1
|
Montazeri M, Fakhar M, Keighobadi M. The Potential Role of the Serotonin Transporter as a Drug Target against Parasitic Infections: A Scoping Review of the Literature. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:23-33. [PMID: 35249526 DOI: 10.2174/1574891x16666220304232301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several in vitro and in vivo biological activities of serotonin, 5- hydroxytryptamine (5-HT), as a bioactive molecule, and its transporter (5-HT-Tr) were evaluated in parasitic infections. OBJECTIVE Herein, the roles of 5-HT and 5-HTR in helminths and protozoan infections with medical and veterinary importance are reviewed. METHODS We searched information in 4 main databases and reviewed published literature about the serotonin transporter's role as a promising therapeutic target against pathogenic parasitic infections between 2000 and 2021. RESULTS Based on recent investigations, 5-HT and 5-HT-Tr play various roles in parasite infections, including biological function, metabolic activity, organism motility, parasite survival, and immune response modulation. Moreover, some of the 5-HT-TR in Schistosoma mansoni showed an excess of favorite substrates for biogenic amine 5-HT compared to their mammalian hosts. Furthermore, the main neuronal protein related to the G protein-coupled receptor (GPCR) was identified in S. mansoni and Echinococcus granulosus, playing main roles in these parasites. In addition, 5-HT increased in toxoplasmosis, giardiasis, and Chagas disease. On the other hand, in Plasmodium spp., different forms of targeted 5-HTR stimulate Ca2+ release, intracellular inositol triphosphate (ITP), cAMP, and protein kinase A (PKA) activity. CONCLUSION This review summarized the several functional roles of the 5-HT and the importance of the 5-HT-TR as a drug target with minimal harm to the host to fight against helminths and protozoan infections. Hopefully, this review will shed light on research regarding serotonin transporter-based therapies as a potential drug target soon.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Keighobadi
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Kreshchenko N, Terenina N, Ermakov A. Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT 7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules 2021; 11:1212. [PMID: 34439878 PMCID: PMC8394519 DOI: 10.3390/biom11081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
The study is dedicated to the investigation of serotonin (5-hydroxytryptamine, 5-HT) and 5-HT7 type serotonin receptor of localisation in larvae of two parasitic flatworms Opisthorchis felineus (Rivolta, 1884) Blanchard, 1895 and Hymenolepis diminuta Rudolphi, 1819, performed using the immunocytochemical method and confocal laser scanning microscopy (CLSM). Using whole mount preparations and specific antibodies, a microscopic analysis of the spatial distribution of 5-HT7-immunoreactivity(-IR) was revealed in worm tissue. In metacercariae of O. felineus 5-HT7-IR was observed in the main nerve cords and in the head commissure connecting the head ganglia. The presence of 5-HT7-IR was also found in several structures located on the oral sucker. 5-HT7-IR was evident in the round glandular cells scattered throughout the larva body. In cysticercoids of H. diminuta immunostaining to 5-HT7 was found in flame cells of the excretory system. Weak staining to 5-HT7 was observed along the longitudinal and transverse muscle fibres comprising the body wall and musculature of suckers, in thin longitudinal nerve cords and a connective commissure of the central nervous system. Available publications on serotonin action in flatworms and serotonin receptors identification were reviewed. Own results and the published data indicate that the muscular structures of flatworms are deeply supplied by 5-HT7-IR elements. It suggests that the 5-HT7 type receptor can mediate the serotonin action in the investigated species and is an important component of the flatworm motor control system. The study of the neurochemical basis of parasitic flatworms can play an important role in the solution of fundamental problems in early development of the nervous system and the evolution of neuronal signalling components.
Collapse
Affiliation(s)
- Natalia Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nadezhda Terenina
- Center of Parasitology A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Artem Ermakov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 142290 Pushchino, Russia;
| |
Collapse
|
3
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
4
|
Piroozmand F, Mohammadipanah F, Faridbod F. Emerging biosensors in detection of natural products. Synth Syst Biotechnol 2020; 5:293-303. [PMID: 32954023 PMCID: PMC7484522 DOI: 10.1016/j.synbio.2020.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Natural products (NPs) are a valuable source in the food, pharmaceutical, agricultural, environmental, and many other industrial sectors. Their beneficial properties along with their potential toxicities make the detection, determination or quantification of NPs essential for their application. The advanced instrumental methods require time-consuming sample preparation and analysis. In contrast, biosensors allow rapid detection of NPs, especially in complex media, and are the preferred choice of detection when speed and high throughput are intended. Here, we review diverse biosensors reported for the detection of NPs. The emerging approaches for improving the efficiency of biosensors, such as microfluidics, nanotechnology, and magnetic beads, are also discussed. The simultaneous use of two detection techniques is suggested as a robust strategy for precise detection of a specific NP with structural complexity in complicated matrices. The parallel detection of a variety of NPs structures or biological activities in a mixture of extract in a single detection phase is among the anticipated future advancements in this field which can be achieved using multisystem biosensors applying multiple flow cells, sensing elements, and detection mechanisms on miniaturized folded chips.
Collapse
Affiliation(s)
- Firoozeh Piroozmand
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Duguet TB, Glebov A, Hussain A, Kulkarni S, Mochalkin I, Geary TG, Rashid M, Spangenberg T, Ribeiro P. Identification of annotated bioactive molecules that impair motility of the blood fluke Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:73-88. [PMID: 32531750 PMCID: PMC7284125 DOI: 10.1016/j.ijpddr.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Neglected tropical diseases are of growing worldwide concern and schistosomiasis, caused by parasitic flatworms, continues to be a major threat with more than 200 million people requiring preventive treatment. As praziquantel (PZQ) remains the treatment of choice, an urgent need for alternative treatments motivates research to identify new lead compounds that would complement PZQ by filling the therapeutic gaps associated with this treatment. Because impairing parasite neurotransmission remains a core strategy for control of parasitic helminths, we screened a library of 708 compounds with validated biological activity in humans on the blood fluke Schistosoma mansoni, measuring their effect on the motility on schistosomulae and adult worms. The primary phenotypic screen performed on schistosomulae identified 70 compounds that induced changes in viability and/or motility. Screening different concentrations and incubation times identified molecules with fast onset of activity on both life stages at low concentration (1 μM). To complement this study, similar assays were performed with chemical analogs of the cholinomimetic drug arecoline and the calcilytic molecule NPS-2143, two compounds that rapidly inhibited schistosome motility; 17 arecoline and 302 NPS-2143 analogs were tested to enlarge the pool of schistosomicidal molecules. Finally, validated hit compounds were tested on three functionally-validated neuroregulatory S. mansoni G-protein coupled receptors (GPCRs): Sm5HTR (serotonin-sensitive), SmGPR2 (histamine) and SmD2 (dopamine), revealing NPS-2143 and analogs as potent inhibitors of dopamine/epinine responses on both human and S. mansoni GPCRs. This study highlights the potential for repurposing known human therapeutic agents for potential schistosomicidal effects and expands the list of hits for further progression.
Collapse
Affiliation(s)
- Thomas B Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Anastasia Glebov
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Asimah Hussain
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Igor Mochalkin
- EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mohammed Rashid
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland.
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
6
|
Park SK, Marchant JS. The Journey to Discovering a Flatworm Target of Praziquantel: A Long TRP. Trends Parasitol 2020; 36:182-194. [PMID: 31787521 PMCID: PMC6937385 DOI: 10.1016/j.pt.2019.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Infections caused by parasitic flatworms impose a considerable worldwide health burden. One of the most impactful is schistosomiasis, a disease caused by parasitic blood flukes. Treatment of schistosomiasis has relied on a single drug - praziquantel (PZQ) - for decades. The utility of PZQ as an essential medication is, however, intertwined with a stark gap in our knowledge as to how this drug works. No flatworm target has been identified that readily explains how PZQ paralyzes and damages schistosomes. Recently, a schistosome ion channel was discovered that is activated by PZQ and displays characteristics which mirror key features of PZQ action on schistosomes. Here, the journey to discovery of this target, properties of this ion channel, and remaining questions are reviewed.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
7
|
Ali G, Cuny GD. An efficient synthesis of an 8-phenoxy aporphine derivative utilizing mono-ligated palladium ortho-phenol arylation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Wang J, Bian C, Wang Y, Shen Q, Bao B, Fan J, Zuo A, Wu W, Guo R. Syntheses and bioactivities of songorine derivatives as novel G protein-coupled receptor antagonists. Bioorg Med Chem 2019; 27:1903-1910. [PMID: 30926314 DOI: 10.1016/j.bmc.2019.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
Songorine isolated from Aconitum brachypodum Diels possesses prominent activity of inhibiting G protein-coupled receptors (GPCRs) in the early screening process. In this paper, a series of Songorine derivatives were synthesized and their inhibitory activities on GPCRs were also evaluated by using the Double Antibody Sandwich ELISA (DAS-ELISA) in vitro. Among them, three derivatives (3a, 4, 7) exhibited significant inhibitory activity against GPCRs with IC50 values of 0.08-0.29 nM. Moreover, the structure-activity relationships (SARs) of songorine derivatives were discussed in detail. They have great potentials as novel GPCRs antagonists in the future.
Collapse
Affiliation(s)
- Jiangming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changhao Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quan Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Bao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Aixue Zuo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
9
|
Anthelmintics - From Discovery to Resistance III (Indian Rocks Beach, FL, 2018). INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:494-495. [PMID: 30429103 PMCID: PMC6287533 DOI: 10.1016/j.ijpddr.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The third scientific meeting in the series “Anthelmintics: From Discovery to Resistance” was held in Indian Rocks Beach, Florida, at the end of January 2018. The meeting focused on a variety of topics related to the title, including the identification of novel targets and new leads, the mechanism of action of existing drugs and the genetic basis of resistance against them. Throughout there was an emphasis on the exploitation of new technologies and methods to further these aims. The presentations, oral and poster, covered basic, veterinary and medical science with strong participation by both academic and commercial researchers. This special issue contains selected papers from the meeting.
Collapse
|