1
|
Chen S, Kong C, Yu N, Xu X, Li B, Zhang J. Management of non-compressible hemorrhage and re-bleeding by a liquid hemostatic polysaccharide floccuronic acid. Int J Biol Macromol 2024; 257:128695. [PMID: 38072343 DOI: 10.1016/j.ijbiomac.2023.128695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Effective management of excessive bleeding requires liquid hemostatic agents, especially in scenarios involving uncompressible and postoperative hemorrhage. This study introduces the microbial exopolysaccharide floccuronic acid (FA) as a liquid hemostatic agent, characterized by a high weight average molecular weight of 2.38 × 108 Da. The investigation focuses on the flocculation effect, hemostatic efficiency in both in vitro and in vivo settings, elucidating its hemostatic mechanism, and assessing its safety profile. Results reveal that FA solution significantly accelerates the coagulation process, leading to the formation of compact clots while specifically interfering with fibrin. Notably, FA demonstrates excellent hemostatic effects in animal liver models and a rat arterial rebleeding model. The biocompatible and biodegradable characteristics further underscore FA's potential as a valuable liquid hemostatic material, particularly suited for non-compressible and re-bleeding scenarios.
Collapse
Affiliation(s)
- Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Bing Li
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing 211899, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Anwar I, Ashfaq UA. Impact of Nanotechnology on Differentiation and Augmentation of Stem Cells for Liver Therapy. Crit Rev Ther Drug Carrier Syst 2023; 40:89-116. [PMID: 37585310 DOI: 10.1615/critrevtherdrugcarriersyst.2023042400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The liver is one of the crucial organs of the body that performs hundreds of chemical reactions needed by the body to survive. It is also the largest gland of the body. The liver has multiple functions, including the synthesis of chemicals, metabolism of nutrients, and removal of toxins. It also acts as a storage unit. The liver has a unique ability to regenerate itself, but it can lead to permanent damage if the injury is beyond recovery. The only possible treatment of severe liver damage is liver transplant which is a costly procedure and has several other drawbacks. Therefore, attention has been shifted towards the use of stem cells that have shown the ability to differentiate into hepatocytes. Among the numerous kinds of stem cells (SCs), the mesenchymal stem cells (MSCs) are the most famous. Various studies suggest that an MSC transplant can repair liver function, improve the signs and symptoms, and increase the chances of survival. This review discusses the impact of combining stem cell therapy with nanotechnology. By integrating stem cell science and nanotechnology, the information about stem cell differentiation and regulation will increase, resulting in a better comprehension of stem cell-based treatment strategies. The augmentation of SCs with nanoparticles has been shown to boost the effect of stem cell-based therapy. Also, the function of green nanoparticles in liver therapies is discussed.
Collapse
Affiliation(s)
- Ifrah Anwar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Bi J, Zhao C, Jin W, Chen Q, Fan B, Qian C. Study on pharmacokinetics and tissue distribution of Polygonatum sibiricum polysaccharide in rats by fluorescence labeling. Int J Biol Macromol 2022; 215:541-549. [PMID: 35724901 DOI: 10.1016/j.ijbiomac.2022.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
To study the pharmacokinetics and tissue distribution characteristics of Polygonatum sibiricum (P. sibiricum) polysaccharide administered orally and intravenously in rats, the latest quantitative analysis method was established where P. sibiricum polysaccharide was labeled with fluorescein isothiocyanate (FITC) in plasma and tissues. Quantitative analysis method of P. sibiricum polysaccharide in rat plasma and tissues was established by fluorescence spectrophotometry with FITC as a highly sensitive fluorescent molecular probe. The results showed that P. sibiricum polysaccharide was successfully labeled with FITC, and the degree of substitution was 0.55 %. Pharmacokinetic characteristics showed that oral administration (ig) and intravenous injection (iv) were consistent with the characteristics of two-compartment model. PRP-TYR-FITC administered orally was poorly absorbed in rats with low bioavailability. After a single ig and iv administration in rats for 8 h, P. sibiricum polysaccharide can be distributed in most tissues. The analysis results showed that P. sibiricum polysaccharide was distributed mostly in lung, kidney and liver for both routes of administration. When taking orally, the distribution pattern was: lung > liver > kidney > small intestine > stomach > heart > spleen > brain. When taking intravenously, the distribution pattern was: liver > lung > kidney > small intestine > heart > stomach > spleen > brain. Fluorescence labeling of P. sibiricum polysaccharide by FITC was successfully realized. This method was proved to be suitable for the study of pharmacokinetics and tissue distribution of P. sibiricum polysaccharide in rats. The above research lays foundation for further elucidating the clinical pharmacological mechanism of polysaccharide in P. sibiricum.
Collapse
Affiliation(s)
- Jianli Bi
- Hubei University of Science and Technology, No.88, Xianning avenue, Xianan District, Xianning 437000,China
| | - Chujin Zhao
- Xianning Central Hospital, No.228, Jingui road, Xianan District, Xianning 437000, China
| | - Wenfang Jin
- Hubei University of Science and Technology, No.88, Xianning avenue, Xianan District, Xianning 437000,China
| | - Qingjie Chen
- Hubei University of Science and Technology, No.88, Xianning avenue, Xianan District, Xianning 437000,China
| | - Baolei Fan
- Hubei University of Science and Technology, No.88, Xianning avenue, Xianan District, Xianning 437000,China.
| | - Chunqi Qian
- Department of Radiology, Michgan State University, East Lansing, MI 48864, United States.
| |
Collapse
|
4
|
Qin L, Yang Y, Hao J, He X, Liu S, Chu X, Mao W. Antidiabetic-activity sulfated polysaccharide from Chaetomorpha linum: Characteristics of its structure and effects on oxidative stress and mitochondrial function. Int J Biol Macromol 2022; 207:333-345. [PMID: 35227705 DOI: 10.1016/j.ijbiomac.2022.02.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/05/2023]
Abstract
A water-soluble polysaccharide from the green alga Chaetomorpha linum, designated CHS2, was obtained by water extraction, preparative anion-exchange and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that CHS2 was a sulfated rhamnogalactoarabinan, and its backbone was mainly constituted by 4-linked and 3,4-linked β-l-arabinopyranose with sulfate groups at C-2/C-3 of 4-linked β-l-arabinopyranose. The branching contained 4-linked, 6-linked β-d-galactopyranose and terminal rhamnose residues. Based on the inhibition of human islet amyloid polypeptide (hIAPP) aggregation and morphology change of hIAPP aggregates in in vitro tests, it was proved that CHS2 effectively inhibited the hIAPP aggregation and possessed strong antidiabetic activity. CHS2 was nearly no toxicity in NIT-1 cells and could attenuate hIAPP-induced cytotoxicity. CHS2 may significantly reduce the generation of intracellular reactive oxygen species and hIAPP aggregation-induced oxidative stress in NIT-1 cells. CHS2 was co-localized with mitochondria, and largely protected mitochondria function from hIAPP aggregation-induced damage through stabilizing mitochondrial membrane potential and enhancing the mitochondrial complex I, II or III activity and ATP level. The data demonstrated that CHS2 could have potential prospect to become an antidiabetic drug for type 2 diabetes mellitus treatment.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
5
|
In vivo pharmacokinetic study of a Cucurbita moschata polysaccharide after oral administration. Int J Biol Macromol 2022; 203:19-28. [DOI: 10.1016/j.ijbiomac.2022.01.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023]
|
6
|
Fan Y, Liu Y, Wu Y, Dai F, Yuan M, Wang F, Bai Y, Deng H. Natural polysaccharides based self-assembled nanoparticles for biomedical applications - A review. Int J Biol Macromol 2021; 192:1240-1255. [PMID: 34678381 DOI: 10.1016/j.ijbiomac.2021.10.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
In recent years, nanoparticles (NPs) derived from the self-assembly of natural polysaccharides have shown great potential in the biomedical field. Here, we described several self-assembly modes of natural polysaccharides in detail, summarized the natural polysaccharides mostly used for self-assembly, and provided insights into the current applications and achievements of these self-assembled NPs. As one of the most widespread substances in nature, most natural polysaccharides exhibit advantages of biodegradability, low immunogenicity, low toxicity, and degradable properties. Therefore, they have been fully explored, and the application of chitosan, hyaluronic acid, alginate, starch, and their derivatives has been extensively studied, especially in the fields of biomedical. Polysaccharides based NPs were proved to improve the solubility of insoluble drugs, enhance tissue target ability and realize the controlled and sustained release of drugs. When modified by hydrophobic groups, the amphiphilic polysaccharides can self-assemble into NPs. Other driven forces of self-assembly include electrostatic interaction and hydrogen bonds. Up to the present, polysaccharides-based nanoparticles have been widely applied for tumor treatment, antibacterial application, gene therapy, photodynamic therapy and transporting insulin.
Collapse
Affiliation(s)
- Yaqi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yang Wu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Feiyan Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Yang Y, Guo T, Xu J, Xiong Y, Cui X, Ke Y, Wang C. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int J Biol Macromol 2021; 189:577-589. [PMID: 34450149 DOI: 10.1016/j.ijbiomac.2021.08.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023]
Abstract
Here, we fabricated amphiphilic polysaccharide micelles for synergistic cancer immunotherapy targeting tumor-associated macrophages (TAMs). Lepidium meyenii Walp. (maca) polysaccharide (MP), a naturally derived macromolecule with a strong TAM-remodeling effect, was grafted on a hydrophobic poly(lactic-co-glycolic acid) (PLGA) segment, with a disulfide bond for redox-sensitive linkage. The amphiphilic polysaccharide derivatives could self-assemble into core (PLGA)-shell (MP)-structured micelles and encapsulate chloroquine (CQ) into the hydrophobic core. By using a 4T1-M2 macrophage co-culture model and a 4T1 tumor xenograft mouse model, we showed that the prepared micelles could co-deliver MP and CQ to the tumor sites and selectively accumulate at TAMs because of the specific properties of MP. Furthermore, the nanoparticles exerted synergistic tumor immunotherapeutic and antimetastatic effects, which might be attributable to the enhanced cell internalization of the micelles and the multiple regulatory mechanisms of MP and CQ. Thus, immunomodulatory MP may be a promising biomaterial for cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Tingting Guo
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Junwei Xu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yin Xiong
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China.
| |
Collapse
|
8
|
Song X, Liu L, Hu W, Liang X, He C, Yin L, Ye G, Zou Y, Li L, Tang H, Jia R, Yin Z. Identification of the amino acids residues involved in hemagglutinin-neuraminidase of Newcastle disease virus binding to sulfated Chuanmingshen violaceum polysaccharides. Poult Sci 2021; 100:101255. [PMID: 34198092 PMCID: PMC8255242 DOI: 10.1016/j.psj.2021.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
The antiviral mechanism of sulfated polysaccharides is supposed to prevent virus entry, which is mediated by the interactions of anionic charges on sulfated polysaccharides with positively charged domains of viral envelope glycoproteins, leading to shielding of the functional domain involved in virus attachment to cell surface receptors. But, few direct evidences were reported. In the previous study, we found that sulfated Chuanmingshen violaceum polysaccharides (sCVPS) possessed remarkable inhibitory effect against Newcastle disease virus (NDV) through inhibition of NDV attachment to host cells. Whether sCVPS bound to hemagglutinin-neuraminidase (HN) leading to inhibition of NDV attachment needs to be further clarified. The present study conducted site-directed mutagenesis of possible positively charged residues of HN, and found that mutants R197G, H199G, R363G, and R523G could significantly decrease the inhibitory effects of sCVPS on receptor binding ability through hemadsorption assay, especially R363G which suggested that binding to R363 is more effective to shield the sialic acid binding sites. Dual mutants (R363G/R197G, R363G/H199G and R363G/R523G) induced more decreased inhibitory effect of sCVPS than single mutants. The immunofluorescence study using FITC-labeled sCVPS found that the fluorescence intensity of mutants R363G and R363G/H199G were significantly decreased. The binding kinetics of sCVPS to HN measured by surface plasmon resonance indicated that sCVPS had a higher binding affinity for wild-type HN than mutants R363G and R363G/H199G. Plaque reduction study was performed using recombinant NDV with mutant HNR363G and HNR363G/H199G, which showed significantly decreased inhibitory effects of sCVPS against mutant NDV adsorption to BHK-21 cells. These results suggested that the residues R197, H199, R363, and R523 were the binding sites for sCVPS, especially R363 act as the main interaction site. The present study provided direct evidence for the theory that antiviral mechanism of sulfated polysaccharides attributed to anionic groups binding to the positively charged residues of viral proteins which led to the shielding of receptor binding sites.
Collapse
Affiliation(s)
- Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lin Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wei Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China.
| |
Collapse
|
9
|
Zheng L, Luo M, Kuang G, Liu Y, Liang D, Huang H, Yi X, Wang C, Wang Y, Xie Q, Zhi F. Capsular Polysaccharide From Bacteroides fragilis Protects Against Ulcerative Colitis in an Undegraded Form. Front Pharmacol 2020; 11:570476. [PMID: 33364945 PMCID: PMC7751226 DOI: 10.3389/fphar.2020.570476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
The prominent human symbiont Bacteroides fragilis protects animals from intestinal diseases, such as ulcerative colitis, and its capsular polysaccharide plays a key role in reducing inflammation. B. fragilis strain ZY-312 was isolated from the feces of a healthy breast-fed infant, and the zwitterionic capsular polysaccharide zwitterionic polysaccharide, TP2, was extracted. In rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced enteritis, TP2 at an optimal dose of 2.5 mg/kg could significantly alleviate enteritis and reduced the degree of intestinal adhesions, the intestinal ulcer area, and the incidence of ulcers in rats. To understand the underlying mechanism, TP2 was labeled with Fluorescein isothiocyanate and orally administered at a dose of 2.5 mg/kg in rats. TP2 was mainly distributed in the cecum and colorectum, but it was not detected in the blood and other organs except that a compound with a molecular weight greater than that of TP2-FITC was found in liver tissue. During the absorption, distribution, metabolism, and excretion, TP2 was indigestible. These results were further confirmed by investigation in the simulated gastric, intestinal fluid, and colonic fluid with fecal microbiota in vitro, where TP2 remained unaltered at different time points. Furthermore, flora composition was analyzed in simulated colonic fluid with TP2 added and it was found that TP2 increased the abundance of Faecalibacterium, Enterococcus romboutsia, and Ruminococcaceae, whereas the abundance of the phylum Proteobacteria represented by Sutterella, Desulfovibrio, and Enterobacteriaceae was decreased. However, the amount of short-chain fatty acids in the simulated colonic fluid was not changed by intestinal flora post-TP2 addition. In conclusion, these findings confirmed that TP2, a capsular polysaccharide of B. fragilis, protects against ulcerative colitis in an undegraded form.
Collapse
Affiliation(s)
- Lijun Zheng
- College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Meihua Luo
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gaobo Kuang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Debao Liang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Haiqing Huang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Xiaomin Yi
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Congfeng Wang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Ye Wang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fachao Zhi
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zheng Z, Pan X, Xu J, Wu Z, Zhang Y, Wang K. Advances in tracking of polysaccharides in vivo: Labeling strategies, potential factors and applications based on pharmacokinetic characteristics. Int J Biol Macromol 2020; 163:1403-1420. [DOI: 10.1016/j.ijbiomac.2020.07.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
|
11
|
Yang H, Guo J, Jin W, Chang C, Guo X, Xu C. A combined proteomic and metabolomic analyses of the priming phase during rat liver regeneration. Arch Biochem Biophys 2020; 693:108567. [PMID: 32898568 DOI: 10.1016/j.abb.2020.108567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023]
Abstract
By comparing differentially abundant proteins and metabolites, the protein expression, metabolic changes and metabolic regulation mechanisms during the priming phase of liver regeneration (LR) were investigated. We combined proteomic analysis via isobaric tags for relative and absolute quantification (iTRAQ) with metabolomic analysis via nontargeted liquid chromatography-mass spectrometry (LC-MS). LC-MS was used to examine 29 energy metabolites expression alterations in targeted metabolomics. A total number of 441 differentially expressed proteins and 65 metabolites were identified. PSMB10, PSMB5, RCG_63409, PSME4 and PSMB7 were key node proteins, these proteins are involved in the proteasome pathway. The most strongly enriched transcription factor motif was TP63. These results point out a critical role of the proteasome pathway (defense mechanisms) and of TP63 (metabolic regulator) as the key transcription factor during the priming phase of LR. Metabolomic and metabolite analysis showed that profiling indicates upregulation of arginine biosynthesis and glycolysis as the main ATP-delivering pathway. Integrative proteomic and metabolomic analysis showed that biomolecular changes were primarily related to the neurological disease, cell death and survival and cell morphology. What's more, neurotransmitters may play an important role in the regulation of LR.
Collapse
Affiliation(s)
- Hui Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
12
|
Rudtanatip T, Boonsri B, Praiboon J, Wongprasert K. Bioencapsulation efficacy of sulfated galactans in adult Artemia salina for enhancing immunity in shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 94:90-98. [PMID: 31470138 DOI: 10.1016/j.fsi.2019.08.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Live food organisms like Artemia have been used for delivery of different substances such as nutrients, probiotics and immune-stimulants to aquatic animals. Previously, we reported that sulfated galactans (SG) from the red seaweed Gracilaria fisheri (G. fisheri) increased immune activity in shrimp. In the present study we further investigated the capacity and efficiency of bioencapsulation of SG in adult Artemia for delivery to tissues and potentially boosting the expression of immune genes in post larvae shrimp. SG were labelled with FITC (FITC-SG) for in vivo tracking in shrimp. Bioencapsulation of adult Artemia with FITC-SG (0-100 μg mL-1) was performed and the fluorescence intensity was detected in the gut lumen after enrichment periods of 30 min, 1 h, 2 h, 6 h and 24 h. The results showed the Artemia took up SG over time in a concentration-dependent manner. Shrimp were fed with the bioencapsulated Artemia (FITC-SG, 20 μg mL-1) and the shrimp were evaluated under a stereo-fluorescent microscope. At 24 h after administration, FITC-SG was located in gills and hepatopancreas and also bound with haemocytes. With daily SG administration, the genes IMD, IKKβ were up-regulated (after 1 day) while genes dicer and proPO-I were up-regulated later (after 7 days). Moreover, continued monitoring of shrimp fed for 3 consecutive days only with SG at the dose of 0.5 mg g-1 BW showed increases in the expression of IMD, IKKβ genes on day 1 and which gradually declined to normal levels on day 14, while the expression of dicer and proPO-I was increased on day 3 and remained high on day 14. These results demonstrate that bioencapsulation of SG in adult Artemia successfully delivers SG to shrimp tissues, which then bind with haemocytes and subsequently activate immune genes, and potentially increase immunity in shrimp. In addition, the present study suggests that a 3-consecutive-day regimen of SG supplemented in Artemia (0.5 mg g-1 BW) may boost and sustain the enhanced immune functions in post larvae shrimp.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mittraphap Road, Muang District, Khon Kaen, 40002, Thailand
| | - Boonyakorn Boonsri
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Paholyotin Road, Chatujak, Bangkok, 10900, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
13
|
Stensgaard Diget J, Lund R, Nyström B, Wintgens V, Amiel C, Wimmer R, Terndrup Nielsen T. Self-assembled nanoparticles based on cyclodextrin-modified pullulan: Synthesis, and structural characterization using SAXS. Carbohydr Polym 2019; 213:403-410. [DOI: 10.1016/j.carbpol.2019.01.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|
14
|
Sakai K, Katsumi H, Kamano K, Yamauchi K, Hajima A, Morishita M, Sakane T, Yamamoto A. Hepatic and Intrahepatic Targeting of Hydrogen Sulfide Prodrug by Bioconjugation. Biol Pharm Bull 2019; 42:273-279. [PMID: 30713258 DOI: 10.1248/bpb.b18-00773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous transmitter known to play an important role in biological functions. For the hepatic and intrahepatic targeting of H2S prodrug at the cellular level, we developed two types of sulfo-albumins, in which five sulfide groups (source of H2S) were covalently bound to succinylated (Suc) or galactosylated (Gal) bovine serum albumin (BSA). Sulfo-BSA-Suc and polyethylene glycol (PEG)-Sulfo-BSA-Gal, both released H2S in the 5 mM glutathione solution, but not in the plasma. Sulfo-BSA-Suc and PEG-Sulfo-BSA-Gal were taken up by RAW264.7 cells (mouse macrophage-like cells) and Hep G2 cells (human hepatocellular carcinoma cells), respectively, and H2S was released. These results indicate that Sulfo-BSA-Suc and PEG -Sulfo-BSA-Gal selectively released H2S intracellularly. In a biodistribution study, up to 80% of 111In-labeled Sulfo-BSA-Suc and PEG-Sulfo-BSA-Gal rapidly accumulated in the liver, 30 min after intravenous injection in mice. Furthermore, 111In-labeled Sulfo-BSA-Suc and PEG-Sulfo-BSA-Gal predominantly accumulated in liver nonparenchymal (endothelial cells and Kupffer cells) and parenchymal cells (hepatocytes), respectively. These findings suggest that targeted delivery of H2S prodrug to a specific type of liver cells was successfully achieved by bioconjugation.
Collapse
Affiliation(s)
- Kosuke Sakai
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | | | - Kentaro Kamano
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | - Kiyo Yamauchi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | - Ayuko Hajima
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | | | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University.,Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| |
Collapse
|
15
|
Zhang Y, Zheng Z, Yang X, Pan X, Yin L, Huang X, Li Q, Shu Y, Zhang Q, Wang K. A sensitive and rapid radiolabelling method for the in vivo pharmacokinetic study of lentinan. Food Funct 2018; 9:3114-3125. [PMID: 29876541 DOI: 10.1039/c8fo00272j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study is to establish a rapid and sensitive method for detecting lentinan (LNT) in biosamples and to evaluate the pharmacokinetics of LNT in mice and rats. A diethylenetriaminepentaacetic acid (DTPA) derivative of LNT (DTPA-LNT) was synthesized first to allow labelling with 99m-technetium (99mTc). After purification and identification, 99mTc-DTPA-LNT was intravenously administered to mice (2 mg kg-1) and rats at different doses (0.5, 2 and 8 mg kg-1). The results showed that the 99mTc-labelling method was suitable for the quantification of the LNT concentration in biological samples, with satisfactory linearity (r2 > 0.998), precision (<7%), accuracy (95.01-104.51%) and total recovery (∼90%). The blood concentration-time profiles of 99mTc-DTPA-LNT were consistent with the two-compartment model and showed a rapid distribution phase and a slow elimination, and no significant difference in the blood level of LNT was found among the tested doses (0.5, 2 and 8 mg kg-1). LNT was predominantly incorporated into the liver and spleen, and there was a small amount of aggregation in the bile, kidneys, lungs and stomach. Approximately 40% of the administered radioactivity was detected in urine and faeces within 24 h post-dosing. In addition, SPECT imaging of 99mTc-DTPA-LNT was performed to visually reveal the pharmacokinetic characteristics of LNT. These findings provide a reference for further study and for use of LNT and other β-glucans.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Zhou T, Luo L, Cui Z, Wang N, Shu Y, Wang KP. Pharmacokinetics, biodistribution and receptor mediated endocytosis of a natural Angelica sinensis polysaccharide. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:254-263. [PMID: 29291632 DOI: 10.1080/21691401.2017.1421210] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Zhang
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhou
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Cui
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yamin Shu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Dionísio M, Braz L, Corvo M, Lourenço J, Grenha A, Rosa da Costa A. Charged pullulan derivatives for the development of nanocarriers by polyelectrolyte complexation. Int J Biol Macromol 2016; 86:129-38. [DOI: 10.1016/j.ijbiomac.2016.01.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/30/2015] [Accepted: 01/15/2016] [Indexed: 12/01/2022]
|
18
|
Huang Y, Hu H, Li RQ, Yu B, Xu FJ. Versatile Types of MRI-Visible Cationic Nanoparticles Involving Pullulan Polysaccharides for Multifunctional Gene Carriers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3919-3927. [PMID: 26841955 DOI: 10.1021/acsami.5b11016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Owing to the low cytotoxicity and excellent biocompatibility, polysaccharides are good candidates for the development of promising biomaterials. In this paper, a series of magnetic resonance imaging (MRI)-visible cationic polymeric nanoparticles involving liver cell-targeting polysaccharides were flexibly designed for multifunctional gene delivery systems. The pullulan-based vector (PuPGEA) consisting of one liver cell-targeting pullulan backbone and ethanolamine-functionalized poly(glycidyl methacrylate) (denoted by BUCT-PGEA) side chains with abundant hydroxyl units and secondary amine was first prepared by atom transfer radical polymerization. The resultant cationic nanoparticles (PuPGEA-GdL or PuPGEA-GdW) with MRI functions were produced accordingly by assembling PuPGEA with aminophenylboronic acid-modified Gd-DTPA (GdL) or GdW10O36(9-) (GdW) via the corresponding etherification or electrostatic interaction. The properties of the PuPGEA-GdL and PuPGEA-GdW nanoparticles including pDNA condensation ability, cytotoxicity, gene transfection, cellular uptake, and in vitro and in vivo MRI were characterized in details. Such kinds of cationic nanoparticles exhibited good performances in gene transfection in liver cells. PuPGEA-GdW demonstrated much better MRI abilities. The present design of PuPGEA-based cationic nanoparticles with the liver cell-targeting polysaccharides and MRI contrast agents would shed light on the exploration of tumor-targetable multifunctional gene delivery systems.
Collapse
Affiliation(s)
- Yajun Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Hao Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Rui-Quan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| |
Collapse
|
19
|
Rudtanatip T, Withyachumnarnkul B, Wongprasert K. Sulfated galactans from Gracilaria fisheri bind to shrimp haemocyte membrane proteins and stimulate the expression of immune genes. FISH & SHELLFISH IMMUNOLOGY 2015; 47:231-238. [PMID: 26363236 DOI: 10.1016/j.fsi.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Previous studies demonstrated that sulfated galactans (SG) from Gracilaria fisheri (G. fisheri) exhibit immunostimulant activity in shrimp. The present study was conducted to test the hypothesis that SG stimulates signaling molecules of the immune response of shrimp by binding to receptors on the host cell membrane. Accordingly, we evaluated the ability of SG to bind to shrimp haemocytes and showed that SG bound to the shrimp haemocyte membrane (SHM), potentially to specific receptors. Furthermore, this binding was associated with an activation of immune response genes of shrimp. Data from confocal laser scanning micrographs revealed that FITC-labeled SG bound to haemocytes. Far western blot analysis demonstrated that SHM peptides, with molecular sizes of 13, 14, 15, 17, and 25 kDa, were associated with SG. Peptide sequence analysis of the isolated bands using LC-MS/MS and NCBI blast search revealed the identity of the 13, 14, and 17 kDa peptides as lipopolysaccharide and β-1,3-glucan binding protein (LGBP). SG induced the expression of immune related genes and downstream signaling mediators of LGBP including IMD, IKKs, NF-κB, antimicrobial peptides (crustin and PEN-4), the antiviral immunity (dicer), and proPO system (proPO-I and proPO-II). A LGBP neutralizing assay with anti-LGBP antibody indicated a decrease in SG-induced expression of LGBP downstream signaling mediators and the immune related genes. In conclusion, this study demonstrated that the SG-stimulated immune activity in haemocytes is mediated, in part, through the LGBP, and IMD-NF-κB pathway.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand
| | - Boonsirm Withyachumnarnkul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand; Centex Shrimp, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand; The Shrimp Genetic Improvement Center, Chaiya District, Surat Thani 84100, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand.
| |
Collapse
|
20
|
Phospatidylserine or ganglioside – Which of anionic lipids determines the effect of cationic dextran on lipid membrane? Colloids Surf B Biointerfaces 2015; 126:204-9. [DOI: 10.1016/j.colsurfb.2014.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 11/22/2022]
|
21
|
Ambattu LA, Rekha M. Betaine conjugated cationic pullulan as effective gene carrier. Int J Biol Macromol 2015; 72:819-26. [DOI: 10.1016/j.ijbiomac.2014.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/30/2014] [Accepted: 09/22/2014] [Indexed: 12/01/2022]
|
22
|
Ganeshkumar M, Ponrasu T, Raja MD, Subamekala MK, Suguna L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:64-71. [PMID: 24762575 DOI: 10.1016/j.saa.2014.03.097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to synthesize green chemistry based gold nanoparticles using liver specific biopolymer and to develop a liver cancer targeted drug delivery system with enhanced efficacy and minimal side effects. Pullulan stabilized gold nanoparticles (PAuNPs) were coupled with 5-Fluorouracil (5-Fu) and folic acid (Fa) which could be used as a tool for targeted drug delivery and imaging of cancer. The toxicity of 5-Fu, 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs), Fa-coupled 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs-Fa), was studied using zebrafish embryo as an in vivo model. The in vitro cytotoxicity of free 5-Fu, 5-Fu@AuNPs, 5-Fu@AuNPs-Fa against HepG2 cells was studied and found that the amount of 5-Fu required to achieve 50% of growth of inhibition (Ic50) was much lower in 5-Fu@AuNP-Fa than in free 5-Fu, 5-Fu@AuNPs. The in vivo biodistribution of PAuNPs showed that higher amount of gold had been accumulated in liver (54.42±5.96 μg) than in other organs.
Collapse
Affiliation(s)
- Moorthy Ganeshkumar
- Department of Biochemistry, CSIR-Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India
| | - Thangavel Ponrasu
- Department of Biochemistry, CSIR-Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India
| | | | | | - Lonchin Suguna
- Department of Biochemistry, CSIR-Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India.
| |
Collapse
|
23
|
Ruan GX, Zhang TY, Li LM, Zhang XG, Shen YQ, Tabata Y, Gao JQ. Hepatic-Targeted Gene Delivery Using Cationic Mannan Vehicle. Mol Pharm 2014; 11:3322-9. [DOI: 10.1021/mp5000899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gui-Xin Ruan
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tian-Yuan Zhang
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li-Ming Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xing-Guo Zhang
- Department
of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, P. R. China
| | - You-Qing Shen
- Center
for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yasuhiko Tabata
- Department
of Biomaterials, Field of Tissue Engineering, Institute for Frontier
Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
24
|
Yang XC, Niu YL, Zhao NN, Mao C, Xu FJ. A biocleavable pullulan-based vector via ATRP for liver cell-targeting gene delivery. Biomaterials 2014; 35:3873-84. [DOI: 10.1016/j.biomaterials.2014.01.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|
25
|
Chyau CC, Ker YB, Chang CH, Huang SH, Wang HE, Peng CC, Peng RY. Schisandra chinensis peptidoglycan-assisted transmembrane transport of lignans uniquely altered the pharmacokinetic and pharmacodynamic mechanisms in human HepG2 cell model. PLoS One 2014; 9:e85165. [PMID: 24475039 PMCID: PMC3903492 DOI: 10.1371/journal.pone.0085165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/23/2013] [Indexed: 12/02/2022] Open
Abstract
Schisandra chinensis (Turz Baill) (S. chinensis) (SC) fruit is a hepatoprotective herb containing many lignans and a large amount of polysaccharides. A novel polysaccharide (called SC-2) was isolated from SC of MW 841 kDa, which exhibited a protein-to-polysaccharide ratio of 0.4089, and showed a characteristic FTIR spectrum of a peptidoglycan. Powder X-ray diffraction revealed microcrystalline structures within SC-2. SC-2 contained 10 monosaccharides and 15 amino acids (essential amino acids of 78.12%w/w). In a HepG2 cell model, SC-2 was shown by MTT and TUNEL assay to be completely non-cytotoxic. A kinetic analysis and fluorescence-labeling technique revealed no intracellular disposition of SC-2. Combined treatment of lignans with SC-2 enhanced the intracellular transport of schisandrin B and deoxyschisandrin but decreased that of gomisin C, resulting in alteration of cell-killing bioactivity. The Second Law of Thermodynamics allows this type of unidirectional transport. Conclusively, SC-2 alters the transport and cell killing capability by a "Catcher-Pitcher Unidirectional Transport Mechanism".
Collapse
Affiliation(s)
- Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Shalu County, Taichung City, Taiwan
| | - Yaw-Bee Ker
- Department of Food And Applied Technology, Hungkuang University, Shalu County, Taichung City, Taiwan
| | - Chi-Huang Chang
- Research Institute of Biotechnology, Hungkuang University, Shalu County, Taichung City, Taiwan
| | - Shiau-Huei Huang
- Research Institute of Biotechnology, Hungkuang University, Shalu County, Taichung City, Taiwan
| | - Hui-Er Wang
- Department of Food And Applied Technology, Hungkuang University, Shalu County, Taichung City, Taiwan
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Robert Y. Peng
- Research Institute of Biotechnology, Hungkuang University, Shalu County, Taichung City, Taiwan
- Research Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Wang Y, Liu Y, Liu Y, Wang Y, Wu J, Li R, Yang J, Zhang N. pH-sensitive pullulan-based nanoparticles for intracellular drug delivery. Polym Chem 2014. [DOI: 10.1039/c3py00817g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Rekha MR, Pal K, Bala P, Shetty M, Mittra I, Bhuvaneshwar GS, Sharma CP. Pullulan-histone antibody nanoconjugates for the removal of chromatin fragments from systemic circulation. Biomaterials 2013; 34:6328-38. [PMID: 23746856 DOI: 10.1016/j.biomaterials.2013.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022]
Abstract
The billions of cells that die in the adult human body daily release considerable amounts of fragmented chromatin in the form of mono- and oligonucleosomes into the circulation in normal individuals, and in higher quantities in many disease conditions. Recent results suggest that circulating chromatin fragments (Cfs) especially from abnormal cells can spontaneously enter into healthy cells to damage their DNA and induce genomic instability. Furthermore, Cfs isolated from cancer patients may induce oncogenic transformation in the recipients' cells. Thus, it follows that if such Cfs emanating from apoptotic cells could be prevented from reaching other cells, it could potentially inhibit pathological conditions, including cancer. Here we have developed pullulan based histone antibody nanoconjugates for the removal of Cfs. Nanoconjugates were developed and various physico-chemical characterizations were carried out. The efficacy of these nanoconjugates on removing Cfs was evaluated both in vitro and in vivo. Our results indicate that nanoconjugates may have therapeutic value in the efficient removal of Cfs, reducing inflammation and fatality in a mouse model of sepsis, and in preventing neutropenia following treatment with Adriamycin.
Collapse
Affiliation(s)
- M R Rekha
- Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Tanaka T, Abo Y, Hamano S, Fujishima Y, Kaneo Y. Intracellular disposition of arabinogalactan and asialofetuin in HepG2 cells. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Lee SJ, Hong GY, Jeong YI, Kang MS, Oh JS, Song CE, Lee HC. Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 2012; 433:121-8. [PMID: 22561793 DOI: 10.1016/j.ijpharm.2012.04.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
The aim of this study was to characterize paclitaxel-incorporated polysaccharide nanoparticles and evaluate their antitumor activity in vitro and in vivo. Pullulan was hydrophobically modified using acetic anhydride to make the paclitaxel-incorporated nanoparticles. Pullulan acetate (PA) was used to encapsulate paclitaxel using the nanoprecipitation method. The particles had spherical shapes under electron microscopy with sizes <100 nm. The sizes of paclitaxel-incorporated nanoparticles increased to >100 nm, and higher drug feeding induced higher particle size and drug content. Initial drug burst release was observed until 2 days and then the drug was continuously released over 1 week. Intrinsic cytotoxicity of empty PA nanoparticles was tested with RAW264.7 macrophage cells for biocompatibilty. The viability of RAW264.7 cells was >93% at all concentrations of empty PA nanoparticles, indicating that the PA nanoparticles are not acutely cytotoxic to normal human cells. The nanoparticles showed lower antitumor activity in vitro against HCT116 human colon carcinoma cells than that of paclitaxel itself, indicating the sustained release properties of nanoparticles. An in vivo study using HCT116 human colon carcinoma-bearing mice showed that paclitaxel-incorporated PA nanoparticles reduced tumor growth more than that of paclitaxel itself. These results indicate that PA paclitaxel-incorporated nanoparticles are a promising candidate for antitumor drug delivery.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Jo JI, Okazaki A, Nagane K, Yamamoto M, Tabata Y. Preparation of Cationized Polysaccharides as Gene Transfection Carrier for Bone Marrow-Derived Mesenchymal Stem Cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:185-204. [DOI: 10.1163/156856209x415495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jun-ichiro Jo
- a Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Arimichi Okazaki
- b Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Nagane
- c Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masaya Yamamoto
- d Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan, PRESTO, JST, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yasuhiko Tabata
- e Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;,
| |
Collapse
|
31
|
Jo JI, Ikai T, Okazaki A, Nagane K, Yamamoto M, Hirano Y, Tabata Y. Expression profile of plasmid DNA obtained using spermine derivatives of pullulan with different molecular weights. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:883-99. [PMID: 17688746 DOI: 10.1163/156856207781367756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to prepare a novel gene carrier from pullulan, a polysaccharide with an inherent affinity for the liver, and evaluate the feasibility in gene transfection. Pullulan with different molecular weights was cationized by chemical introduction of spermine. The cationized pullulan derivative was complexed with a plasmid DNA and applied to HepG2 cells for in vitro gene transfection. The level of gene expression depended on the molecular weight of cationized pullulan derivatives and the highest level was observed for the cationized pullulan derivative with a molecular weight of 47.3 x 10(3). Pre-treatment of cells with asialofetuin decreased the level of gene expression by the complexes. These findings indicate that the cationized pullulan derivative is a promising non-viral carrier of plasmid DNA which is internalized in a receptor-mediated fashion.
Collapse
Affiliation(s)
- Jun-Ichiro Jo
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu J, Tabata Y. Effect of modification manner on the photodynamic antitumor activity of C60 modified with pullulan. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:2147-63. [PMID: 21902907 DOI: 10.1163/092050610x535680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To design a novel cytospecific photosensitizer for photodynamic antitumor therapy, a fullerene (C(60)) was chemically modified with pullulan, a water-soluble polysaccharide with a high affinity for asialoglycoprotein receptors (ASGPRs). The effect of the molecular weight of pullulan and the modification manner to C(60) on the photodynamic antitumor activity of C(60) modified with pullulan was evaluated. In this study, two modification manners were selected. First, ethylene diamine was chemically introduced to the hydroxyl groups of pullulan with different molecular weights. Then, C(60) was coupled to pullulan through the amino groups introduced (pendant type). Second, ethylene diamine was introduced to the terminal aldehyde groups of pullulan by a reductive amination reaction, and then the pullulan with the terminal amino groups was coupled to C(60) (terminal type). Irrespective of the pullulan molecular and the modification manner, the C(60)-pullulan conjugates exhibited a similar ability to generate superoxide anions upon light irradiation. Comparing the C(60)-pullulan conjugates of pendant and terminal types, a high lectin affinity was observed for the latter conjugates. The conjugates showed a high affinity for HepG2 cells with ASGPRs and, consequently, a strong in vitro antitumor activity on the cells. It is concluded that the manner of pullulan modification is a key factor contributing to the photodynamic antitumor activity of modified C(60).
Collapse
Affiliation(s)
- Jian Liu
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
33
|
Hao C, Hao J, Wang W, Han Z, Li G, Zhang L, Zhao X, Yu G. Insulin sensitizing effects of oligomannuronate-chromium (III) complexes in C2C12 skeletal muscle cells. PLoS One 2011; 6:e24598. [PMID: 21935427 PMCID: PMC3174176 DOI: 10.1371/journal.pone.0024598] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 08/15/2011] [Indexed: 12/20/2022] Open
Abstract
Background It was known that the insulin resistance in skeletal muscle is a major pathogenic factor in diabetes mellitus. Therefore prevention of metabolic disorder caused by insulin resistance and improvement of insulin sensitivity are very important for the therapy of type 2 diabetes. In the present study, we investigated the ability of marine oligosaccharides oligomannuronate and its chromium (III) complexes from brown alga to enhance insulin sensitivity in C2C12 skeletal muscle cells. Methodology/Principal Findings We demonstrated that oligomannuronate, especially its chromium (III) complexes, enhanced insulin-stimulated glucose uptake and increased the mRNA expression of glucose transporter 4 (GLUT4) and insulin receptor (IR) after their internalization into C2C12 skeletal muscle cells. Additionally, oligosaccharides treatment also significantly enhanced the phosphorylation of proteins involved in both AMP activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathways in C2C12 cells, indicating that the oligosaccharides activated both the insulin signal pathway and AMPK pathways as their mode of action. Moreover, oligosaccharides distributed to the mitochondria after internalization into C2C12 cells and increased the expression of transcriptional regulator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), carnitine palmitoyl transferase-1 (CPT-1), and phosphorylated acetyl-CoA carboxylase (p-ACC), which suggested that the actions of these oligosaccharides might be associated with mitochondria through increasing energy expenditure. All of these effects of marine oligosaccharides were comparable to that of the established anti-diabetic drug, metformin. In addition, the treatment with oligosaccharides showed less toxicity than that of metformin. Conclusions/Significance Our findings indicate that oligomannuonate and its chromium (III) complexes improved insulin sensitivity in C2C12 skeletal muscle cells, and acted as a novel glucose uptake stimulator with low toxicity, and could be used as dietary supplementary or potential drug for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Cui Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
| | - Zhangrun Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
| | - Guangsheng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
| | - Lijuan Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, People's Republic of China
- * E-mail:
| |
Collapse
|
34
|
Yuan ZX, Li JJ, Zhu D, Sun X, Gong T, Zhang ZR. Enhanced accumulation of low-molecular-weight chitosan in kidneys: a study on the influence of N-acetylation of chitosan on the renal targeting. J Drug Target 2011; 19:540-51. [DOI: 10.3109/1061186x.2010.521158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Rekha MR, Sharma CP. Hemocompatible pullulan-polyethyleneimine conjugates for liver cell gene delivery: In vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomater 2011; 7:370-9. [PMID: 20659595 DOI: 10.1016/j.actbio.2010.07.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/12/2010] [Accepted: 07/21/2010] [Indexed: 11/18/2022]
Abstract
Polyethyleneimine (PEI; 25 kDa)-conjugated pullulans (PPE1, PPE2 and PPE3) were developed and investigated for possible use in gene delivery applications. The cytotoxicity, blood component interactions such as red blood cell/white blood cell aggregation, platelet and complement activation, and protein interaction of the pullulan-conjugated PEI was drastically reduced in comparison to PEI-based nanocomplexes. Based on the blood compatibility studies, PPE1 was selected for further study. The buffering capacity of this derivative was similar to that of PEI, which plays an important role in efficient gene transfection. The particle size, zeta potential, stability in the presence of plasma and resistance to nuclease degradation were evaluated. In addition, cellular uptake and localization of plasmid, as well as transgene expression, were evaluated following in vitro transfection of HepG2 cells. Endocytosis inhibitors, confocal laser scanning microscopy and fluorescent labeling techniques were used to visualize the nanoplex uptake mechanism, cellular distribution and nuclear localization. The results from inhibitor experiments in the presence of asialofetuin indicated that the asialoglycoprotein receptor is involved in transfection of hepatocytes with pullulan-PEI complexes. The conjugation of pullulan with PEI did not hinder the plasmid nuclear localization ability of PEI. The transfection efficiency of pullulan conjugate was similar to PEI, with the added advantage of hemocompatibility and non-cytotoxicity. The transfection efficiency of PEI and PPE1 was 1.6- and 2-fold more, respectively, in the presence of serum than in the absence of serum. Therefore, the pullulan-PEI conjugate seems to be a promising gene delivery vector with good hemocompatibility and low toxicity but without compromising the transfection efficacy of PEI.
Collapse
Affiliation(s)
- M R Rekha
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Poojappura, Kerala, India
| | | |
Collapse
|
36
|
Self-organized Nanogels of Polysaccharide Derivatives in Anti-Cancer Drug Delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.4.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Liu J, Tabata Y. Photodynamic therapy of fullerene modified with pullulan on hepatoma cells. J Drug Target 2010; 18:602-10. [DOI: 10.3109/10611861003599479] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Rekha M, Sharma CP. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials 2009; 30:6655-64. [DOI: 10.1016/j.biomaterials.2009.08.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/08/2009] [Indexed: 10/20/2022]
|
39
|
Jo JI, Tabata Y. Non-viral gene transfection technologies for genetic engineering of stem cells. Eur J Pharm Biopharm 2008; 68:90-104. [PMID: 17870447 DOI: 10.1016/j.ejpb.2007.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
The recent rapid progress of molecular biology together with the steady progress of genome projects has given us some essential and revolutionary information about DNA and RNA to elucidate various biological phenomena at a genetic level. Under these circumstances, the technology and methodology of gene transfection have become more and more important to enhance the efficacy of gene therapy for several diseases. In addition, gene transfection is a fundamental technology indispensable to the further research development of basic biology and medicine regarding stem cells. Stem cells genetically manipulated will enhance the therapeutic efficacy of cell transplantation. In this paper, the carrier and technology of gene delivery are briefly overviewed while the applications to the basic researches of biology and medicine as well as regenerative medical therapy are introduced. A new non-viral carrier and the cell culture system are described to efficiently manipulate stem cells.
Collapse
Affiliation(s)
- Jun-ichiro Jo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
40
|
Jo JI, Ikai T, Okazaki A, Yamamoto M, Hirano Y, Tabata Y. Expression profile of plasmid DNA by spermine derivatives of pullulan with different extents of spermine introduced. J Control Release 2007; 118:389-98. [PMID: 17320235 DOI: 10.1016/j.jconrel.2007.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/06/2007] [Accepted: 01/14/2007] [Indexed: 11/25/2022]
Abstract
The objective of this study is to prepare a novel gene carrier from pullulan, a polysaccharide with an inherent affinity for the liver, and evaluate the feasibility in gene transfection. Various amounts of spermine were chemically introduced into pullulan with molecular weights of 22,800, 47,300, and 112,000 to prepare cationized pullulan derivatives with different percentages of spermine introduced. Each cationized pullulan derivative was complexed with a plasmid DNA at various ratios and applied to HepG2 cells for in vitro gene transfection. The level of gene expression depended on the percent spermine introduced of cationized pullulan derivatives and the molecular weight of pullulan. However, when compared at the complexation molar ratio of pullulan derivative to the plasmid DNA, the expression level became maximum around the ratio of 10(2), irrespective of the pullulan molecular weight. Pre-treatment of cells with asialofetuin of asialoglycoprotein receptor ligand decreased the level of gene expression by the complexes. The cationized pullulan derivative with an appropriate physicochemical character is a promising non-viral carrier which promotes the receptor-mediated internalization of plasmid DNA and consequently enhances the expression level.
Collapse
Affiliation(s)
- Jun-ichiro Jo
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kawara-cho Shogoin, Sakyo-ku Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Kanatani I, Ikai T, Okazaki A, Jo JI, Yamamoto M, Imamura M, Kanematsu A, Yamamoto S, Ito N, Ogawa O, Tabata Y. Efficient gene transfer by pullulan–spermine occurs through both clathrin- and raft/caveolae-dependent mechanisms. J Control Release 2006; 116:75-82. [PMID: 17055606 DOI: 10.1016/j.jconrel.2006.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/29/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
The feasibility and mechanism of gene delivery by pullulan-spermine, a recently developed cationic polysaccharide, were investigated. Pullulan-spermine-mediated transfection of plasmid DNA resulted in greatly reduced cytotoxicity and a 10-fold increase in the level of gene expression when compared to Lipofectamine 2000, a commercially available cationic lipid. Additionally, after transfection of p53-expressing plasmid DNA by pullulan-spermine but not Lipofectamine 2000, the in vitro proliferation of T24 cells was significantly reduced. Pullulan-spermine-mediated gene expression was inhibited by both chlorpromazine of clathrin-mediated endocytosis inhibitor and methyl-beta-cyclodextrin and filipin of raft/caveolae inhibitors. We conclude that pullulan-spermine is a promising carrier for gene transfection, and that cellular uptake of pullulan-spermine-plasmid DNA complexes is mediated by clathrin- and raft/caveolae-dependent endocytotic pathways.
Collapse
Affiliation(s)
- Isao Kanatani
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Shogoinkawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tanaka T, Hamano S, Fujishima Y, Kaneo Y. Uptake of Pullulan in Cultured Rat Liver Parenchymal Cells. Biol Pharm Bull 2005; 28:560-2. [PMID: 15744092 DOI: 10.1248/bpb.28.560] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uptake of pullulan, including a binding process followed by internalization, was examined in cultured rat liver parenchymal cells. A tyramine derivative of pullulan was labeled with [125I]iodine and used as a ligand. Pullulan bound to the cell surface was released by EDTA treatment, indicating that pullulan binding requires Ca2+ and a contribution from the asialoglycoprotein receptor. Binding of pullulan reached a steady state and internalization represented a biphasic mode, which included first- and zero-order processes in the initial stage and after 20 min incubation, respectively. The uptake of pullulan could be estimated by a similar model for intracellular disposition of asialofetuin. Kinetic parameters of pullulan constituting both binding and internalization were below those found for asialofetuin. These results suggest that pullulan is taken up by liver parenchymal cells via the asialoglycoprotein receptor; however, uptake availability is lower than that of asialofetuin.
Collapse
Affiliation(s)
- Tetsuro Tanaka
- Department of Biopharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Ichi-banchi, Fukuyama, Japan.
| | | | | | | |
Collapse
|