1
|
Sommerfeldt J, Sartorius H, von Sarnowski B, Klein S, Ritter CA. Drug administration via feeding tubes-a procedure that carries risks: systematic identification of critical factors based on commonly administered drugs in a cohort of stroke patients. Eur J Clin Pharmacol 2024; 80:1599-1623. [PMID: 39073438 PMCID: PMC11458809 DOI: 10.1007/s00228-024-03723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Drug administration via feeding tubes is considered a process with many uncertainties. This review aimed to give a comprehensive overview of data available on feeding tube application and to carry out risk assessments for drug substances commonly administered to stroke patients. METHODS Drugs frequently administered via feeding tubes were identified through a retrospective analysis of discharge letters from a stroke unit. Physicochemical, pharmacokinetic, and stability properties of these drugs and data on drug-enteral nutrition interactions were systematically searched for in the European Pharmacopoeia, Hagers Handbook of Pharmaceutical Practice, Birchers clinical-pharmacological data compilation, and the Martindale Complete Drug Reference, as well as from databases including DrugBank, DrugDex, PubChem, Google Scholar, and PubMed. RESULTS Of the drugs most commonly administered via feeding tubes in the present stroke patient cohort, bisoprolol, candesartan, and ramipril could be considered the least critical due to their overall favourable properties. Acetylsalicylic acid, amlodipine, hydrochlorothiazide, omeprazole and esomeprazole, simvastatin, and torasemide pose risks based on pH or light-dependent instability or proposed food effects. The most critical drugs to be administered via feeding tubes are considered to be furosemide, levodopa, and levothyroxine as they show relevant instabilities under administration conditions and substantial food effects; the latter two even possess a narrow therapeutic index. However, little information is available on drug-tube and drug-formula interactions. CONCLUSION Feeding tube administration of medications turned out to be a highly complex process with several unmet risks. Therefore, investigations that systematically assess these risk factors using clinically relevant model systems are urgently needed.
Collapse
Affiliation(s)
- Jana Sommerfeldt
- University of Greifswald, Institute of Pharmacy, Clinical Pharmacy, Greifswald, Germany
| | - Hannes Sartorius
- University of Greifswald, Institute of Pharmacy, Clinical Pharmacy, Greifswald, Germany
| | | | - Sandra Klein
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Greifswald, Germany
| | - Christoph A Ritter
- University of Greifswald, Institute of Pharmacy, Clinical Pharmacy, Greifswald, Germany.
| |
Collapse
|
2
|
Galata DL, Sinka Lázárné M, Kiss-Kovács D, Fülöp G, Dávid B, Bogáti B, Ficzere M, Péterfi O, Nagy B, Marosi G, Nagy ZK. Effects of omitting titanium dioxide from the film coating of a pharmaceutical tablet - An industrial case study of attempting to comply with EU regulation 2022/63. Eur J Pharm Sci 2024; 196:106750. [PMID: 38490522 DOI: 10.1016/j.ejps.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Recently, concerns have been raised about the safety of titanium dioxide (TiO2), a commonly used component of pharmaceutical film coatings. The European Union has recently prohibited the application of this material in the food industry, and it is anticipated that the same will happen in the pharmaceutical industry. For this reason, pharmaceutical manufacturers have to consider the possible impact of removing TiO2 from the film coating of tablets. In this paper, we present a case study of a commercially produced tablet where the film coating containing TiO2 was replaced with a coating using calcium carbonate (CaCO3) or with a transparent coating. The performance of the coatings was compared by measuring the moisture absorption rate and the dissolution profile of the tablets. In these regards, there were negligible differences between the coating types. The tablets contained a highly photosensitive drug, the ability of the coatings to protect the drug was evaluated through environmental stability and photostability measurements. The HPLC results showed that the inclusion of TiO2 does not provide additional benefits, when humidity and thermal stress is applied, however its role was vital in protecting the drug from external light. There were several decomposition products which appeared in large quantities when TiO2 was missing from the coating. These results imply that photosensitivity is an issue, replacing TiO2 will be challenging, though its absence can be tolerated when the drug does not need to be protected from light.
Collapse
Affiliation(s)
- Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | | | - Dorottya Kiss-Kovács
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, Budapest H-1103, Hungary
| | - Gergő Fülöp
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, Budapest H-1103, Hungary
| | - Barnabás Dávid
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, Budapest H-1103, Hungary
| | - Botond Bogáti
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, Budapest H-1103, Hungary
| | - Máté Ficzere
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Orsolya Péterfi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
| |
Collapse
|
3
|
Matsushima Y, Hattori M, Tanaka A, Furubayashi T, Sakane T. Changes in Tablet Color Due to Light Irradiation: Photodegradation of the Coating Polymer, Hypromellose, by Titanium Dioxide. AAPS PharmSciTech 2024; 25:26. [PMID: 38273054 DOI: 10.1208/s12249-024-02732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
The color of the tablets and capsules produced by pharmaceutical companies is important from the perspectives of product branding and counterfeiting. According to some studies, light can change tablet color during storage. In this study, tablets comprising amlodipine besylate (AB), a well-known light-sensitive drug, were coated with commonly used coating materials and exposed to light. Compared to the tablets that were not exposed to light, the color of those exposed to light changed over time. In fact, a faster and more pronounced color change was observed in the tablets exposed to light; however, the amount of AB did not decrease significantly in these tablets. The coating materials and their amounts were varied to clarify the materials involved in the color change. Based on the results, titanium dioxide and hypromellose may be involved in the color change process. As titanium dioxide is a photocatalyst, it may induce or promote chemical changes in hypromellose upon light irradiation. Overall, care should be exercised during selection of the coating polymer because titanium dioxide may promote photodegradation of the coatings while protecting the tablet's active ingredient from light.
Collapse
Affiliation(s)
- Yuki Matsushima
- Towa Pharmaceutical Co., Ltd, 26-7, Ichiban-Cho, Kadoma, Osaka, 571-0033, Japan.
| | - Masaki Hattori
- Towa Pharmaceutical Co., Ltd, 26-7, Ichiban-Cho, Kadoma, Osaka, 571-0033, Japan
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, Hyogo, 658-8558, Japan
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, Hyogo, 658-8558, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, Hyogo, 658-8558, Japan
| |
Collapse
|
4
|
Structural investigations of halogen substituted 1,4-dihydropyridine derivatives: Crystallographic and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Sriwidodo, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 2022; 8:e08934. [PMID: 35243059 PMCID: PMC8861389 DOI: 10.1016/j.heliyon.2022.e08934] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes have been used extensively as micro- and nanocarriers for hydrophobic or hydrophilic molecules. However, conventional liposomes are biodegradable and quickly eliminated, making it difficult to be used for delivery in specific routes, such as the oral and systemic routes. One way to overcome this problem is through complexation with polymers, which is referred to as a liposome complex. The use of polymers can increase the stability of liposome with regard to pH, chemicals, enzymes, and the immune system. In some cases, specific polymers can condition the properties of liposomes to be explicitly used in drug delivery, such as targeted delivery and controlled release. These properties are influenced by the type of polymer, crosslinker, interaction, and bond in the complexation process. Therefore, it is crucial to study and review these parameters for the development of more optimal forms and properties of the liposome complex. This article discusses the use of natural and synthetic polymers, ways of interaction between polymers and liposomes (on the surface, incorporation in lamellar chains, and within liposomes), types of bonds, evaluation standards, and their effects on the stability and pharmacokinetic profile of the liposome complex, drugs, and vaccines. This article concludes that both natural and synthetic polymers can be used in modifying the structure and physicochemical properties of liposomes to specify their use in targeted delivery, controlled release, and stabilizing drugs and vaccines.
Collapse
Affiliation(s)
- Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjoy Das
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Jamrógiewicz M, Józefowicz M. Preparation and Characterization of Indomethacin Supramolecular Systems with β-Cyclodextrin in Order to Estimate Photostability Improvement. Molecules 2021; 26:molecules26247436. [PMID: 34946517 PMCID: PMC8709320 DOI: 10.3390/molecules26247436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins have found wide application in contemporary chemistry, pharmacy and medicine. Because of their unique properties, cyclodextrins are constantly used in research on solubility or stability improvement, as well as other physicochemical properties of medicinal substances. Indomethacin (IND) is a photolabile molecule that also attracts the interest of researchers due to its therapeutic potential and the need to overcome its problematic photosensitivity. Supramolecular complexes of indomethacin with β-cyclodextrin (CD) are already known, and they show greater stability compared to complexes with other types of cyclodextrins. So far, however, the sensitivity to light of physical mixtures and inclusion complexes in the solid phase has not been studied, and their various stoichiometries have not yet been investigated. Due to this fact, the aim of the present study is to obtain supramolecular systems (inclusion complexes and physical mixtures) of indomethacin with three different amounts of β-cyclodextrin. Assessment of the photochemical stability of indomethacin-β-cyclodextrin systems in the solid state is performed in order to find the best correlation between IND stability and the amount of CD. Comparative analysis of physicochemical degradation for stoichiometry systems [CD:IND] = [1:1], [0.5:1] and [0.1:1] is performed by using ultraviolet spectroscopy, transmission—FTIR, reflection—ATR-FTIR infrared spectroscopy and DSC calorimetry.
Collapse
Affiliation(s)
- Marzena Jamrógiewicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-349-16-56
| | - Marek Józefowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| |
Collapse
|
7
|
Photoinstability in active pharmaceutical ingredients: Crystal engineering as a mitigating measure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Protective Effect of Selected Antioxidants on Naproxen Photodegradation in Aqueous Media. Antioxidants (Basel) 2019; 8:antiox8100424. [PMID: 31547495 PMCID: PMC6826686 DOI: 10.3390/antiox8100424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 11/16/2022] Open
Abstract
A photostabilization strategy is an important aspect of quality assurance for photosensitive compounds. This study focused on the photoprotective effects of selected antioxidants including the effect of L-ascorbic acid (AA) on naproxen (NX) photodegradation in aqueous media. NX degradation during ultraviolet light (UV) irradiation and the protective effects of selected antioxidants were monitored by high-performance liquid chromatography (HPLC). The addition of AA induced the suppression of NX photodegradation, although the protective effect disappeared after AA was degraded completely. The results of the evaluations on the photoprotective effects on NX photodegradation and antioxidative activities of AA and other antioxidants showed that the protective effects of antioxidants are dependent on reducing power and photostability under UV irradiation. In this experiment, quercetin (QU) is the most effective antioxidant on account of the residual rate of QU after UV irradiation and the antioxidative activity in the potential antioxidant (PAO) test was significantly higher compared to other antioxidants following the higher protective effect on NX photodegradation.
Collapse
|
9
|
Längle D, Werner TR, Wesseler F, Reckzeh E, Schaumann N, Drowley L, Polla M, Plowright AT, Hirt MN, Eschenhagen T, Schade D. Toward Second-Generation Cardiomyogenic and Anti-cardiofibrotic 1,4-Dihydropyridine-Class TGFβ Inhibitors. ChemMedChem 2019; 14:810-822. [PMID: 30768867 DOI: 10.1002/cmdc.201900036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/11/2019] [Indexed: 01/14/2023]
Abstract
Innovative therapeutic modalities for pharmacological intervention of transforming growth factor β (TGFβ)-dependent diseases are of great value. b-Annelated 1,4-dihydropyridines (DHPs) might be such a class, as they induce TGFβ receptor type II degradation. However, intrinsic drawbacks are associated with this compound class and were systematically addressed in the presented study. It was possible to install polar functionalities and bioisosteric moieties at distinct sites of the molecules while maintaining TGFβ-inhibitory activities. The introduction of a 2-amino group or 7-N-alkyl modification proved to be successful strategies. Aqueous solubility was improved by up to seven-fold at pH 7.4 and 200-fold at pH 3 relative to the parent ethyl 4-(biphenyl-4-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate. The therapeutic potential of the presented DHPs was further underscored in view of a potential dual mode of action: The differentiation of committed human iPSC-derived cardiac progenitor cells (CPCs) was potently stimulated, and the rescue of cardiac fibrosis phenotypes was observed in engineered heart tissue (EHT) constructs.
Collapse
Affiliation(s)
- Daniel Längle
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-Universität Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Tessa R Werner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Fabian Wesseler
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany
| | - Elena Reckzeh
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany
| | - Niklas Schaumann
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany
| | - Lauren Drowley
- Cardiovascular, Renal and Metabolic Diseases IMED Biotech Unit, AstraZeneca Gothenburg, Pepparsleden 1, 43 183, Mölndal, Sweden
| | - Magnus Polla
- Cardiovascular, Renal and Metabolic Diseases IMED Biotech Unit, AstraZeneca Gothenburg, Pepparsleden 1, 43 183, Mölndal, Sweden
| | - Alleyn T Plowright
- Cardiovascular, Renal and Metabolic Diseases IMED Biotech Unit, AstraZeneca Gothenburg, Pepparsleden 1, 43 183, Mölndal, Sweden
| | - Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Dennis Schade
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-Universität Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| |
Collapse
|
10
|
De Luca M, Ioele G, Ragno G. 1,4-Dihydropyridine Antihypertensive Drugs: Recent Advances in Photostabilization Strategies. Pharmaceutics 2019; 11:pharmaceutics11020085. [PMID: 30781584 PMCID: PMC6409574 DOI: 10.3390/pharmaceutics11020085] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/22/2022] Open
Abstract
The 1,4-dihydropyridine (DHP) drugs are nowadays the most used drugs in the treatment of hypertension. However, all the structures in this series present a significant sensitivity to light, leading to the complete loss of pharmacological activity. This degradation is particularly evident in aqueous solution, so much so that almost all DHP drugs on the market are formulated in solid preparations, especially tablets. The first and main process of photodegradation consists in the aromatization of the dihydropyridine ring, after which secondary processes can take place on the various substituents. A potential danger can result from the formation of single oxygen and superoxide species that can in turn trigger phototoxic reactions. Several strategies for the photostabilisation of DHP drugs have been proposed in recent years, in particular with the aim to formulate these drugs in liquid preparations, as well as to limit any toxicity problems related to light degradation. This review summarizes and describes the main aspects of the studies conducted in recent years to obtain photostable formulations of DHP drugs.
Collapse
Affiliation(s)
- Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
11
|
Ioele G, Gündüz MG, Spatari C, De Luca M, Grande F, Ragno G. A New Generation of Dihydropyridine Calcium Channel Blockers: Photostabilization of Liquid Formulations Using Nonionic Surfactants. Pharmaceutics 2019; 11:pharmaceutics11010028. [PMID: 30641992 PMCID: PMC6359235 DOI: 10.3390/pharmaceutics11010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
The stability profile of a new 1,4-dihydropyridine derivative (DHP), representative of a series with a hexahydroquinoline ring, was studied to design light-stable liquid formulations. This molecule, named M3, has been shown among the analogs to have a high capacity to block both L- and T-type calcium channels. The ethanol solution of the drug was subjected to a photodegradation test, in accordance with standard rules. The concentrations of the drug and its byproducts were estimated using multivariate curve resolution, applied to the spectral data collected during the test. The improvement of both the photostability and water solubility of M3 was investigated by adding the surfactant polysorbate 20 in a 1:5 ratio to aqueous solutions of the drug. These formulations were exposed to stressing light in containers of bleu polyethylene terephthalate (PET), amber PET, and covered amber PET. The best results were obtained when using the covered amber PET container, reaching a degradation percentage of the drug less than 5% after 12 h under an irradiance power of 450 W/m2. The stability of the compound was compared to that of nimodipine (NIM) under the same conditions.
Collapse
Affiliation(s)
- Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| | - Claudia Spatari
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
12
|
Photostabilization strategies of photosensitive drugs. Int J Pharm 2018; 541:19-25. [DOI: 10.1016/j.ijpharm.2018.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 02/03/2023]
|
13
|
First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol. Food Chem 2018; 255:399-404. [PMID: 29571492 DOI: 10.1016/j.foodchem.2018.02.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/25/2017] [Accepted: 02/11/2018] [Indexed: 11/20/2022]
Abstract
Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries.
Collapse
|
14
|
Janga KY, King T, Ji N, Sarabu S, Shadambikar G, Sawant S, Xu P, Repka MA, Murthy SN. Photostability Issues in Pharmaceutical Dosage Forms and Photostabilization. AAPS PharmSciTech 2018; 19:48-59. [PMID: 28905241 DOI: 10.1208/s12249-017-0869-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
Photodegradation is one of the major pathways of the degradation of drugs. Some therapeutic agents and excipients are highly sensitive to light and undergo significant degradation, challenging the quality and the stability of the final product. The adequate knowledge of photodegradation mechanisms and kinetics of photosensitive therapeutic entities or excipients is a pivotal aspect in the product development phase. Hence, various pharmaceutical regulatory agencies, across the world, mandated the industries to assess the photodegradation of pharmaceutical products from manufacturing stage till storage, as per the guidelines given in the International Conference on Harmonization (ICH). Recently, numerous formulation and/or manufacturing strategies has been investigated for preventing the photodegradation and enhancing the photostability of photolabile components in the pharmaceutical dosage forms. The primary focus of this review is to discuss various photodegradation mechanisms, rate kinetics, and the factors that influence the rate of photodegradation. We also discuss light-induced degradation of photosensitive lipids and polymers. We conclude with a brief note on different approaches to improve the photostability of photosensitive products.
Collapse
|
15
|
Ioele G, De Luca M, Garofalo A, Ragno G. Photosensitive drugs: a review on their photoprotection by liposomes and cyclodextrins. Drug Deliv 2017; 24:33-44. [PMID: 29069944 PMCID: PMC8812581 DOI: 10.1080/10717544.2017.1386733] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Giuseppina Ioele
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Michele De Luca
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Antonio Garofalo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Gaetano Ragno
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
16
|
Formulations of Amlodipine: A Review. JOURNAL OF PHARMACEUTICS 2016; 2016:8961621. [PMID: 27822402 PMCID: PMC5086392 DOI: 10.1155/2016/8961621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Abstract
Amlodipine (AD) is a calcium channel blocker that is mainly used in the treatment of hypertension and angina. However, latest findings have revealed that its efficacy is not only limited to the treatment of cardiovascular diseases as it has shown to possess antioxidant activity and plays an important role in apoptosis. Therefore, it is also employed in the treatment of cerebrovascular stroke, neurodegenerative diseases, leukemia, breast cancer, and so forth either alone or in combination with other drugs. AD is a photosensitive drug and requires protection from light. A number of workers have tried to formulate various conventional and nonconventional dosage forms of AD. This review highlights all the formulations that have been developed to achieve maximum stability with the desired therapeutic action for the delivery of AD such as fast dissolving tablets, floating tablets, layered tablets, single-pill combinations, capsules, oral and transdermal films, suspensions, emulsions, mucoadhesive microspheres, gels, transdermal patches, and liposomal formulations.
Collapse
|
17
|
Formulation and stabilization of norfloxacin in liposomal preparations. Eur J Pharm Sci 2016; 91:208-15. [PMID: 27224669 DOI: 10.1016/j.ejps.2016.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/22/2016] [Accepted: 05/14/2016] [Indexed: 11/23/2022]
Abstract
A number of liposomal preparations of norfloxacin (NF) containing variable concentrations of phosphatidylcholine (PC) (10.8-16.2mM) have been formulated and an entrapment of NF to the extent of 41.7-56.2% was achieved. The values of apparent first-order rate constants (kobs) for the photodegradation of NF in liposomes (pH7.4) lie in the range of 1.05-2.40×10(-3)min(-1) compared to a value of 8.13×10(-3)min(-1) for the photodegradation of NF in aqueous solution (pH7.4). The values of kobs are a linear function of PC concentration indicating an interaction of PC and NF during the reaction. The second-order rate constant for the photochemical interaction of PC and NF has been determined as 8.92×10(-2)M(-1)min(-1). Fluorescence measurements on NF in liposomes indicate a decrease in fluorescence with an increase in PC concentration as a result of formation of NF(-) species which exhibits poor fluorescence. Dynamic light scattering has shown an increase in the size of NF encapsulated liposomes with an increase in PC concentration. The stabilization of NF in liposomes is achieved by the formation of a charge-transfer complex between NF and PC.
Collapse
|
18
|
De Luca M, Ioele G, Spatari C, Ragno G. Photostabilization studies of antihypertensive 1,4-dihydropyridines using polymeric containers. Int J Pharm 2016; 505:376-82. [PMID: 27085645 DOI: 10.1016/j.ijpharm.2016.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/28/2022]
Abstract
1,4-dihydropyridine antihypertensives (DHPs) are almost all dispensed in solid pharmaceutical formulations for their easy lability when exposed to light. This paper reports a study on the photoprotective effect of containers in different glassy or polymeric matrices with regard to four known DHPs when in solutions. The samples were subjected to forced degradation by means of a Xenon lamp, in accordance with the international rules on drug stability evaluation. The simultaneous determination of the drugs and their photoproducts was carried out by applying the multivariate curve resolution (MCR) methodology to the spectral data recorded along the irradiation test. This technique was able to determine the kinetic parameters and resolve the spectra of the photoproducts. The time required to reduce by 10% the concentration of the drug (t0.1) was adopted as a criterion to compare the protective ability of the containers. A significant photoprotection for all drugs tested was obtained by the use of polyethylene terephthalate (PET) containers. The best result was achieved for the felodipine solution in blue PET transparent bottle of 0.6mm thickness, reaching an almost complete stabilization up to six hours under stressing irradiation. In contrast, the glass containers, whether or not coloured, did not provide a satisfactory photoprotection of the drugs, showing in any case t0.1 values under 24min. These results can be a good opportunity to design new photoprotective pharmaceutical packaging for DHPs in liquid dosage form.
Collapse
Affiliation(s)
- Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Claudia Spatari
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
19
|
Ahmad I, Arsalan A, Ali SA, Sheraz MA, Ahmed S, Anwar Z, Munir I, Shah MR. Formulation and stabilization of riboflavin in liposomal preparations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:358-66. [DOI: 10.1016/j.jphotobiol.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
|
20
|
Mozziconacci O, Schöneich C. Chemical degradation of proteins in the solid state with a focus on photochemical reactions. Adv Drug Deliv Rev 2015; 93:2-13. [PMID: 25481682 DOI: 10.1016/j.addr.2014.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/10/2023]
Abstract
Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light.
Collapse
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
21
|
Bkhaitan MM, Mirza AZ. Stability-indicating HPLC-DAD Method for Simultaneous Determination of Atorvastatin, Irbesartan, and Amlodipine in Bulk and Pharmaceutical Preparations. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Majdi M. Bkhaitan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Umm Al-Qura University; Makkah KSA
| | | |
Collapse
|
22
|
Tiwari RN, Shah N, Bhalani V, Mahajan A. LC, MS n and LC-MS/MS studies for the characterization of degradation products of amlodipine. J Pharm Anal 2014; 5:33-42. [PMID: 29403913 PMCID: PMC5761482 DOI: 10.1016/j.jpha.2014.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/25/2014] [Accepted: 07/07/2014] [Indexed: 12/01/2022] Open
Abstract
In the present study, comprehensive stress testing of amlodipine (AM) was carried out according to International Conference on Harmonization (ICH) Q1A(R2) guideline. AM was subjected to acidic, neutral and alkaline hydrolysis, oxidation, photolysis and thermal stress conditions. The drug showed instability in acidic and alkaline conditions, while it remained stable to neutral, oxidative, light and thermal stress. A total of nine degradation products (DPs) were formed from AM, which could be separated by the developed gradient LC method on a C18 column. The products formed under various stress conditions were investigated by LC–MS/MS analysis. The previously developed LC method was suitably modified for LC–MS/MS studies by replacing phosphate buffer with ammonium acetate buffer of the same concentration (pH 5.0). A complete fragmentation pathway of the drug was first established to characterize all the degradation products using LC–MS/MS and multi-stage mass (MSn) fragmentation studies. The obtained mass values were used to study elemental compositions, and the total information helped with the identification of DPs, along with its degradation pathway.
Collapse
Affiliation(s)
- Ravi N Tiwari
- Department of Pharmaceutical Chemistry, SVKM׳s NMIMS, School of Pharmacy and Technology Management, Near Bank of Tapi River, Agra-Mumbai Road, Babulde, Shirpur, Dist. Dhule 425405, Maharashtra, India
| | - Nishit Shah
- Department of Pharmaceutical Chemistry, SVKM׳s NMIMS, School of Pharmacy and Technology Management, Near Bank of Tapi River, Agra-Mumbai Road, Babulde, Shirpur, Dist. Dhule 425405, Maharashtra, India
| | - Vikas Bhalani
- Department of Pharmaceutical Chemistry, SVKM׳s NMIMS, School of Pharmacy and Technology Management, Near Bank of Tapi River, Agra-Mumbai Road, Babulde, Shirpur, Dist. Dhule 425405, Maharashtra, India
| | - Anand Mahajan
- Department of Pharmaceutical Chemistry, Sinhgad Institute of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
23
|
Perspective and potential of oral lipid-based delivery to optimize pharmacological therapies against cardiovascular diseases. J Control Release 2014; 193:174-87. [PMID: 24852093 DOI: 10.1016/j.jconrel.2014.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) remain the major cause of morbidity and mortality globally. Despite the large number of cardiovascular drugs available for pharmacological therapies, factors limiting the efficient oral use are identified, including low water solubility, pre-systemic metabolism, food intake effects and short half-life. Numerous in vivo proof-of-concepts studies are presented to highlight the viability of lipid-based delivery to optimize the oral delivery of cardiovascular drugs. In particular, the key performance enhancement roles of oral lipid-based drug delivery systems (LBDDSs) are identified, which include i) improving the oral bioavailability, ii) sustaining/controlling drug release, iii) improving drug stability, iv) reducing food intake effect, v) targeting to injured sites, and vi) potential for combination therapy. Mechanisms involved in achieving these features, range of applicability, and limits of available systems are detailed. Future research and development efforts to address these issues are discussed, which is of significant value in directing future research work in fostering translation of lipid-based formulations into clinical applications to reduce the prevalence of CVDs.
Collapse
|
24
|
Photostability of barnidipine in combined cyclodextrin-in-liposome matrices. Future Med Chem 2014; 6:35-43. [DOI: 10.4155/fmc.13.187] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: The improvement of barnidipine photostability was investigated in cyclodextrin or liposome matrices and in appropriate combinations of these matrices. These supramolecular systems allowed the preparation of liquid formulations, as an alternative to the current solid commercial specialties. Materials & methods: Photodegradation stressing tests were performed according to the ICH rules and monitored by derivative spectrophotometry. Optimization was evaluated in terms of drug-inclusion efficiency. Results: The photodegradation rate of barnidipine in ethanol proved rapid (residual percentage of 29.81%) after a radiation exposure of 225 kJ/m2. The residual concentrations detected for liposome and cyclodextrin complexes were 42.90 and 72.03%, respectively. The best results were obtained when the drug–cyclodextrin complex was in turn entrapped in liposomes (residual percentage of 90.78%). Conclusion: The stability of the drug-in-cyclodextrin-in-liposome system increased significantly with a value close to that of solid formulations whose residual percentage was 96.03%.
Collapse
|
25
|
Tan A, Rao S, Prestidge CA. Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance. Pharm Res 2013; 30:2993-3017. [DOI: 10.1007/s11095-013-1107-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
26
|
Li W, Wang J, Hu YZ. Photodegradation of fleroxacin injection: II. Kinetics and toxicological evaluation. AAPS PharmSciTech 2013; 14:578-84. [PMID: 23463261 DOI: 10.1208/s12249-013-9942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 02/22/2013] [Indexed: 11/30/2022] Open
Abstract
Photodegradation kinetics of fleroxacin were investigated in different injections. Five commercial formulations were analyzed before and after irradiation by determining residual volumes of fleroxacin with high-pressure liquid chromatography (HPLC), and different decomposition functions and models were obtained. Concentration levels of fleroxacin in injections caused the differences in photodegradation kinetics instead of ingredients. Influences of different pH values and presence of NaCl on photodegradation of fleroxacin were observed. Low pH value decreased the efficacy of photolysis and enhanced photostability of fleroxacin injections. Tentative structure of a new degradation product afforded was proposed. An acute toxicity assay using the bioluminescent bacterium Q67 was performed for fleroxacin injections after exposure to light. The research proved that fleroxacin was more photolabile in dilute injection, and acute toxicity of dilute injection increased more rapidly than that of concentrated injection during irradiation.
Collapse
Affiliation(s)
- Wei Li
- Department of Antibiotics, Anhui Institute for Food and Drug Control, Hefei 230051, China.
| | | | | |
Collapse
|
27
|
Grooff D, Francis F, De Villiers MM, Ferg E. Photostability of Crystalline Versus Amorphous Nifedipine and Nimodipine. J Pharm Sci 2013; 102:1883-1894. [DOI: 10.1002/jps.23533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/12/2022]
|
28
|
Khames A. Liquisolid technique: a promising alternative to conventional coating for improvement of drug photostability in solid dosage forms. Expert Opin Drug Deliv 2013; 10:1335-43. [DOI: 10.1517/17425247.2013.798297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Jang DJ, Sim T, Oh E. Formulation and optimization of spray-dried amlodipine solid dispersion for enhanced oral absorption. Drug Dev Ind Pharm 2012; 39:1133-41. [DOI: 10.3109/03639045.2012.723218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Detoni CB, Souto GD, da Silva ALM, Pohlmann AR, Guterres SS. Photostability and skin penetration of different E-resveratrol-loaded supramolecular structures. Photochem Photobiol 2012; 88:913-21. [PMID: 22443373 DOI: 10.1111/j.1751-1097.2012.01147.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is desirable and challenging to prevent E-resveratrol (E-RSV) from photoisomerizing to its Z-configuration to preserve its biological and pharmacological activities. The aim of this research was to evaluate the photostability of E-RSV-loaded supramolecular structures and the skin penetration profile of chemically and physically stable nanoestructured formulations. Different supramolecular structures were developed to act as carriers for E-RSV, that is, liposomes, polymeric lipid-core nanocapsules and nanospheres and solid lipid nanoparticles. The degrees of photostability of these formulations were compared with that of an ethanolic solution of E-RSV. The skin penetration profiles of the stable formulations were obtained using vertical diffusion cells (protected from light and under UVA radiation) with porcine skin as the membrane, followed by tape stripping and separation of the viable epidermis and dermis in a heated water bath. Photoisomerization was significantly delayed by the association of resveratrol with the nanocarriers independently of the supramolecular structure. Liposomes were the particles capable of maintaining E-RSV concentration for the longest time. On the other hand, E-RSV-loaded liposomes reduced in size showing low physical stability under UVA radiation. In the dark, the skin penetration profiles were very similar, but under UVA radiation the E-RSV-loaded nanocarriers showed increasing amounts in the total epidermis.
Collapse
Affiliation(s)
- Cassia Britto Detoni
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
31
|
Bogan R, Worek F, Koller M, Klaubert B. Photostability of antidotal oxime HI-6, impact on drug development. Drug Test Anal 2012; 4:208-14. [DOI: 10.1002/dta.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/16/2011] [Accepted: 09/21/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Reinhard Bogan
- Central Institute of the Bundeswehr Medical Service Munich; Garching Hochbrück; Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology; München; Germany
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology; München; Germany
| | | |
Collapse
|
32
|
Seto Y, Ochi M, Igarashi N, Inoue R, Oishi A, Toida T, Yamada S, Onoue S. In vitro photobiochemical characterization of sulfobutylether-β-cyclodextrin formulation of bufexamac. J Pharm Biomed Anal 2011; 55:591-6. [DOI: 10.1016/j.jpba.2011.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/16/2011] [Accepted: 02/19/2011] [Indexed: 01/20/2023]
|
33
|
Different photodegradation behavior of barnidipine under natural and forced irradiation. J Photochem Photobiol A Chem 2010. [DOI: 10.1016/j.jphotochem.2010.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Abstract
AbstractIn this paper the procedure for the preparation of inclusion complexes of amlodipine besylate with β-cyclodextrin (β-CD) and 2-hydrohypropyl-β-cyclodextrin (HPβ-CD) and their structural characterization was described. Molecular inclusion complexes of amlodipine besylate are prepared by the coprecipitation method and characterised by the application of spectroscopic methods FTIR, 1H-NMR and XRD. The photosensitivity of amlodipine besylate in the inclusion complexes was also determined with respect to uncomplexed agent. DSC curves indicate the loss of the clear peak due to melting of amlodipine besylate at about 200°C, while on XR diffractograms certain reflections are lost belonging to amlodipine besylate in complexes. This indicates its inclusion in the vacancies of the host. The inclusion of amlodipine besylate with cyclodextrins increases the stability, i.e. decreases the photosensitivity of amlodipine besylate.
Collapse
|
35
|
Garnero C, Longhi M. Development of HPLC and UV spectrophotometric methods for the determination of ascorbic acid using hydroxypropyl-β-cyclodextrin and triethanolamine as photostabilizing agents. Anal Chim Acta 2010; 659:159-66. [DOI: 10.1016/j.aca.2009.11.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/10/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
|
36
|
Hefnawy MM, Sultan M, Al-Johar H. Development of Capillary Electrophoresis Technique for Simultaneous Measurement of Amlodipine and Atorvastatin from Their Combination Drug Formulations. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070903320681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohamed M. Hefnawy
- a Department of Pharmaceutical Chemistry , College of Pharmacy, King Saud University , Riyadh, Saudi Arabia
| | - Maha Sultan
- a Department of Pharmaceutical Chemistry , College of Pharmacy, King Saud University , Riyadh, Saudi Arabia
| | - Haya Al-Johar
- a Department of Pharmaceutical Chemistry , College of Pharmacy, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Yang ZF, Zhou SY, Yang TH, Liu XY, Mei QB. Pharmacokinetics of the analogs at C3 and C5 ofm-nifedipine in beagle dogs. Biopharm Drug Dispos 2008; 29:485-94. [DOI: 10.1002/bdd.618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Fakhari AR, Nojavan S, Haghgoo S, Mohammadi A. Development of a stability-indicating CE assay for the determination of amlodipine enantiomers in commercial tablets. Electrophoresis 2008; 29:4583-92. [DOI: 10.1002/elps.200800330] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Influence of inclusion complexation with β-cyclodextrin on the photostability of selected imidazoline-derived drugs. J INCL PHENOM MACRO 2008. [DOI: 10.1007/s10847-008-9493-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Chen SM, Hsieh MC, Chao SH, Chang EE, Wang PY, Wu AB. Separation and structure determination of nicardipine photoproducts by LC-ESI-MS. Biomed Chromatogr 2008; 22:1008-12. [DOI: 10.1002/bmc.1020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
|
42
|
Jankovics P, Németh T, Németh-Palotás J, Kőszegi-Szalai H. Amlodipine Besilate Screening in Pharmaceutical Preparations by CE. Chromatographia 2008. [DOI: 10.1365/s10337-008-0620-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Fasani E, Albini A, Gemme S. Mechanism of the photochemical degradation of amlodipine. Int J Pharm 2008; 352:197-201. [DOI: 10.1016/j.ijpharm.2007.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
44
|
Zhang YT, Lu W, Li T, Liang GW, Sun JB, Guo J, Men Y, Du J, Lu WL. A Continued Study on the Stealth Liposomal Topotecan Plus Amlodipine: In Vitro and In Vivo Characterization in Non-Resistant Solid Tumors. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yu-Teng Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Wei Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University
| | - Ting Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Gong-Wen Liang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Jia-Bei Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Jia Guo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Ying Men
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Ju Du
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Wan-Liang Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University
| |
Collapse
|
45
|
Kojima T, Onoue S, Katoh F, Teraoka R, Matsuda Y, Kitagawa S, Tsuhako M. Effect of spectroscopic properties on photostability of tamoxifen citrate polymorphs. Int J Pharm 2007; 336:346-51. [PMID: 17240093 DOI: 10.1016/j.ijpharm.2006.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/27/2006] [Accepted: 12/14/2006] [Indexed: 11/21/2022]
Abstract
The photostability of tamoxifen citrate polymorphs, forms A and B, was investigated by chromatographic and spectroscopic analyses including high-pressure liquid chromatography (HPLC), colorimetry and UV/vis solid-state absorption spectroscopy. On the basis of the results of photostability studies under irradiation by visible light and both UVA (320-400 nm) and a fraction of UVB (290-320 nm) light, form A was chemically unstable, whereas form B was stable against light irradiation. The surface color of pellets prepared with any of these crystal forms turned from white to brown; however, the extent of color change in cross-sections of form A pellet was deeper than that of form B pellet. The maximum peak of UV/vis solid-state absorption spectra of form A was observed at 337 nm within the UVA range and was in longer wavelength regions than form B, which exhibited the strong UV absorption mainly in UVB and UVC region. The results obtained suggested that the photodegradation followed by surface color change of form A crystal was caused by the selective absorption of photoenergy of UVA light irradiated by a xenon lamp.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashi-Nada, Kobe 658-8558, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kotzagiorgis EC, Michaleas S, Antoniadou-Vyza E. Improved photostability indicating ion-pair chromatography method for pergolide analysis in tablets and in the presence of cyclodextrins. J Pharm Biomed Anal 2007; 43:1370-5. [PMID: 17188445 DOI: 10.1016/j.jpba.2006.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 11/25/2022]
Abstract
Pergolide (PG) a semi-synthetic ergot alkaloid derivative used mainly for the treatment of Parkinson's disease is known to be a photosensitive drug substance. The major photodegradation products are PG sulphoxide (SX) and PG sulphone (SN), which are also the main impurities of the bulk drug substance. It is widely metabolized to more than 10 metabolites including SX and SN. In this work an improved photostability indicating ion-pair chromatography method for PG mesilate was developed. The method can be applied in the determination of PG and impurities in aqueous solutions and in tablets for routine analysis. This new method is appropriate for the quantitative determination of PG in the presence of its impurities and photodegradation products and can also be used for PG complexes with cyclodextrins (commonly used as photostabilizing agents). Furthermore it is suitable for the quantitation of its impurities and its thermal or photo-induced decomposition products. Separation was achieved on a ThermoQuest C(18) BDS column and Sodium octanosulphonate was used as ion-pairing agent. Analysis was performed at 223 nm. Validation parameters included: specificity, linearity, precision and accuracy, limit of quantitation and suitability. The method was found to be specific and linear for PG, as well as for SX and, SN impurities. The recovery was 100.83+/-0.46% for PG, 99.86+/-0.33% for SX and 99.77+/-1.84% for SN. Finally the photodegradation profile of PG mesilate was studied in different initial sample concentration. The obtained result revealed that: PG photolysis is catalyzed by its degradation products and that decrease of initial sample concentration reduces the rate of PG photoinduced degradation.
Collapse
Affiliation(s)
- Evangelos Ch Kotzagiorgis
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | | |
Collapse
|
47
|
Mohammadi A, Rezanour N, Ansari Dogaheh M, Ghorbani Bidkorbeh F, Hashem M, Walker RB. A stability-indicating high performance liquid chromatographic (HPLC) assay for the simultaneous determination of atorvastatin and amlodipine in commercial tablets. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846:215-21. [PMID: 17010681 DOI: 10.1016/j.jchromb.2006.09.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/30/2006] [Accepted: 09/03/2006] [Indexed: 10/24/2022]
Abstract
A simple, rapid, precise and accurate isocratic reversed-phase stability-indicating HPLC method was developed and validated for the simultaneous determination of atorvastatin (AT) and amlodipine (AM) in commercial tablets. The method has shown adequate separation for AM, AT from their associated main impurities and their degradation products. Separation was achieved on a Perfectsil Target ODS-3, 5 microm, 250 mm x 4.6 mm i.d. column using a mobile phase consisting of acetonitrile-0.025 M NaH(2)PO(4) buffer (pH 4.5) (55:45, v/v) at a flow rate of 1 ml/min and UV detection at 237 nm. The drugs were subjected to oxidation, hydrolysis, photolysis and heat to apply stress conditions. The linearity of the proposed method was investigated in the range of 2-30 microg/ml (r=0.9994) for AT and 1-20 microg/ml (r=0.9993) for AM. The limits of detection were 0.65 microg/ml and 0.35 microg/ml for AT and AM, respectively. The limits of quantitation were 2 microg/ml and 1 microg/ml for AT and AM, respectively. Degradation products produced as a result of stress studies did not interfere with the detection of AT and AM and the assay can thus be considered stability-indicating.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy, Medical Sciences University of Tehran, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
48
|
The effect of β-cyclodextrin on tenoxicam photostability, studied by a new liquid chromatography method; the dependence on drug dimerisation. J INCL PHENOM MACRO 2007. [DOI: 10.1007/s10847-006-9206-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Jang DJ, Jeong EJ, Lee HM, Kim BC, Lim SJ, Kim CK. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur J Pharm Sci 2006; 28:405-11. [PMID: 16777390 DOI: 10.1016/j.ejps.2006.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 04/26/2006] [Accepted: 04/29/2006] [Indexed: 11/17/2022]
Abstract
To improve the bioavailability and photostability of poorly water-soluble and photosensitive amlodipine, dry emulsion (DE) was prepared by spray-drying the oil-in-water emulsion of amlodipine. Labrafil M 1944 CS and dextrin were employed as oil phase and matrix material, respectively. Dispersing DE in distilled water formed an emulsion with a mean droplet size 1.4-fold larger than that of the homogenized amlodipine emulsion before spray-drying (0.24 +/- 0.30 microm versus 0.17 +/- 0.02 microm). The mean droplet size of DE remained unchanged during 6-month storage at room temperature. 94.4% versus 33.1% of amlodipine remained intact after 24-h UV irradiation of amlodipine as DE formulation or as powder. These data suggest that DE formulation greatly improved the photostability of amlodipine, as well as increasing the physical stability of emulsion systems. In vitro release of DE was higher than that of amlodipine powder (66% versus 48% release at 60 min). Consequently, DE formulation resulted in 2.6- and 2.9-fold higher Cmax and AUC0-24 h of amlodipine compared after oral administration of amlodipine powder in rats. Our data suggest that the DE may be a potential oral dosage form for amlodipine to improve its bioavailability.
Collapse
Affiliation(s)
- Dong-Jin Jang
- Laboratory of Excellency for Drug and Gene delivery, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
|