocysts subjected to various potential inactivation treatments such as freezing and chlorination. The results from the present proof-of-concept experiments indicate that this could be a useful tool in efforts towards assessing potential technologies for inactivating Cryptosporidium in different environmental matrices. Furthermore, this approach could also be used for similar investigations with other pathogens.
Collapse
Affiliation(s)
- Tamirat Tefera Temesgen
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oluf Thesens vei 22, 1433 Ås, Norway; (K.R.T.); (L.J.R.)
- NABAS AS, Moer Allé 33, 1435 Ås, Norway
- Correspondence: or
| | - Kristoffer Relling Tysnes
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oluf Thesens vei 22, 1433 Ås, Norway; (K.R.T.); (L.J.R.)
| | - Lucy Jane Robertson
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oluf Thesens vei 22, 1433 Ås, Norway; (K.R.T.); (L.J.R.)
| |
Collapse
|
18
|
Ramakrishnan C, Smith NC. Recent achievements and doors opened for coccidian parasite research and development through transcriptomics of enteric sexual stages. Mol Biochem Parasitol 2021; 243:111373. [PMID: 33961917 DOI: 10.1016/j.molbiopara.2021.111373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The Coccidia is the largest group of parasites within the Apicomplexa, a phylum of unicellular, obligate parasites characterized by the possession of an apical complex of organelles and structures in the asexual stages of their life cycles, as well as by a sexual reproductive phase that occurs enterically in host animals. Coccidian sexual reproduction involves morphologically distinct microgametes and macrogametes that combine to form a diploid zygote and, ultimately, following meiosis and mitosis, haploid, infectious sporozoites, inside sporocysts within an oocyst. Recent transcriptomic analyses have identified genes involved in coccidian sexual stage development and reproduction, including genes encoding for microgamete- and macrogamete-specific proteins with roles in gamete motility, fusion and fertilization, and in the formation of the resilient oocyst wall that allows coccidians to persist for long periods in the environment. Transcriptomics has also provided important clues about the regulation of gene expression in the transformation of parasites from one developmental stage to the next, a complex sequence of events that may involve transcription factors such as the apicomplexan Apetala2 (ApiAP2) family, alternative splicing, regulatory RNAs and MORC (a microrchida homologue and regulator of sexual stage development in Toxoplasma gondii). The molecular dissection of coccidian sexual development and reproduction by transcriptomic analyses may lead to the development of novel transmission-blocking strategies.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
19
|
Zhang Q, Shao Q, Guo Y, Li N, Li Y, Su J, Xu R, Zhang Z, Xiao L, Feng Y. Characterization of Three Calcium-Dependent Protein Kinases of Cryptosporidium parvum. Front Microbiol 2021; 11:622203. [PMID: 33510735 PMCID: PMC7835281 DOI: 10.3389/fmicb.2020.622203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/02/2022] Open
Abstract
In Cryptosporidium spp., calcium-dependent protein kinases (CDPKs) are considered promising targets for the development of pharmaceutical interventions. Whole-genome sequencing has revealed the presence of 11 CDPKs in Cryptosporidium parvum (CpCDPKs). In this study, we expressed recombinant CpCDPK4, CpCDPK5, and CpCDPK6 in Escherichia coli. The biological characteristics and functions of these CpCDPKs were examined by using quantitative reverse transcription PCR (qRT-PCR), immunofluorescence microscopy, and an in vitro neutralization assay. The expression of the CpCDPK4 gene peaked at 12 h post-infection, the CpCDPK5 gene peaked at 12 and 48 h, and the CpCDPK6 gene peaked at 2–6 h. CpCDPK4 protein was located in the anterior and mid-anterior regions of sporozoites, and CpCDPK5 protein was located over the entire sporozoites, while CpCDPK6 protein was expressed in a spotty pattern. Immune sera of CpCDPK4 and CpCDPK6 exhibited significant inhibitory effects on host cell invasion, while the immune sera of CpCDPK5 had no effects. These differences in protein localization, gene expressions, and neutralizing capacities indicated that the CpCDPK proteins may have different roles during the lifecycle of Cryptosporidium spp.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Qian Shao
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiayuan Su
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Rui Xu
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Cryptosporidium: host and parasite transcriptome in infection. Curr Opin Microbiol 2020; 58:138-145. [PMID: 33160225 DOI: 10.1016/j.mib.2020.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Cryptosporidium is a waterborne gastrointestinal parasite that causes outbreaks of diarrheal disease worldwide. Despite the impact of this parasite on human health there are no effective drugs or vaccines. Transcriptomic data can provide insights into host-parasite interactions that lead to identification of targets for therapeutic interventions. However, for Cryptosporidium, interpreting transcriptomes has been challenging, in part due to the presence of multiple life cycle stages, the lack of appropriate host cells and the inability to culture the parasite through its complete life cycle. The recent improvements in cell culture and the ability to tag and isolate specific life cycle stages will radically improve transcriptomic data and advance our understanding of Cryptosporidium host-parasite interactions.
Collapse
|
21
|
Dhal AK, Pani A, Yun SI, Mahapatra RK. In-silico analysis of Calcium Dependent Protein Kinase 6 of Cr yptosporidium parvum through molecular modeling, docking, and dynamics simulation study. J Biomol Struct Dyn 2020; 39:5461-5470. [PMID: 32633680 DOI: 10.1080/07391102.2020.1790036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Calcium Dependent Protein Kinases are found in the Apicomplexan, algae, and plants; however, they are not reported in vertebrates and are regarded as excellent drug targets for pharmaceutical interventions. Calcium Dependent Protein Kinases of Cryptosporidium are probably involved in the regulation of invasion and egress process during the infection of the host cells. The previous study reported that after the Calcium Dependent Protein Kinase 1 gene, Calcium Dependent Protein Kinase 6 of Cryptosporidium parvum is expressed in all stages of the parasite (merozoites/schizonts as well as sexual stages) at a comparable level and makes it as a valid drug target. In this study, an attempt is made to address the similarity in sequences and phylogenetic study of Calcium Dependent Protein Kinase 6 (CDPK6) among Calcium Dependent Protein Kinases of Apicomplexans. Further, the three-dimensional structure determination of CDPK6 of C. parvum was performed through a molecular modeling approach followed by virtual screening of small-molecule inhibitors from different datasets. The best inhibitor from Tres Cantos Antimalarial Set with ID 11730 reported a binding affinity of -8.2 kcal/mol against CDPK6 of C. parvum. Furthermore, the reliability of the binding mode of the inhibitor is validated through a complex molecular dynamics simulation study for a time interval of 100 ns. The simulation study advocates that the inhibitor Tres Cantos Antimalarial Set_11730 formed a stable interaction with the predicted active site residues and can be considered for industrial pharmaceutical research in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Alok Pani
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, South Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, South Korea
| | | |
Collapse
|
22
|
Zhang Q, Guo Y, Li N, Li Y, Su J, Xu R, Zhang Z, Feng Y, Xiao L. Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of Cryptosporidium parvum. Front Microbiol 2020; 11:907. [PMID: 32457733 PMCID: PMC7225609 DOI: 10.3389/fmicb.2020.00907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are considered promising targets for pharmaceutical intervention of cryptosporidiosis. Whole-genome sequencing has revealed the presence of several CDPKs (CpCDPKs) in Cryptosporidium parvum. In this study, we expressed recombinant CpCDPK3 encoded by the cgd5_820 gene in Escherichia coli. The biologic characteristics and functions of CpCDPK3 were examined using qRT-PCR, immunofluorescence microscopy, and in vitro neutralization assay. The expression of the cgd5_820 gene peaked in merozoites during in vitro culture while the CpCDPK3 protein was expressed in both sporozoites and merozoites. Polyclonal antibodies against CpCDPK3 showed no significant inhibitory effects on host invasion by the parasites. We assessed the inhibitory effects of 46 candidate compounds from molecular docking of CpCDPK3 on both C. parvum development and CpCDPK3 enzyme activities. One compound was identified to be effective. Results of these analyses suggest that CpCDPK3 might play an important role in the growth of C. parvum.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiayuan Su
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Rui Xu
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. Characterization of Cystoisospora suis sexual stages in vitro. Parasit Vectors 2020; 13:143. [PMID: 32188507 PMCID: PMC7079422 DOI: 10.1186/s13071-020-04014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The porcine coccidium Cystoisospora suis is characterized by a complex life-cycle during which asexual multiplication is followed by sexual development with two morphologically distinct cell types, the micro- and macrogametes. Genes related to the sexual stages and cell cycle progression were previously identified in related Apicomplexa. Dynein light chain type 1 and male gamete fusion factor HAP2 are restricted to microgametes. Tyrosine-rich proteins and oocyst wall proteins are a part of the oocyst wall. The Rad51/Dmc1-like protein and Nima-related protein kinases are associated with the cell cycle and fertilization process. Here, the sexual stages of C. suis were characterized in vitro morphologically and for temporal expression changes of the mentioned genes to gain insight into this poorly known phase of coccidian development. METHODS Sexual stages of C. suis developing in vitro in porcine intestinal epithelial cells were examined by light and electron microscopy. The transcriptional levels of genes related to merozoite multiplication and sexual development were evaluated by quantitative real-time PCR at different time points of cultivation. Transcription levels were compared for parasites in culture supernatants at 6-9 days of cultivation (doc) and intracellular parasites at 6-15 doc. RESULTS Sexual stage of C. suis was detected during 8-11 doc in vitro. Microgamonts (16.8 ± 0.9 µm) and macrogamonts (16.6 ± 1.1 µm) are very similar in shape and size. Microgametes had a round body (3.5 ± 0.5 µm) and two flagella (11.2 ± 0.5 µm). Macrogametes were spherical with a diameter of 12.1 ± 0.5 µm. Merozoite gene transcription peaked on 10 doc and then declined. Genes related to the sexual stages and cell cycle showed an upregulation with a peak on 13 doc, after which they declined. CONCLUSIONS The present study linked gene expression changes to the detailed morphological description of C. suis sexual development in vitro, including fertilization, meiosis and oocyst formation in this unique model for coccidian parasites. Following this process at the cellular and molecular level will elucidate details on potential bottlenecks of C. suis development (applicable for coccidian parasites in general) which could be exploited as a novel target for control.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Teresa Cruz-Bustos
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Bärbel Ruttkowski
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Anja Joachim
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| |
Collapse
|
24
|
Cryptosporidium parvum gp40/15 Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Vaccine Target. Microorganisms 2020; 8:microorganisms8030363. [PMID: 32143441 PMCID: PMC7143253 DOI: 10.3390/microorganisms8030363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
Cryptosporidium parvum is a zoonotic intracellular protozoan responsible for the diarrheal illness cryptosporidiosis in humans and animals. Although a number of zoite surface proteins are known to be expressed during, and believed to be involved in, attachment and invasion of host cells, the molecular mechanisms by which C. parvum invades the host epithelial cells are not well understood. In the present study, we investigated the gene expression patterns, protein localization in developmental stages in culture, and in vitro neutralization characteristics of Cpgp40/15 and Cpgp40. Indirect immunofluorescence assay showed that Cpgp40/15 is associated with the parasitophorous vacuole membrane (PVM) during intracellular development. Both anti-gp40/15 and anti-gp40 antibodies demonstrated the ability to neutralize C. parvum infection in vitro. Further studies are needed to fully understand the specific role and functional mechanism of Cpgp40/15 (or gp40/15 complex) in the invasion of the host or in the PVM and to determine the feasibility of gp40/15 as a vaccine candidate for cryptosporidiosis in vivo.
Collapse
|
25
|
Dhal AK, Pani A, Mahapatra RK, Yun SI. An immunoinformatics approach for design and validation of multi-subunit vaccine against Cryptosporidium parvum. Immunobiology 2019; 224:747-757. [PMID: 31522782 DOI: 10.1016/j.imbio.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
An immunoinformatics-based approach is explored for potential multi-subunit vaccine candidates against Cryptosporidium parvum. We performed protein structure based systematic methodology for the development of a proficient multi-subunit vaccine candidate against C. parvum based on their probability of antigenicity, allergenicity and transmembrane helices as the screening criteria. The best-screened epitopes like B-cell epitopes (BCL), Helper T-lymphocytes (HTL) and cytotoxic T- lymphocytes (CTL) were joined by using the appropriate linkers to intensify and develop the presentation and processing of the antigenic molecules. Modeller software was used to generate the best 3D model of the subunit protein. RAMPAGE and other web servers were employed for the validation of the modeled protein. Furthermore, the predicted modeled structure was docked with the two known receptors like TLR2 and TLR4 through ClusPro web server. Based on the docking score, the multi-subunit vaccine docked with TLR2 was subjected to energy minimization by molecular dynamics (MD) simulation to examine their stability within a solvent system. From the simulation study, we found that the residue Glu-107 of subunit vaccine formed a hydrogen bond interaction with Arg-299 of the TLR2 receptor throughout the time frame of the MD simulation. The overall results showed that the multi-subunit vaccine could be an efficient vaccine candidate against C. parvum.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Alok Pani
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 561756, South Korea
| | - Rajani Kanta Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India.
| | - Soon-Il Yun
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 561756, South Korea.
| |
Collapse
|
26
|
Rueckert S, Betts EL, Tsaousis AD. The Symbiotic Spectrum: Where Do the Gregarines Fit? Trends Parasitol 2019; 35:687-694. [DOI: 10.1016/j.pt.2019.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
|
27
|
Calcium-Mediated Biophysical Binding of Cryptosporidium parvum Oocysts to Surfaces Is Sensitive to Oocyst Age. Appl Environ Microbiol 2019; 85:AEM.00816-19. [PMID: 31253676 DOI: 10.1128/aem.00816-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptosporidium parvum causes potentially life-threatening gastrointestinal disease in humans and may not be effectively removed from drinking water via conventional methods. Prior research has shown that environmental biofilms immobilize oocysts from the water column, but the biophysical mechanisms driving this attraction are still under investigation. This study investigates the affinity of C. parvum oocysts to silanized surfaces. Surfaces were prepared with hydroxyl, amine, and carboxyl moieties. Binding forces between the oocysts and these engineered substrates were analyzed, with and without divalent ions, using atomic force microscopy. Binding forces were measured over several weeks to investigate the influence of age on adhesion. C. parvum oocysts bind most strongly to carboxylic acid functional groups, with rupture forces greater than that required to break noncovalent molecular bonds, regardless of oocyst age. This adhesion is shown to be due to divalent cation bridging mechanisms. In addition, the binding strength increases over a 5-week period as the oocysts age, followed by a decrease in the binding strength, which may be related to structural or biochemical changes in the outer wall-bound glycosylated proteins. This study sheds new light on the biochemical parameters that influence C. parvum oocyst binding to surfaces. Increased understanding of how age and water chemistry influence the binding strength of oocysts may inform future developments in environmental detection and drinking water treatment, such as with the development of oocyst-specific sensors that allow for more frequent tracking of oocysts in the environment.IMPORTANCE The mechanisms by which pathogens bind to surfaces are of interest to a wide variety of scientific communities, as these mechanisms drive infectivity, fate, and transport of the pathogenic organisms. This study begins to reveal the mechanism of direct binding of Cryptosporidium parvum to surfaces containing both carboxylic acid and amine moieties, in an attempt to understand how much of the binding ability is due to long-range electrostatic forces versus other mechanisms (specific or nonspecific) of bonding. In addition to improving the scientific understanding of fate and transport of oocysts, an expanded understanding of the binding mechanisms may aid in the development of new tools and sensors designed to detect and track oocysts in waterways. Furthermore, the methods used to examine binding in this study could be translated to other waterborne pathogens of interest.
Collapse
|
28
|
The transcriptome of Cryptosporidium oocysts and intracellular stages. Sci Rep 2019; 9:7856. [PMID: 31133645 PMCID: PMC6536522 DOI: 10.1038/s41598-019-44289-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/14/2019] [Indexed: 01/24/2023] Open
Abstract
Human cryptosporidiosis is caused primarily by two species of apicomplexan parasites, Cryptosporidium parvum and C. hominis. Although infection of cell monolayers with sporozoites does not support the complete parasite life cycle, the in vitro system is used to study the asexual phase of multiplication, which consists of two generations of merogony. To better understand host-parasite interaction and to gain insight into gene regulatory processes driving the complex life cycle of Cryptosporidium parasites, we analyzed the transcriptome of C. parvum in oocysts, sporozoites and infected cell monolayers 2–48 h post-infection. Analysis of RNA-Seq data from replicate oocyst, sporozoite and intracellular samples revealed significant differences between transcriptomes expressed outside and inside the host cell. Compared to the transcriptome found in the host cell, the oocyst transcriptome is less diverse. Biological processes significantly over-represented intracellularly relate to biosynthetic processes. Genes significantly overexpressed in oocysts show evidence of specialized functions not found in other Apicomplexa. A more comprehensive view of gene regulation during the Cryptosporidium life cycle will require the analysis of later time points during the infection, particularly of the poorly studied sexual phase of the life cycle.
Collapse
|
29
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
30
|
Ramakrishnan C, Maier S, Walker RA, Rehrauer H, Joekel DE, Winiger RR, Basso WU, Grigg ME, Hehl AB, Deplazes P, Smith NC. An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats. Sci Rep 2019; 9:1474. [PMID: 30728393 PMCID: PMC6365665 DOI: 10.1038/s41598-018-37671-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Almost any warm-blooded creature can be an intermediate host for Toxoplasma gondii. However, sexual reproduction of T. gondii occurs only in felids, wherein fertilisation of haploid macrogametes by haploid microgametes, results in diploid zygotes, around which a protective wall develops, forming unsporulated oocysts. Unsporulated oocysts are shed in the faeces of cats and meiosis gives rise to haploid sporozoites within the oocysts. These, now infectious, sporulated oocysts contaminate the environment as a source of infection for people and their livestock. RNA-Seq analysis of cat enteric stages of T. gondii uncovered genes expressed uniquely in microgametes and macrogametes. A CRISPR/Cas9 strategy was used to create a T. gondii strain that exhibits defective fertilisation, decreased fecundity and generates oocysts that fail to produce sporozoites. Inoculation of cats with this engineered parasite strain totally prevented oocyst excretion following infection with wild-type T. gondii, demonstrating that this mutant is an attenuated, live, transmission-blocking vaccine.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Simone Maier
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Robert A Walker
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Deborah E Joekel
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Rahel R Winiger
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Walter U Basso
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Adrian B Hehl
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland.
| | - Peter Deplazes
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland.
| | - Nicholas C Smith
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia. .,School of Science and Health, Western Sydney University, Parramatta South Campus, Sydney, NSW, 2116, Australia.
| |
Collapse
|
31
|
Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, Alberti A, Labadie K, Corre E, Aury JM, Rombauts S, Wincker P, Guillou L, Porcel BM. Comparative Time-Scale Gene Expression Analysis Highlights the Infection Processes of Two Amoebophrya Strains. Front Microbiol 2018; 9:2251. [PMID: 30333799 PMCID: PMC6176090 DOI: 10.3389/fmicb.2018.02251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/04/2018] [Indexed: 01/31/2023] Open
Abstract
Understanding factors that generate, maintain, and constrain host-parasite associations is of major interest to biologists. Although little studied, many extremely virulent micro-eukaryotic parasites infecting microalgae have been reported in the marine plankton. This is the case for Amoebophrya, a diverse and highly widespread group of Syndiniales infecting and potentially controlling dinoflagellate populations. Here, we analyzed the time-scale gene expression of a complete infection cycle of two Amoebophrya strains infecting the same host (the dinoflagellate Scrippsiella acuminata), but diverging by their host range (one infecting a single host, the other infecting more than one species). Over two-thirds of genes showed two-fold differences in expression between at least two sampled stages of the Amoebophrya life cycle. Genes related to carbohydrate metabolism as well as signaling pathways involving proteases and transporters were overexpressed during the free-living stage of the parasitoid. Once inside the host, all genes related to transcription and translation pathways were actively expressed, suggesting the rapid and extensive protein translation needed following host-cell invasion. Finally, genes related to cellular division and components of the flagellum organization were overexpressed during the sporont stage. In order to gain a deeper understanding of the biological basis of the host-parasitoid interaction, we screened proteins involved in host-cell recognition, invasion, and protection against host-defense identified in model apicomplexan parasites. Very few of the genes encoding critical components of the parasitic lifestyle of apicomplexans could be unambiguously identified as highly expressed in Amoebophrya. Genes related to the oxidative stress response were identified as highly expressed in both parasitoid strains. Among them, the correlated expression of superoxide dismutase/ascorbate peroxidase in the specialist parasite was consistent with previous studies on Perkinsus marinus defense. However, this defense process could not be identified in the generalist Amoebophrya strain, suggesting the establishment of different strategies for parasite protection related to host specificity.
Collapse
Affiliation(s)
- Sarah Farhat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
| | - Isabelle Florent
- Communication Molecules and Adaptation of Microorganisms, National Museum of Natural History, CNRS, Paris, France
| | - Benjamin Noel
- Genoscope, Institut François Jacob, CEA, Evry, France
| | - Ehsan Kayal
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | - Estelle Bigeard
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Erwan Corre
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
| | - Laure Guillou
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Betina M Porcel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
32
|
Abstract
The intestinal apicomplexan parasite
Cryptosporidium is a major cause of diarrheal disease in humans worldwide. However, treatment options are severely limited. The search for novel interventions is imperative, yet there are several challenges to drug development, including intractability of the parasite and limited technical tools to study it. This review addresses recent, exciting breakthroughs in this field, including novel cell culture models, strategies for genetic manipulation, transcriptomics, and promising new drug candidates. These advances will stimulate the ongoing quest to understand
Cryptosporidium and the pathogenesis of cryptosporidiosis and to develop new approaches to combat this disease.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Daviel Cardenas
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA.,Medicine, Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| |
Collapse
|