1
|
Hamdy DA, Ismail MAM, El-Askary HM, Abdel-Baki AAS, Al-Quraishy S, Mohamed F, Ahmed MM, Fouad FM, Hassan AO, Abdel-Tawab H. Green synthesis of zinc oxide/Allium sativum nano-composite and its efficacy against murine cryptosporidiosis. Microsc Res Tech 2024; 87:1912-1925. [PMID: 38558483 DOI: 10.1002/jemt.24541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/21/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Cryptosporidiosis is a global health problem threats life of immunocompromised patients. Allium sativum (A. sativum) is one of the therapeutic options for cryptosporidiosis. This study develops green synthesized ZnO-NPs based on A. sativum extract, and assesses its therapeutic application in treating experimental cryptosporidiosis in immunosuppressed mice. FTIR, scanning electron microscopy, and zeta analyzer were used for characterization of bio ZnO-NPs. The morphology of prepared materials appeared as sponge with many pores on the whole surface that allows the feasibility of bio ZnO-NPs for different biological activities. Its structural analysis was highly stabilized with negative charge surface which indicated for well distribution into the parasite matrix. Twenty-five immunosuppressed Cryptosporidium parvum infected mice, classified into 5 groups were sacrificed at 21th day after infection with evaluation of parasitological, histopathological, oxidative, and proinflammatory biomarkers. Treated mice groups with 50 and 100 mg/kg of AS/ZnO-NPs showed a highly significant decline (79.9% and 83.23%, respectively) in the total number of expelled oocysts. Both doses revealed actual amelioration of the intestinal, hepatic, and pulmonary histopathological lesions. They also significantly produced an increase in GSH values and improved the changes in NO and MDA levels, and showed high anti-inflammatory properties. This study is the first to report green synthesis of ZnO/A. sativum nano-composite as an effective therapy in treating cryptosporidiosis which gave better results than using A. sativum alone. It provides an economical and environment-friendly approach towards novel delivery synthesis for antiparasitic applications. RESEARCH HIGHLIGHTS: Green synthesis of ZnO-NPs was developed using A. sativum extract. The morphology of prepared ZnO-NPs appeared as sponge with many pores on SEM The study evaluates its therapeutic efficacy against murine cryptosporidiosis The green synthesized ZnO-NPs significantly reduced percent of oocyst shedding, improved the pathological changes, and showed high antioxidant and anti-inflammatory potentials.
Collapse
Affiliation(s)
- Doaa A Hamdy
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mousa A M Ismail
- Department of Medical Parasitology, College of Medicine, Cairo University, Giza, Egypt
| | - Hala M El-Askary
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatma Mohamed
- Nanophotonics and Applications (NPA) Lab, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Ahmed
- Department of Pathology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma M Fouad
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Heba Abdel-Tawab
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Namazi F, Razavi SM. Herbal-based compounds: A review on treatments of cryptosporidiosis. Int J Parasitol Drugs Drug Resist 2024; 24:100521. [PMID: 38246099 PMCID: PMC10831817 DOI: 10.1016/j.ijpddr.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Cryptosporidium, a monoxenous apicomplexan coccidia, is a prevalent diarrhetic and an opportunistic agent, mainly in immunocompromised individuals. As there are few chemotherapeutic compounds that have limited efficacy, we need to identify new compounds or specific parasite targets for designing more potent drugs to treat cryptosporidiosis. Herbal products with low toxicity, environmental compatibility, wide therapeutic potential, and abundant resources can be considered alternatives for treatment. The current review tried to summarize the studies on plants or herbal bioactive constituents with anti-cryptosporidial activities. Based on constituents, plants act via different mechanisms, and further investigations are needed to clarify the exact mechanisms by which they act on the developmental stages of the parasite or host-parasite relationships.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Mostafa Razavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Ali M, Xu C, Nawaz S, Ahmed AE, Hina Q, Li K. Anti-Cryptosporidial Drug-Discovery Challenges and Existing Therapeutic Avenues: A "One-Health" Concern. Life (Basel) 2024; 14:80. [PMID: 38255695 PMCID: PMC10820218 DOI: 10.3390/life14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Cryptosporidiosis is the leading cause of life-threatening diarrheal infection, especially in infants. Oocysts contaminate the environment, and also, being a zoonotic disease, cryptosporidiosis is a threat to One Health. Nitazoxanide is the only FDA-approved drug, effective only in immunocompetent adults, and is not safe for infants. The absence of mitochondria and apicoplast, the presence of an electron-dense band (ED band), hindrances in its genetic and phenotypic manipulations, and its unique position inside the host cell are some challenges to the anti-cryptosporidial drug-discovery process. However, many compounds, including herbal products, have shown efficacy against Cryptosporidium during in vitro and in vivo trials. Still, the "drug of choice" against this protozoan parasite, especially in immunocompromised individuals and infants, has not yet been explored. The One-Health approach addresses this issue, focusing on the intersection of animal, human, and environmental health. The objective of this review is to provide knowledge about novel anti-cryptosporidial drug targets, available treatment options with associated limitations, and possible future shifts toward natural products to treat cryptosporidiosis. The current review is organized to address the treatment and prevention of cryptosporidiosis. An anti-cryptosporidial drug that is effective in immunocompromised individuals and infants is a necessity of our time.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Khan S, Das A, Kataria B, Yadav H, Mirdha BR. Nitazoxanide refractory cryptosporidiosis complicating Burkitt lymphoma in a child. Trop Parasitol 2024; 14:50-53. [PMID: 38444792 PMCID: PMC10911182 DOI: 10.4103/tp.tp_25_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 03/07/2024] Open
Abstract
Cryptosporidium species cause watery diarrhea in several vertebrate hosts, including humans. Most apparently, immunocompetent-infected individuals remain asymptomatic, whereas immunocompromised may develop severe or chronic cryptosporidiosis. We report here the case of a 6-year-old girl undergoing chemotherapy for Burkitt lymphoma who experienced multiple episodes of watery diarrhea during her hospital stay. Microscopic examination of her stool sample revealed oocysts of Cryptosporidium species. The rapid immunochromatographic test was also positive for Cryptosporidium species. She was treated with nitazoxanide for 3 weeks, which failed to provide both clinical improvement and parasitological clearance. This case highlights the importance of treatment failure in human cryptosporidiosis.
Collapse
Affiliation(s)
- Salman Khan
- Department of Microbiology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| | - Arghya Das
- Department of Microbiology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| | - Babita Kataria
- Department of Medical Oncology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu Yadav
- Department of Microbiology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Toriro R, Pallett S, Woolley S, Bennett C, Hale I, Heylings J, Wilkins D, Connelly T, Muia K, Avery P, Stuart A, Morgan L, Davies M, Nevin W, Quantick O, Robinson G, Elwin K, Chalmers R, Burns D, Beeching N, Fletcher T, O’Shea M. Outbreak of Diarrhea Caused by a Novel Cryptosporidium hominis Subtype During British Military Training in Kenya. Open Forum Infect Dis 2024; 11:ofae001. [PMID: 38250201 PMCID: PMC10798851 DOI: 10.1093/ofid/ofae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Background We report clinical, epidemiological, and laboratory features of a large diarrhea outbreak caused by a novel Cryptosporidium hominis subtype during British military training in Kenya between February and April 2022. Methods Data were collated from diarrhea cases, and fecal samples were analyzed on site using the multiplex polymerase chain reaction (PCR) BioFire FilmArray. Water was tested using Colilert kits (IDEXX, UK). DNA was extracted from feces for molecular characterization of Cryptosporidium A135, Lib13, ssu rRNA, and gp60 genes. Results One hundred seventy-two of 1200 (14.3%) personnel at risk developed diarrhea over 69 days. One hundred six primary fecal samples were tested, and 63/106 (59.4%; 95% CI, 0.49%-0.69%) were positive for Cryptosporidium spp. Thirty-eight had Cryptosporidium spp. alone, and 25 had Cryptosporidium spp. with ≥1 other pathogen. A further 27/106 (25.5%; 95% CI, 0.18%-0.35%) had non-Cryptosporidium pathogens only, and 16/106 (15.1%; 95% CI, 0.09%-0.23%) were negative. C. hominis was detected in 58/63 (92.1%) Cryptosporidium spp.-positive primary samples, but the others were not genotypable. Twenty-seven C. hominis specimens were subtypable; 1 was gp60 subtype IeA11G3T3, and 26 were an unusual subtype, ImA13G1 (GenBank accession OP699729), supporting epidemiological evidence suggesting a point source outbreak from contaminated swimming water. Diarrhea persisted for a mean (SD) of 7.6 (4.6) days in Cryptosporidium spp. cases compared with 2.3 (0.9) days in non-Cryptosporidium cases (P = .001). Conclusions Real-time multiplex PCR fecal testing was vital in managing this large cryptosporidiosis outbreak. The etiology of a rare C. hominis gp60 subtype emphasizes the need for more genotypic surveillance to identify widening host and geographic ranges of novel C. hominis subtypes.
Collapse
Affiliation(s)
- Romeo Toriro
- Army Medical Services, Robertson House, Royal Military Academy Sandhurst, Camberley, Surrey, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - Scott Pallett
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Stephen Woolley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Charlie Bennett
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Isra Hale
- 3 Medical Regiment, Fulwood Barracks, Preston, Lancashire, UK
| | - Jennifer Heylings
- 28 (C-CBRN) Engineer Regiment, Rock Barracks, Woodbridge, Suffolk, UK
| | - Daniel Wilkins
- 2nd Battalion the Rifles, Thiepval Barracks, Lisburn, UK
| | - Thomas Connelly
- 29 Public Health Division Medical Group, HQ 3 (UK) Division, Bulford, Wiltshire, UK
| | - Kennedy Muia
- British Army Training Unit (Kenya), Nanyuki, Kenya
| | - Patrick Avery
- Defence Primary Healthcare, Medical Centre, Nanyuki, Kenya
| | - Andrew Stuart
- Defence Primary Healthcare, Medical Centre, Nanyuki, Kenya
| | - Laura Morgan
- HQ 1st (UK) Division, Imphal Barracks, York, Yorkshire, UK
| | - Mark Davies
- British Army Training Unit (Kenya), Nanyuki, Kenya
| | - William Nevin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | | | - Guy Robinson
- CryptosporidiumReference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty, Swansea, Wales, UK
- Swansea University Medical School, Swansea, Wales, UK
| | - Kristin Elwin
- CryptosporidiumReference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty, Swansea, Wales, UK
| | - Rachel Chalmers
- CryptosporidiumReference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty, Swansea, Wales, UK
- Swansea University Medical School, Swansea, Wales, UK
| | - Daniel Burns
- Royal Centre for Defence Medicine, Birmingham, UK
| | - Nicholas Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - Thomas Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
- Royal Centre for Defence Medicine, Birmingham, UK
| | - Matthew O’Shea
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Gunasekera S, Clode PL, King B, Monis P, Thierry B, Carr JM, Chopra A, Watson M, O'Dea M, Hijjawi N, Ryan U. Comparison of in vitro growth characteristics of Cryptosporidium hominis (IdA15G1) and Cryptosporidium parvum (Iowa-IIaA17G2R1 and IIaA18G3R1). Parasitol Res 2023; 122:2891-2905. [PMID: 37776335 PMCID: PMC10667462 DOI: 10.1007/s00436-023-07979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Cryptosporidium is a major cause of diarrhoeal disease and mortality in young children in resource-poor countries, for which no vaccines or adequate therapeutic options are available. Infection in humans is primarily caused by two species: C. hominis and C. parvum. Despite C. hominis being the dominant species infecting humans in most countries, very little is known about its growth characteristics and life cycle in vitro, given that the majority of our knowledge of the in vitro development of Cryptosporidium has been based on C. parvum. In the present study, the growth and development of two C. parvum isolates (subtypes Iowa-IIaA17G2R1 and IIaA18G3R1) and one C. hominis isolate (subtype IdA15G1) in HCT-8 cells were examined and compared at 24 h and 48 h using morphological data acquired with scanning electron microscopy. Our data indicated no significant differences in the proportion of meronts or merozoites between species or subtypes at either time-point. Sexual development was observed at the 48-h time-point across both species through observations of both microgamonts and macrogamonts, with a higher frequency of macrogamont observations in C. hominis (IdA15G1) cultures at 48-h post-infection compared to both C. parvum subtypes. This corresponded to differences in the proportion of trophozoites observed at the same time point. No differences in proportion of microgamonts were observed between the three subtypes, which were rarely observed across all cultures. In summary, our data indicate that asexual development of C. hominis is similar to that of C. parvum, while sexual development is accelerated in C. hominis. This study provides new insights into differences in the in vitro growth characteristics of C. hominis when compared to C. parvum, which will facilitate our understanding of the sexual development of both species.
Collapse
Affiliation(s)
- Samantha Gunasekera
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Peta L Clode
- Centre for Microscopy, Characterisation, and Analysis and School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Brendon King
- South Australian Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Abha Chopra
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Mark Watson
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Mark O'Dea
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 150459, Zarqa, 13115, Jordan
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| |
Collapse
|
7
|
AlFaleh FA, Ismael SS, Aguilar-Marcelino L, Silva FEM, Ashraf T, Abbas RZ, Qamar W. Use of nanoparticles, a modern means of drug delivery, against cryptosporidiosis. J Adv Vet Anim Res 2023; 10:704-719. [PMID: 38370897 PMCID: PMC10868694 DOI: 10.5455/javar.2023.j726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Cryptosporidium is a primary cause of waterborne epidemics, despite being previously considered only an opportunistic pathogen. The disease is associated with significant economic losses in humans and animals that are brought on by diarrhea, which frequently causes dehydration. Contact with diseased people or animals, as well as polluted water, is the major cause of infection. Different drugs are used to control the parasites. Nitazoxanide (NTZ), which is an anti-protozoan and anti-viral drug, can be used to control helminths, viruses, and protozoan parasites as a broad-spectrum antibiotic and has been approved by the food and drug authority (FDA). However, the problem is the development of resistance over a period of time in these parasites. Nanoparticles have received significant attention as possible anti-parasitic agents in recent years. By directing medications to specific cellular locations, targeted drug delivery minimizes the side effects of medications. Nanoparticles have demonstrated effectiveness against different Cryptosporidium species. Nanoparticles loaded with NTZ are found to be an effective remedy for C. parvum in young ones and decrease the oocyst count shed in the stools. Additionally, silver nanoparticles have proven to be effective against C. parvum by releasing silver ions that breach the cell wall of the oocyst, causing the escape of intracellular contents and the destruction of sporozoites within the oocyst. Implementing tiny particles for the purification of consuming water from Cryptosporidium is an economical and environmentally sustainable process. However, the use of nanoparticles in medicine requires more research.
Collapse
Affiliation(s)
- Faleh A. AlFaleh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Shameeran Salman Ismael
- Medical Laboratory Sciences Department, College of Health Sciences, University of Duhok, Duhok, Iraq
| | | | | | - Tayyaba Ashraf
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Warda Qamar
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Zhang X, Wang L, Feng R, Liang G, Hou W, Zhang Y, Li X, Zhang L, Zhang S. Functional characterization of CpADF, an actin depolymerizing factor protein in Cryptosporidium parvum. Parasitol Res 2023; 122:2621-2630. [PMID: 37676305 DOI: 10.1007/s00436-023-07960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Ruiying Feng
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Wenyan Hou
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Yingying Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
9
|
Martí-Marco A, Moratal S, Torres-Blas I, Cardells J, Lizana V, Dea-Ayuela MA. Molecular Detection and Epidemiology of Potentially Zoonotic Cryptosporidium spp. and Giardia duodenalis in Wild Boar ( Sus scrofa) from Eastern Spain. Animals (Basel) 2023; 13:2501. [PMID: 37570308 PMCID: PMC10416950 DOI: 10.3390/ani13152501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The protozoans Giardia duodenalis and Cryptosporidium spp. are common causes of gastrointestinal disease in humans and animals. While both are commonly documented in domestic animals, few studies have analysed their presence in wildlife. To assess the prevalence of both parasites in wild boar (Sus scrofa) in the Valencian Community (eastern Spain), 498 wild boar faecal samples were collected from 2018 to 2022. Cryptosporidium spp. was detected by performing a nested PCR targeting a 578 bp sequence of the small subunit ribosomal RNA gene (SSU rRNA), followed by sequencing and phylogenetic analysis. For G. duodenalis, a qPCR amplifying a fragment of 62 bp from the SSU rRNA was employed. Positive samples were genotyped for glutamate dehydrogenase and β-giardin genes. Different epidemiological factors were considered potential modulating variables in the transmission of both parasites. G. duodenalis prevalence was 1.20%, while Cryptosporidium spp. prevalence reached 21.7%. Coinfection was observed in 0.2%. Genotyping of G. duodenalis isolates only detected genotype E. Two species of Cryptosporidium spp. were identified: Cryptosporidium scrofarum and Cryptosporidium suis. The results of this study demonstrate that the exposure to Cryptosporidium spp. in wild boars is high, particularly among young individuals belonging to the Typical Mediterranean climate. Moreover, the probability of infection is dependent on both the season and the density of wild boars. On the other side, exposure to G. duodenalis seems scarce and is influenced, in turn, by the climate. Both Cryptosporidium species detected in the present study have been reported in humans. Due to wild boar increasing in number and their colonisation of urban and peri-urban areas, this could represent an inherent health risk for the human population.
Collapse
Affiliation(s)
- Alba Martí-Marco
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
| | - Irene Torres-Blas
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Victor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - María Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Ramón y Cajal, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
10
|
Anschütz NH, Gerbig S, Ghezellou P, Silva LMR, Vélez JD, Hermosilla CR, Taubert A, Spengler B. Mass Spectrometry Imaging of In Vitro Cryptosporidium parvum-Infected Cells and Host Tissue. Biomolecules 2023; 13:1200. [PMID: 37627264 PMCID: PMC10452350 DOI: 10.3390/biom13081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Cryptosporidium parvum is a zoonotic-relevant parasite belonging to the phylum Alveolata (subphylum Apicomplexa). One of the most zoonotic-relevant etiologies of cryptosporidiosis is the species C. parvum, infecting humans, cattle and wildlife. C. parvum-infected intestinal mucosa as well as host cells infected in vitro have not yet been the subject of extensive biochemical investigation. Efficient treatment options or vaccines against cryptosporidiosis are currently not available. Human cryptosporidiosis is currently known as a neglected poverty-related disease (PRD), being potentially fatal in young children or immunocompromised patients. In this study, we used a combination of atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) mass spectrometry imaging (MSI) and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to determine and locate molecular biomarkers in in vitro C. parvum-infected host cells as well as parasitized neonatal calf intestines. Sections of C. parvum-infected and non-infected host cell pellets and infected intestines were examined to determine potential biomarkers. Human ileocecal adenocarcinoma cells (HCT-8) were used as a suitable in vitro host cell system. More than a thousand different molecular signals were found in both positive- and negative-ion mode, which were significantly increased in C. parvum-infected material. A database search in combination with HPLC-MS/MS experiments was employed for the structural verification of markers. Our results demonstrate some overlap between the identified markers and data obtained from earlier studies on other apicomplexan parasites. Statistically relevant biomarkers were imaged in cell layers of C. parvum-infected and non-infected host cells with 5 µm pixel size and in bovine intestinal tissue with 10 µm pixel size. This allowed us to substantiate their relevance once again. Taken together, the present approach delivers novel metabolic insights on neglected cryptosporidiosis affecting mainly children in developing countries.
Collapse
Affiliation(s)
- Nils H. Anschütz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.H.A.); (S.G.); (P.G.)
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.H.A.); (S.G.); (P.G.)
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.H.A.); (S.G.); (P.G.)
| | - Liliana M. R. Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (J.D.V.); (C.R.H.); (A.T.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal
| | - Juan Diego Vélez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (J.D.V.); (C.R.H.); (A.T.)
| | - Carlos R. Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (J.D.V.); (C.R.H.); (A.T.)
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (J.D.V.); (C.R.H.); (A.T.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.H.A.); (S.G.); (P.G.)
| |
Collapse
|
11
|
Ghareeb MA, Sobeh M, Aboushousha T, Esmat M, Mohammed HS, El-Wakil ES. Polyphenolic Profile of Herniaria hemistemon Aerial Parts Extract and Assessment of Its Anti-Cryptosporidiosis in a Murine Model: In Silico Supported In Vivo Study. Pharmaceutics 2023; 15:pharmaceutics15020415. [PMID: 36839737 PMCID: PMC9964224 DOI: 10.3390/pharmaceutics15020415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Herniaria hemistemon J.Gay is widely used in folk medicine to treat hernia. The present study aimed to annotate the phytoconstituents of H. hemistemon aerial-part extract and investigate its in vivo anticryptosporidial activity. The chemical characterization was achieved via the LC-ESI-MS/MS technique resulting in the annotation of 37 phytocompounds comprising flavonoids and phenolic acids. Regarding the anticryptosporidial activity, fifty dexamethasone-immunosuppressed mice were separated into five groups: GI, un-infected (normal control); GII, infected but not treated (model); GIII, infected and received NTZ, the reference drug; GIV, infected and received H. hemistemon extract (100 mg/kg); and GV, infected and received H. hemistemon extract (200 mg/kg). When GIII, GIV, and GV were compared to GII, parasitological analyses displayed highly significant differences in the mean numbers of Cryptosporidium parvum oocysts in the stool between the different groups. GV demonstrated the highest efficacy of 79%. Histopathological analyses displayed improvement in the small intestine and liver pathology in the treated groups (GIII, IV, and V) related to the model (GII), with GV showing the highest efficacy. Moreover, the docking-based study tentatively highlighted the potential of benzoic acid derivatives as lactate dehydrogenase inhibitors. The docked compounds showed the same binding interactions as oxamic acid, where they established H-bond interactions with ARG-109, ASN-140, ASP-168, ARG-171, and HIS-195. To sum up, H. hemistemon is a promising natural therapeutic agent for cryptosporidiosis.
Collapse
Affiliation(s)
- Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
- Correspondence: (M.A.G.); (M.S.); Tel.: +20-(02)-010-1234-6834 (M.A.G.); Fax: +20-(02)-35408125 (M.A.G.)
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben-Guerir 43150, Morocco
- Correspondence: (M.A.G.); (M.S.); Tel.: +20-(02)-010-1234-6834 (M.A.G.); Fax: +20-(02)-35408125 (M.A.G.)
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Marwa Esmat
- Department of Medical Parasitology, Faculty of Medicine, Misr University for Science and Technology, 6th October City 12566, Egypt
| | - Hala Sh. Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11311, Egypt
| | - Eman S. El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Although Cryptosporidium detection and typing techniques have improved dramatically in recent years, relatively little research has been conducted on point of care (POC) detection and typing tools. Therefore, the main purpose of the present review is to summarize and evaluate recent and emerging POC diagnostic methods for Cryptosporidium spp. RECENT FINDINGS Microscopy techniques such as light-emitting diode fluorescence microscopy with auramine-phenol staining (LED-AP), still have utility for (POC) diagnostics but require fluorescent microscopes and along with immunological-based techniques, suffer from lack of specificity and sensitivity. Molecular detection and typing tools offer higher sensitivity, specificity and speciation, but are currently too expensive for routine POC diagnostics. Isothermal amplification methods such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) including a commercially available LAMP kit have been developed for Cryptosporidium but are prone to false positives. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas diagnostic technologies (CRISPRDx) have recently been combined with isothermal amplification to increase its specificity and sensitivity for detection and typing. Other emerging technologies including amplification-free CRISPR detection methods are currently being developed for Cryptosporidium using a smartphone to read the results. SUMMARY Many challenges are still exist in the development of POC diagnostics for Cryptosporidium. The ideal POC tool would be able to concentrate the pathogen prior to detection and typing, which is complicated and research in this area is still very limited. In the short-term, CRISPR-powered isothermal amplification lateral flow tools offer the best opportunity for POC Cryptosporidium species and subtype detection, with a fully integrated autonomous biosensor for the long-term goal.
Collapse
|
13
|
Abd El Wahab WM, Shaapan RM, El-Naggar EMB, Ahmed MM, Owis AI, Ali MI. Anti-Cryptosporidium efficacy of Citrus sinensis peel extract: Histopathological and ultrastructural experimental study. Exp Parasitol 2022; 243:108412. [DOI: 10.1016/j.exppara.2022.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
14
|
Esmat M, Abdel-Aal AA, Shalaby MA, Badawi M, Elaskary H, Yousif AB, Fahmy MEA. Efficacy of clofazimine and nitazoxanide combination in treating intestinal cryptosporidiosis and enhancing intestinal cellular regeneration in immunocompromised mice. Food Waterborne Parasitol 2022; 27:e00161. [PMID: 35601881 PMCID: PMC9118138 DOI: 10.1016/j.fawpar.2022.e00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptosporidium is a widely distributed food and water-borne enteric protozoan that affects a wide range of vertebrates, resulting in life-threatening consequences, particularly in immunocompromised hosts. The lack of effective anti-cryptosporidial drugs may be related to the parasite's unique intestinal location, plus the lack of studies on the process by which the protozoan is able to impair intestinal cellular function. The present work aimed to assess the effect of clofazimine (CFZ), an FDA-approved drug for the treatment of leprosy, as an anti-cryptosporidial drug, using transmission electron microscopy (TEM) and an immunocompromised mouse model. The affected intestinal mucosa with parasitic stages in the infected non-treated group showed signs of severe cellular degeneration, including the loss of tight junctions, deformed and damaged microvilli and irregularly distributed nuclei with a severely vacuolated cytoplasm. Comparatively, nitazoxanide (NTZ) monotherapy showed the lowest efficacy as the drug was associated with the lowest rate of oocyst shedding. In addition, NTZ treatment failed to achieve the return of complete cellular function; abnormalities were evident in the microvilli, cytoplasmic organelles and nuclear features. Clofazimine demonstrated an improvement of the mucosal cellular components, including mitochondria and significantly reduced oocyst shedding. Combined treatment with low-dose CFZ and half-dose NTZ resulted in a significant improvement in the enterocyte cellular structures with an absence of intracellular parasitic stages. These results indicate that CFZ, a safe and readily prescribed drug, effectively reduces cryptosporidiosis when used in combination with only half the dose of NTZ. Used in combination, these drugs were shown to be efficient in regaining intestinal cellular activity following Cryptosporidium-induced functional damage in an immunocompromised mouse model.
Collapse
Affiliation(s)
- Marwa Esmat
- Department of Medical Parasitology, Faculty of Medicine, Misr University for Science and Technology, 6th October city, Egypt
| | - Amany A. Abdel-Aal
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Egypt
- Department of Postgraduate Studies & Scientific Research, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Maisa A. Shalaby
- Medical Parasitology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Manal Badawi
- Department of Pathology, National Research center, Giza, Egypt
| | - Hala Elaskary
- Depatment of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Ahmed Badawi Yousif
- Department of Medical Parasitology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | | |
Collapse
|
15
|
Pane S, Putignani L. Cryptosporidium: Still Open Scenarios. Pathogens 2022; 11:pathogens11050515. [PMID: 35631036 PMCID: PMC9143492 DOI: 10.3390/pathogens11050515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidiosis is increasingly identified as a leading cause of childhood diarrhea and malnutrition in both low-income and high-income countries. The strong impact on public health in epidemic scenarios makes it increasingly essential to identify the sources of infection and understand the transmission routes in order to apply the right prevention or treatment protocols. The objective of this literature review was to present an overview of the current state of human cryptosporidiosis, reviewing risk factors, discussing advances in the drug treatment and epidemiology, and emphasizing the need to identify a government system for reporting diagnosed cases, hitherto undervalued.
Collapse
Affiliation(s)
- Stefania Pane
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, 00146 Rome, Italy;
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
16
|
Santos HLC, Rebello KM. An Overview of Mucosa-Associated Protozoa: Challenges in Chemotherapy and Future Perspectives. Front Cell Infect Microbiol 2022; 12:860442. [PMID: 35548465 PMCID: PMC9084232 DOI: 10.3389/fcimb.2022.860442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections caused by protozoans that infect the mucosal surfaces are widely neglected worldwide. Collectively, Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Trichomonas vaginalis infect more than a billion people in the world, being a public health problem mainly in developing countries. However, the exact incidence and prevalence data depend on the population examined. These parasites ultimately cause pathologies that culminate in liver abscesses, malabsorption syndrome, vaginitis, and urethritis, respectively. Despite this, the antimicrobial agents currently used to treat these diseases are limited and often associated with adverse side effects and refractory cases due to the development of resistant parasites. The paucity of drug treatments, absence of vaccines and increasing problems of drug resistance are major concerns for their control and eradication. Herein, potential candidates are reviewed with the overall aim of determining the knowledge gaps and suggest future perspectives for research. This review focuses on this public health problem and focuses on the progress of drug repositioning as a potential strategy for the treatment of mucosal parasites.
Collapse
Affiliation(s)
- Helena Lucia Carneiro Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|